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A B S T R A C T

The accurate prediction of vessel responses in waves is crucial for decision-making and contribute to the
operational safety and risk minimization. Short-term predictions can be carried out by estimating the vessel’s
motions and loads based on incident waves. Existing model-based approaches either require computationally
intensive simulations that compromise real-time capability or use simplified models affecting the accuracy
of the prediction. Therefore, this study explores the feasibility of using neural networks for mapping time
signals of surface elevation data and a set of corresponding ship responses, i.e. the heave and pitch motions
as well as the vertical bending moment. The approach followed here is built on the assumption that the wave
profile amidships is known. A synthetic dataset was generated using a time-domain strip theory solver with
considerations of non-linear effects on motions and loads due to large amplitude waves in a variety of irregular,
long-crested sea state conditions. We propose two different neural network models, a multi-layer perceptron
(MLP) and a fully convolutional neural network (FCNN), and compare their performances on measurement data
obtained from model tests in a seakeeping basin. The evaluations also include the freak wave reproduction of
the ‘new year wave’. The proposed networks are able to estimate the motions and bending moment accurately
for a wide range of sea state conditions, surpassing current state-of-the-art models on the given data sets.
1. Introduction

The safety and operational efficiency of vessels advancing in waves
are highly dependent on the prevailing sea state. Extreme wave con-
ditions lead to large amplitude motions, cargo loss and critical bend-
ing moments. In cases of such events, the real-time prediction of
wave-induced responses can provide early-warning information to the
mariners and support the crew in decision-making. Therefore, the
prediction of vessel responses in critical wave sequences is an on-going
topic in the field of naval architecture.

In the past, various numerical methods for estimating the motions
and loads of a vessel advancing in waves have been established and
have become proven methodology. Hereby, the sea state is commonly
described through the wave energy spectrum under the assumption
that the wave process is stationary and ergodic within observation
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time (Ochi, 1990). Response amplitude operators (RAOs) can be uti-
lized to estimate the vessel’s responses in frequency domain when
assuming linearity between wave excitation and vessel response. How-
ever, linear models are restricted to seaway conditions with small to
moderate wave steepness with respect to wave prediction (Klein et al.,
2020) as well as ship response estimation (Adegeest, 1996; Dannenberg
et al., 2010), motivating the usage of non-linear simulation methods.
Non-linear effects can be modeled using strip theory to a certain degree
of accuracy. Most strip theory solvers are based on the method pro-
posed by Salvesen et al. (1970). By adding modifications to the system
of equations, non-linearities associated with large amplitude waves can
be considered to some extent (Fonseca and Guedes Soares, 1998, 1970).
Computational fluid dynamics (CFD) such as simulations based on the
Reynolds-averaged Navier–Stokes equations (RANS) allows an accurate
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representation of non-linear effects; however, are of high computational
costs. Although these methods give adequate results in terms of motion
and load prediction, they lack real-time capability.

The resulting trade-off between accuracy and simulation time that
re faced by the mentioned models have spurred research into ap-
lying alternative techniques for on-board decision support systems.

Triantafyllou and Athans (1981) and Triantafyllou et al. (1983) applied
a Kalman filtering technique for predicting ship motions up to 5 s ahead.
Hereby, the knowledge of the ship hydrodynamics is required. The
method is robust against noisy measurements; however, investigations
show that the prediction accuracy highly depends on the estimation
of the peak frequency of the present wave spectrum, which limits its
application in real-world scenarios. Yumori (1981) proposed an auto-
regressive moving average (ARMA) model and by applying time series
analysis, the model is able to predict the ship motions for up to 2 − 4 s
with no previous knowledge about the ship hydrodynamics necessary.
Another concept of a predictive model is introduced by Naaijen and

uijsmans (2008, 2010) as well as Naaijen et al. (2018, 2009), which
nvolves the following three steps: (i) the recording of the surrounding
ave field, (ii) its phase-resolved propagation prediction to the vessel
osition and (iii) the estimation of the corresponding vessel responses
n future conditions. The authors use wave probe data and wave field
ata from radar measurements as input into their model. The wave
ropagation is modeled using linear wave theory and the ship responses
re determined using RAOs. The concept was tested in long and short-
rested seaways, showing accurate prediction results for a time interval
nside of the theoretical prediction zone and with an upper limit of 60 s.
he advantages of applying linear theory lie in a minimal calculation
ime as well as robustness and easy maintainability. The described
ethod was tested on full scale tests in the scope of the joint industry
roject ‘On board Wave and Motion Estimator (OWME)’ (Dannenberg
t al., 2010) in mild sea state conditions, reaching a prediction horizon
p to 120 s. Similar results are achieved by commercially available
rediction systems like FutureWavesTM (Kusters et al., 2016) using

