Stochastic dispatch optimization using Lidar-based power forecasts

<u>Hauke Bents</u>, Lueder von Bremen, Bruno Schyska DLR Institute of Networked Energy Systems, Oldenburg ForWind Wind Physics Symposium, 14.06.24, Oldenburg

Uncertainty is inherent to the management of power systems

Planning the operation

Operating the system

2

IEA (2020), Electricity security matters more than ever, in *Power Systems in Transition*, Paris: IEA. https://www.iea.org/reports/power-systems-in-transition
 ENTSO-E (2023), *European Resource Adequacy Assessment*, Brussels: ENTSO-E. https://www.entsoe.eu/outlooks/eraa/2023/eraa-downloads/

Management of the power system

Determine **preliminary schedule of generation** (=Dispatch)

Adjusting the dispatch using forecast updates

Balancing the difference of dispatch and observed feed-in

Modelling the management

minDay-aheadminIntradaydispatch costscorrection costsminBalancing costs

Simple example: 2-bus network with single wind farm

WindRamp-Network

- Grid topology used in WindRamp project
- 8.4 GW base load, 21.4 GW peak load
- 6.6 GW flexible and 15.4 GW inflexible conventional generators
 - Flexible generators (i.e. gas turbines) with limited ramping (+ 20% of installed capacity) in balancing
- 25 GW on- and offshore wind farms
- Analysis of 2022

Using Lidar forecasts instead of NWP¹ products

- Employing Lidar forecast (from ForWind) at largest offshore cluster (7.1 GW) in 15 min intraday clearing
- System performance is greatly enhanced
 - System costs -15%
 - Activation of upward balancing -20%
 - Load shedding -40%
- Analyzing 18292 15-minute intervals from 2022 provided

System indicators

		ECMWF ² forecast	Lidar
$E_{\rm Wind}^{ m delivered}$	(TWh)	18.7	18.7
<i>E</i> ⁺	(TWh)	1.4	1.1
E^{-}	(TWh)	0.3	0.4
E ^{shed}	(TWh)	0.5	0.3
C ^{total}	(M€)	660	560
$\langle \text{RMSE} \rangle_{g,t}$	(GW)	1.9	1.4

Edelivered	E+,E-	Eshed	C ^{total}	$\langle \text{RMSE} \rangle_{g,t}$
Delivered energy	Balancing energy	Shedded energy	Total system operating costs	System RMSE in intraday

How do Lidar forecasts and persistence compete?

Lidar forecasts

- The annually, averaged performance of Lidar forecast and persistence is very similar
- Analyzing of ramp events not conducted in the system context is limited by data availability
- 7192 15-minute intervals from 2022 available for analysis

		N calib	ot rated	Calibrat	ed Pe	rsistence	
$E_{\mathrm{Wind}}^{\mathrm{delivered}}$	(TWh)	10.70		10.70		10.70	
E^+	(TWh)	0.64		0.64		0.64	
E^{-}	(TWh)	0.21		0.19		0.19	
E ^{shed}	(TWh)	0.17		0.16		0.17	
C ^{total}	(M€)	305.1		303.6		304.5	
$\langle \text{RMSE} \rangle_{g,t}$	(GW)	1.85		1.75		1.80	
	Edelivered	E+,E-	Eshed	C ^{total}	$\langle \text{RMSE} \rangle_{g,t}$		
	Delivered	Balancing	Shedded	Total system	System		

energy

energy

energy

RMSE in

intraday

operating

costs

Recent: Integrating uncertainty into planning

9

(3) J. M. Morales et al., "Electricity market clearing with improved scheduling of stochastic production", *European Journal of Operational Research*, vol. 235, pp. 765-774, 2014. doi.org/10.1016/j.ejor.2013.11.013

The use of forecast uncertainty in planning

- Utilizing forecast uncertainty has several advantages
 - Increased use of wind energy (+2%)
 - Decreased system operating costs (-42%)
 - Decreased activation of flexibilities
- Analysis of 18292 15-minute intervals from 2022
- Lidar forecasts employed at largest wind farm cluster

		Deterministic	Stochastic
$E_{\rm Wind}^{ m delivered}$	(TWh)	18.7	19.1
<i>E</i> ⁺	(TWh)	1.4	0.5
E^{-}	(TWh)	0.3	1.2
E ^{shed}	(TWh)	0.5	0.0
$\mathcal{C}^{\mathrm{total}}$	(M€)	660	380

Edelivered	E+,E ⁻	Eshed	Ctotal
Delivered energy	Balancing energy	Shedded energy	Total system operating costs

Conclusion

- The use of Lidar forecasts is advantageous from a system perspective
 - Reduced activation of flexibility (i.e. gas turbines or load shedding)
 - Increased delivery of wind energy
 - Use at large wind farms increases system impact
- Employing probabilistic power forecasts in power systems management reduces system operating costs
- Outlook
 - Analyzing impact of ramps on activation of short-term flexibilities
 - Integrating further clearings

Acknowledgements

Project: WindRamp Duration: 2020-07-01 2023-12-31 Funding code: 03EE3027C

Supported by:

12

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Hauke Bents, DLR-VE, Wind Physics Symposium, 14.06.2024

Backup: Ramps ECMWF vs Lidar forecast

Backup: Ramps ECMWF vs Lidar forecast

Backup: Ramps ECMWF vs Lidar forecast

Hauke Bents, DLR-VE, Wind Physics Symposium, 14.06.2024