linear theory.
Besides model-driven approaches, the potential of implementing

data-driven techniques in the field of vessel motion prediction has
increasingly been investigated in recent years. The following studies use
istorical ship motion and/or wave data in order to perform a short-
erm forecast of the wave propagation or vessel responses. Sclavounos

and Ma (2018) proposed a support vector machine (SVM) framework
for predicting the wave elevation up to 5 s into the future. Furthermore,
he authors demonstrated that SVM can also be applied for accurately

determine ship roll hydrodynamics under different loading conditions
using experimental data. The feasibility of using dynamic mode decom-
position (DMD) for extracting spatio-temporal modes from time-series
data for predicting maneuvering motions has been studied by Chen
et al. (2023a) and the method is compared against higher order dy-
namic mode decomposition (HODMD) by the same authors (Chen et al.,
2023b). Khan et al. (2007) showed that by using a fully-connected
eural network (FCNN) trained on historical motion data, roll motion

prediction is feasible up to 7 s. Recurrent neural networks (RNNs) are
conveniently utilized for processing sequential data such as time series
ue to their ability to memorize long-term dependencies in the input
ata. Long short-term memory (LSTM) networks as a variant of the
NN overcome the vanishing or exploding gradients during training

and have been deployed to predict heave and surge motions of a semi-
ubmersible by Guo et al. (2021). The authors trained and tested a
STM-based model on experimental data to forecast the motions both

with and without the support of wave data. Lee et al. (2023) have
applied a LSTM model in combination with a convolutional neural
network (CNN) showing that the heave, roll and pitch responses of the
KVLCC2 tanker can be predicted accurately, taking both incident wave
xcitations as well as motion memory effects into account. Further
esearch expands the field of application to hybrid models combining

Sun et al., 2022), bi-directional
STM and gaussian processes (GP) (

2 
LSTM (BiLSTM) frameworks (Jiang et al., 2024; Xue et al., 2024), radial
basis function (RBF) networks (Yin et al., 2018) or attention-based
LSTM (Zhang et al., 2021). The concept of a digital twin by combining
data-driven methods for predicting the wave field evolution and ship
esponses is introduced by Lee et al. (2022). Applying the backpropaga-

tion algorithm to train model weights entails high computational costs.
A more cost-effective neural network framework is reservoir computing
(RC). In RC, a low-dimensional input vector is fed into the reservoir, a
high-dimensional phase space. The approach of only training the output
layer enables the dynamic properties of the reservoir and decreases the
training costs compared to conventional RNNs. The potential of using
RC for forecasting the surge, heave, and pitch motions of a moored
barge in head waves to up to 50 s has been demonstrated by Yang et al.
(2023a). The training data was obtained from model tests and include
one sea state condition for irregular waves. A comparison of the RC
framework to LSTM, BiLSTM and gated recurrent unit (GRU) networks
for a limited number of sea states was done by the same authors (Yang
et al., 2024, 2023b).

In contrast to the mentioned studies, the authors del Águila Fer-
andis et al. (2021) follow a different approach and suggest to obtain

the vessel responses from given wave sequence data in the sense of a
mapping task. CFD simulations are used to create the training data,
which includes two wave spectra that represent mild and extreme
onditions, for various vessel types operating in irregular, long-crested
eas. Since the proposed LSTM network is limited to the chosen sea
tates, the authors conclude that a generalization of the model can be
chieved with more extensive training using a wider range of wave
pectra. A summary of the listed studies is given in Appendix A.

Similar to latter publication, this study explores the feasibility of
predicting vessel responses in the framework of a non-linear mapping
task. The basic prerequisite is the knowledge of the wave profile at
the midship section of the ship, which will serve as input into the
predictive model. Most notably, the authors specify that the models
must be able to function in a large range of sea states and, in particular,
to cover extreme-events. We propose two neural network models, a
multi-layer perceptron and a fully convolutional neural network, to
perform a sequence-to-sequence mapping of the non-linear relations
between surface elevation data amidships and a set of corresponding
responses, i.e. the vertical motions pitch and heave as well as the
vertical bending moment. This concept aims at expanding the available
models for ship response prediction by the following characteristics:
(i) a non-linear mapping method is presented which has the ability of
close-to-real time execution, (ii) in addition to ship motions, the vertical
bending moment is predicted and (iii) the model is generalizable to
many sea states, covering a variety of mild to severe conditions. As
current state-of-the-art, a LSTM network similar to the one proposed
by del Águila Ferrandis et al. (2021) was recreated and a comparison
to the established models was drawn. The investigated networks were
trained on simulation data. The waves were generated using linear
wave theory for a variety of sea state conditions including steep waves
of high amplitude. The vessel responses were simulated using a strip
theory code with considerations of non-linearities in the calculation
of the hydrostatic and Froude–Krylov forces. In order to assess the
reliability of the model’s predictions, the neural networks were tested
on experimental data obtained from model tests of the vessel in a
seakeeping basin. The testing involves mild sea state as well as the
reproduction of the ’new year wave’ as an example of a freak-wave.

The paper is organized as follows: Section 2 describes the numerical
method used for data generation. Furthermore, physical constraints
regarding the prediction horizon are discussed. The data-driven ap-
proach is addressed in Section 3, comprising the architectures of the
established neural networks, the generation of the simulation data as
well as the description of the model test setup. Following in Section 4,
the models are investigated regarding the physical constraints and the
resulting impact on the mapping capability is highlighted. Based on
these findings, the final results are presented in Section 5 followed by
the conclusion elaborated in Section 6.
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2. Physics-based model for data generation

A sufficient amount of data is required for the training of neural
networks. In order to keep the costs of data generation moderate
it is reasonable to find a trade-off between computational time and
ccuracy of the data. Therefore, a strip theory solver by Fonseca and
uedes Soares (1998), see also Clauss et al. (2012), was selected, as it

requires comparatively low computational effort while giving results
that are sufficiently accurate with regard to the problem statement.
The solver applies potential flow theory and non-linear effects due to
large amplitude motions are considered in the hydrostatic and Froude–
Krylov forces. The method is presented in more detail in the following.
In addition to that, this section also covers the physical constraints of
the mapping problem resulting from the point-wise input data.

2.1. Non-linear strip theory solver

A fixed coordinate system is defined as right-handed Cartesian
coordinate system with 𝑧-axis pointing positive in the upward direction
passing the center of gravity, 𝑥-axis pointing positive toward the bow
and the 𝑦-axis pointing positive in port-direction perpendicular to the
others. The origin is located in the plane of the undisturbed free surface.

he flow is assumed to be frictionless and irrotational and thus the
otential flow theory can be applied. The vector of velocities 𝐔 can be
ritten as gradient of the velocity potential 𝐔 = ∇𝛷 with 𝐱 being the

vector of the Cartesian coordinates. Using a linear approach, the total
elocity potential 𝛷T can be simplified to the summation of steady and
nsteady components

𝛷T = −𝑈 𝑥 +𝛷S +𝛷J +𝛷D +
6
∑

𝑗=1
𝛷R

𝑗 (1)

with 𝑈 being the forward speed of the vessel and 𝛷S the perturbation
otential due to steady translation. 𝛷J represents the incident wave po-
ential, 𝛷D the diffracted wave potential and 𝛷R

𝑗 the radiation potential
ue to motion in the 𝑗th mode. Based on Eq. (1) and the linearized

Bernoulli Equation, the hydrodynamic pressure can be approximated,
resulting in the hydrodynamic pressure forces associated with oscilla-
tory motions after integrating over the wetted surface area. These can
be categorized into the radiation forces, hydrostatic forces and wave
exciting forces; whereby the latter can be split into Froude–Krylov and
diffraction forces. Large non-linearities due to the severe change in
the submerged volume of the hull when advancing in high-amplitude
waves are assumed to be dominated by buoyancy effects. Therefore, the
hydrostatic pressures as well as the Froude–Krylov forces are integrated
ver the whole wetted surface area, including the deck in case of green
ater.

The rigid body motions of a ship consist of three translations of
he origin and three rotations around the axes; however only head

sea is modeled in this specific case, which reduces the ship motions
to the vertical translatory motion heave 𝑋3 and rotational motion
pitch 𝑋5. The ship motions are approximated by solving the coupled
quations of motion in time domain. The vertical bending moment

VBM is calculated at each cross-section based on the moment of inertia
5 and the moments due to hydrodynamic forces

VBM (𝑡) = 𝐼5(𝑡) − 𝑅5(𝑡) −𝐷5(𝑡) −𝐾5(𝑡) −𝐻5(𝑡) (2)

with contributions due to radiation 𝑅5, diffraction 𝐷5, Froude–Krylov
orce 𝐾5 and hydrostatic force 𝐻5. The moment contributions are
ntegrated over the part of the hull that is forward of the respective
ross section.

The solver models the irregular seaway by superposing linear wave
components of varying heights and frequencies. A linear wave is char-
acterized by the wave length 𝐿, wave period 𝑇 , angular frequency 𝜔,
wave number 𝑘 and phase speed 𝑐. The parameters are linked as follows

2𝜋 2 𝑔 𝜔
𝑇 =
𝜔

, 𝐿 = 𝑇
2𝜋

, 𝑘 =
𝑐
. (3) i

3 
Fig. 1. Prediction zone following linear wave theory: On the left-hand side, the
theoretical prediction zone is outlined in dark gray for an observation of the surface
elevation 𝜁 (𝑥0 , 𝑡 ∈ [0,… 𝜏]). Values of predictability 1 − 𝑃 are given. The slope of the
limits are determined by the group velocities 𝑐𝑔 . The resulting prediction zone of the
present case is shown on the right-hand side. The area in which the wave profile
can be reconstructed along the entire hull is marked in dashed lines, resulting in
non-predictability over parts of the hull outside of the response prediction horizon
𝐓Pr ed = [ 𝜏1 ,… , 𝜏2 ]. The 𝑥-axis denotes the direction of the flow.

In case of an uni-directional seaway, the superposition is simplified to
𝜁 (𝑥, 𝑡) =

∑

𝑛
𝜁𝑛 cos

(

𝑘𝑛𝑥 − 𝜔𝑛𝑡 +𝛷𝑛
)

(4)

with 𝜁𝑛, 𝑘𝑛, 𝜔𝑛 and 𝛷𝑛 being the amplitude, wave number, angular
frequency and phase shift of the 𝑛th wave component. The amplitude
𝑛 is calculated based on the spectral density 𝑆(𝜔𝑛) in order to conserve

the energy of a natural seaway.

2.2. Physical constraints of the prediction horizon

In case of a finite spatio-temporal observation of the wave field, the
forecast of its development is only feasible for a specific time period
(Morris et al., 1998). The spatio-temporal zone in which the seaway can
be fully reconstructed based on an observation of the surface elevation
𝜁 (𝑥0 , 𝑡 ∈ 𝐓 = [0,… , 𝜏]) for a duration 𝜏 is called prediction zone
and commonly visualized in a time-distance diagram, see Fig. 1(a).
Its deterministic construction is addressed by Naaijen and Huijsmans
(2008), Naaijen et al. (2014) and Wu (2004), among others. The
redictability of linear waves can be measured deterministically by

summing up the relative amount of energy arriving at position 𝑥 at
time 𝑡, leading to the theoretical prediction indicator

𝑃
(

𝑥, 𝑡) = ∫ 𝜔h

𝜔l 𝑆(𝜔) 𝑑 𝜔
∫ ∞
0 𝑆(𝜔) 𝑑 𝜔 (5)

with limits of integration 𝜔l and 𝜔h as lowest and highest angular
frequencies of the wave field (Naaijen et al., 2014). Following Wu
(2004), the prediction error indicator 1 − 𝑃 ∈ [0,… , 1] instead of 𝑃 is
used in this study, whereby a value of 1 −𝑃 = 0 indicates predictability.
More specifically, the prediction zone will be defined as domain where
1 −𝑃 < 0.15 holds. The value of 0.15 as limit of predictability has been
chosen following Law et al. (2020), who investigated a data-driven
method for wave propagation prediction.

The resulting prediction zone for the case presented in this paper is
epicted in Fig. 1(b). At the temporal boundaries, the surface elevation
s not predictable along the entire hull and therefore the wave profile is
artly unknown by the neural networks, which affects the capability of
he models to estimate the corresponding vessel responses. This leads
o physical constraints of the mapping problem and restricts the time
nterval in which the models can be evaluated. This time interval will
e referred to as response prediction horizon 𝐓Pr ed ∶= [𝜏1,… , 𝜏2].

3. Data-driven approach

Neural networks are a subset of Machine Learning and based on the
dea of mathematically mimicking the behavior of biological neurons.
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Supervised learning in a regression problem is characterized by the
ability to learn a functional dependence 𝑔 ∶ R𝑑𝑥 → R𝑑𝑦 between labeled
input 𝐱 (features) and related output 𝐲 (targets) of a training data set
 =

{

𝑖 =
(

𝐱, 𝐲
)

𝑖 | 𝐱 ∈ R𝑑𝑥 , 𝐲 ∈ R𝑑𝑦 , 𝑖 = 1, 2,… , 𝑁}

consisting of
𝑁 data samples. The dimensions of the feature and target space are
depicted as 𝑑𝑥 and 𝑑𝑦. During the training process, 𝑔 is approximated
such that the discrepancy between approximation and ground-truth is
minimal according to a chosen metric. Neural networks are tuned to the
distribution of the training data and do not extrapolate well to samples
that lie beyond the training set. The latter should therefore cover the
data space that is relevant for the application to ensure that the model
can make reliable estimations. The capability of generalization is given
if the model performs equally well on new, unseen data that has a
similar distribution as the training set, also referred to as test set.
The theory of neural networks is briefly summarized in the following
section and the established neural network architectures are presented.
More elaborated details on the theory of neural networks is given by
Goodfellow et al. (2016).

3.1. Neural network theory

The most basic unit of a conventional neural network is the artificial
neuron, which connects the sum of input 𝐱 multiplied by weights 𝐰 with
the output 𝐲 by an activation function 𝑓

𝐲 = 𝑓 (𝐰, 𝐱) = 𝑓
(

bias +
𝑁
∑

𝑖=1
𝑤𝑖𝑥𝑖

)

. (6)

The activation function enables the neural network to establish non-
linear relations between input and output. Arranging multiple neurons
as a network, a multivariate function can be formulated as

𝐲 = 𝑓𝐿
(

𝐰𝐿, 𝑓𝐿−1
(

𝐰𝐿−1, … , 𝑓1(𝐰1, 𝐱)
)

)

, (7)

where 𝐿 corresponds to the number of layers. The most widespread
neural network type is the multi-layer perceptron (MLP) consisting
of the input and output layers as well as at least one hidden layer
in between. MLPs are feed-forward, fully-connected neural networks,
meaning the connections between the neurons are strictly directed
toward the output layer and each neuron is connected to each neuron in
the next layer. Another common architecture type is the convolutional
neural network (CNN), which is a feed-forward model that is able to
detect and extract features of interest from the input data by using the
principle of convolution. During the process of a convolution, the input
is filtered by a kernel and the extracted features are stored in feature
maps. The kernel size determines the number of input data elements
that gets further processed to compute one entry in the feature map.
The region in the input data space that is seen by a certain feature map
layer, called receptive field, can be expanded by using dilation, which
inflates the increments of the kernel compared to the increment of the
data. In case of only performing convolutional operations, the model is
called fully convolutional neural network (FCNN).

During the training process, the model parameters are first ini-
tialized randomly and further optimized in order to represent the
distribution of the data as best as possible within the capacity of
the model. The discrepancy between prediction and ground-truth is
measured by the loss function. The loss can be minimized by using
gradient-descent and backpropagation. The choice of a suitable loss
function depends on the underlying problem. In this study, the Surface
Similarity Parameter

SSP =

√

∫ |𝐹𝐲𝟏 (𝐤) − 𝐹𝐲𝟐 (𝐤)|
2𝑑𝐤

√

∫ |𝐹𝐲𝟏 (𝐤)|
2𝑑𝐤 +

√

∫ |𝐹𝐲𝟐 (𝒌)|
2𝑑𝐤

∈ [0, 1] (8)

is applied, which compares two surfaces 𝐲1 and 𝐲2 in Fourier space,
denoted as 𝐹𝐲, and measures the similarity of the frequency components
with respect to amplitude and phase. A value of SSP = 0 indicates
perfect agreement and with increasing value of SSP, the similarity de-
creases. In a study of Wedler et al. (2022) it has been demonstrated that
the SSP benefits machine learning models in the training of oscillatory
sequences.
4 
Table 1
Main particulars of the chemical tanker.

Parameter Unit Abbreviation Full scale Model scale

Length overall [m] 𝐿oa 170 2.428
Length between perpendiculars [m] 𝐿pp 161 2.3
Breadth [m] 𝐵WL 28 0.4
Depth [m] 𝐷 13 0.186
Draught [m] 𝐷MS 9 0.129
Displacement [k g] 𝛥 30 666 000 89.405
Block coefficient [ – ] 𝑐B 0.75 0.75
Longitudinal center of gravity [m] 𝐿cg 82.4663 1.17809
Vertical center of gravity [m] 𝑉cg 6.1516 0.08788
Radius gyration for rolling [m] 𝑅xx 9.31 0.133
Radius gyration for pitching [m] 𝑅y y 32.9 0.47
Radius gyration for yawing [m] 𝑅zz 33.53 0.479

Fig. 2. Model of the chemical tanker in the seakeeping basin at the Technical
University of Berlin.

3.2. Presentation of simulated and experimental data

The vessel featured in this study is a chemical tanker with main
particulars listed in Table 1. Fig. 2 shows the model during conducted
experiments at the Technical University of Berlin.

The vessel was part of a numerical and experimental study on
the identification of critical wave sequences by Clauss et al. (2012).
The authors applied an iterative optimization program using a strip
theory solver in order to identify wave patterns that result in maximal
vertical bending moments. The worst case scenario obtained from the
optimization run is characterized by an extreme sagging condition with
a wave length close to 𝐿pp and a wave height at the limit of the wave
steepness constraint. These extreme cases are of particular interest with
regards of ship safety and should be well represented by the models.
Therefore, the goal was to create a data set that is (i) representative of
the real world and (ii) rich of information, i.e to include large vertical
bending moments and large amplitude motions. Thus, the ranges of the
Jonswap parameters were chosen based on the findings of the study
mentioned above and a wave steepness constraint. The ratio between
peak wave length to ship length 𝑟 ∶= 𝐿p∕𝐿pp ∈ {0.6, … , 1.5} and the
wave steepness 𝜖 ∶= 𝜋 𝐻s∕𝐿p ∈ {0.025, … , 0.15} are introduced. Values
of 𝑟 ≈ 1.1, meaning a peak wave length 𝐿p close to ship length 𝐿pp,
were included in order to provoke large bending moments. The ranges
of the peak enhancement factor were set to 𝛾 ∈ {1, … , 7}. A total
number of 5 000 Jonswap spectra were generated by defining vectors 𝝐,
𝐫 and 𝜸 with random values uniformly distributed in the corresponding
range. Next, the spectral parameters were derived, whose histograms
are shown in Fig. 3. The joint distribution of 𝐻s and 𝑇p is given in Fig. 4,
compared to measured sea state statistics of the Northern Atlantic.
The distributions of simulated data and measurements differ and the
simulated sea state conditions are more evenly distributed inside of the
defined range.

The frequency spectrum was discretized in 0 r ad∕s < 𝜔 ≤ 8 r ad∕s
using 𝛥𝜔 = 0.01 r ad∕s . The time domain was discretized for a duration
of 𝑇 = 180 s in 512 time steps, resulting in a time step size of 𝛥𝑡 ≈ 0.35 s.
The dimensions of one datasample therefore equals  =

{ (
𝐱, 𝐲

)

=
(

𝜻(𝑥mid),𝑿3,𝑿5,𝑽 𝑩 𝑴)

∈ R512×4 }

. The speed of the ship was set
to zero and one loading condition was modeled. Next to 𝜁 (𝑥mid, 𝑡),
the strip theory solver also prints out the surface elevation at forward
perpendicular 𝜁 (𝑥 , 𝑡) and aft perpendicular 𝜁 (𝑥 , 𝑡). Fig. 5 shows
fwd aft
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Fig. 3. Distribution of significant wave height 𝐻s, peak wave period 𝑇p and peak
enhancement factor 𝛾 in training and test set. Data ranges and their median are given.

Fig. 4. Comparison of significant wave height 𝐻s and peak period 𝑇p occurences
in simulated data and hindcasted wave spectra obtained from measurements in the
Northern Atlantic (Söding, 2001).

the distribution of the simulated response amplitudes. The values were
extracted by splitting each time signal into 4 bins and taking the
maximum value of each bin.

The model tests of the chemical tanker were conducted in a scale
of 1 ∶ 70 at the seakeeping basin of the Ocean Engineering Divi-
sion of the Technical University of Berlin. The basin has a length
of 110 m with a measuring range of 90 m. The width is 9 m and the
water depth is 1 m. The basin is equipped with an electrically driven
piston type wave generator able to generate deterministic irregular
sea states with predefined characteristics and tailored wave sequences.
Only the heave and pitch motions of the model were unrestrained
with the other degrees of freedom being restricted by springs. The
motions of the model were recorded by an optical tracking system.
Nine wave probes were installed, one of them being located amidships.
The vertical bending moment and longitudinal forces were obtained
by three force transducers at 𝐿pp∕2, two being mounted on deck and
the third one mounted underneath the keel. The measured model scale
data was converted to full scale by applying Froude similarity law in a
5 
Fig. 5. Distribution of heave 𝑋3, pitch 𝑋5 and vertical bending moment VBM
amplitudes in the simulated data set.

Table 2
Settings of the neural network models.

Parameter Unit MLP FCNN LSTM

Size of training set [ – ] 4 000 4 000 4 000
Size of test set [ – ] 1 000 1 000 1 000
No. of trainable parameters [ – ] 131 264 57 113 4 624
No. of hidden layers [ – ] 1 6 5
Batch size [ – ] 64 64 64
Time elapsed per prediction of one sample [ s ] 0.0131 0.0213 –

preprocessing step. The experimental setup is explained in more detail
by Wang et al. (2024).

3.3. Presentation of neural network models

For all networks, a hyperparameter study was carried out in order
to find the best fit regarding model complexity, see Appendix B. The
search for appropriate hyperparameters comprises the variation of the
depth of the networks, the number of filters and neurons in the layers,
different activation functions as well as loss functions. The study is
performed on a training and validation set using the four-fold cross
validation method. The capability of generalization is ensured using
a training and a fixed test set comprising 20% of the generated data,
see Appendix C. In terms of data preparation, the data was scaled to
a range between 0 and 1 using min–max normalization. The minimum
and maximum values for normalization were extracted from the train-
ing set. For both models, the SSP as loss function was applied. The
hyberbolic tangent was used as activation function, except for the last
layers, which hold no activation. The Adam optimizer with exponential
learning rate was employed. The initial learning rate was set to 0.01
and the decay rate to 0.98. The batch size was 64. Furthermore, for
each layer batch normalization was applied with a momentum of 0.8.
The MLP, shown in Fig. 6(a), consists of one densely connected hidden
layer holding 𝑛𝑛 = 64 neurons. Fig. 6(b) shows the architecture of the
FCNN. 𝐾 = 6 convolutional layers are applied and the dimensions of the
feature maps are kept equal to the input layer dimension by applying
zero padding. The number of feature maps of each layer increases with
the depth of the model. The kernel size was set to 5 with exponentially
growing dilation rate of base 2. The final settings of the models are
listed in Table 2.
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Fig. 6. Architectures of the multi-layer perceptron and fully connected neural network for mapping the input signal of the surface elevation 𝜻 amidships and the output signals
f heave 𝑿3, pitch 𝑿5 and the vertical bending moment 𝑽 𝑩 𝑴 .
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4. Assessment of the response prediction horizon

This section is devoted to recreating the theoretical assumptions
f the prediction horizon as described in Section 2.2. The goal is

to understand and quantify the resulting temporal limitations of the
mapping task. For this, a preliminary study has been carried out in
wo steps. First, the neural networks were tested in terms of their

capability to represent the linear propagation of waves addressing the
classical prediction zone, see Fig. 1(a). Second, the mapping is applied
for the ship response prediction in order to assess the impact of the
wave prediction zone on the mapping capability. The observation time
of the input time series was chosen smaller compared to the time
series to be predicted (output) in order to identify the prediction zone
and its spatio-temporal development clearly. Thus, the time interval of
the input data is restricted by dropping the first and last 45 s of the
𝜏 = 180 s time frame, resulting in a mapping problem with an input
time interval of 𝐓Input = [45 s, 135 s] and an output time interval of
𝐓Out put = [0 s, 180 s]. It is noted here that this restriction is only applied
in the studies carried out in this section and that for the final results,
both models were trained using the whole data time interval.

The objective of this study is to investigate the mapping error
ver time. The results are therefore presented by calculating the mean
bsolute error MAE between ground-truth 𝑦 and prediction 𝑦′ of the 𝑁

datasamples in the test set along the temporal axis

MAE (𝑡𝑖) = 1
𝑁

𝑁
∑

𝑖=1
|𝑦′(𝑡𝑖) − 𝑦(𝑡𝑖)|, 𝑖 = 1,… , 512 . (9)

Furthermore, by norming the error to a range between 0 and 1, the MAE
can be compared to the physical prediction error indicator 1 − 𝑃 and
herefore be used analogously as data-driven prediction error indicator.

It is emphasized that the MAE is applied to show the progression of
he error over time and not to make a qualitative statement about the
ndividual mapping problems. The following investigation are carried

out using both neural networks, however only the results of the MLP
are presented for reasons of redundancy.

4.1. Prediction zone of linear waves

In the first study, the mapping task involves the reconstruction of
he surface elevation 𝜁 (𝑥fwd) and 𝜁 (𝑥aft) based on 𝜁 (𝑥mid). The setup

replicates the case shown in Fig. 1(b), which illustrates that the pre-
dictability of the wave profile along the entire hull is limited in the
beginning and end of the time signal. The architecture of the MLP
tself has not been modified and only the input and output layers have

been changed to the surface elevation data. The MAE representing
he data-driven prediction error indicator and the theoretical error
ndicator are plotted in Fig. 7(a). Figuratively speaking, the curves

inside of the white area represent how the predictability of the wave
 s

6 
profile propagates in time. Overall, the curves of the MAE show agree-
ment with the theoretical prediction indicator. The response prediction
horizon, as illustrated in Fig. 1(b), is marked where 1 − 𝑃 < 0.15
olds simultaneously for both of the predictions of 𝜁 (𝑥fwd) and 𝜁 (𝑥aft),
eaning when the wave profile is fully predictable. This condition is

atisfied for 𝐓Pr ed = [45 s + 𝛥𝜏 ,… , 135 s − 𝛥𝜏] = [60 s,… , 120 s] with
𝜏 = 15 s as cut-off time interval. The results in terms of the SSP are
valuated inside of the established response prediction horizon and
resented in Table 3. The median SSP lies in the range of 0.044 − 0.050,

which indicates accurate mapping results. One test set datasample is
illustrated in Fig. 8, giving a more vivid impression of the mapping
accuracy with close agreement between ground-truth and prediction

here 1 − 𝑃 < 0.15 holds. The choice of 0.15 as the limiting value of
predictability is therefore adequate in this case.

4.2. Response prediction zone

In the second step, the study shown above was repeated for mapping
the vessel responses 𝑋3, 𝑋5 and VBM . The results are presented in
Fig. 7(b) along with the results of the previous study from Fig. 7(a). At
= 0 s, the deviation between ground-truth and prediction for 𝑋3 and

𝑋5 is zero due to the vessel’s initial position in rest. The MAE of the
esponses lie in between the ones of the surface elevation. The results
how that the definition of the response prediction horizon is sufficient
or cutting off the mapping error at the boundaries. Signals longer than
80 s can be evaluated by applying the model multiple times using the
rinciple of a sliding window, as illustrated in Fig. 9. The window is

shifted by the length of the prediction horizon, leaving a time segment
of 15 s at the beginning and end of the signal that cannot be predicted
by the model. It should be noted here that the surface elevation could
also be given at other places than the midship section, for example at
the forward perpendicular or in front of the ship, which would shift
the response prediction horizon backwards in time. Another approach
would be to provide the spatio-temporal wave field as input following
Lee et al. (2023).

5. Results

The performance of the models are evaluated on simulation as well
s experimental data. The results of the simulation data is going to be
resented first.

In practice, measured data contain noise. In the first step, the models
were investigated regarding noise sensitivity. Random zero-centered
Gaussian noise was added to the simulation data of the training and test
et features, meaning the surface elevation data. Note that the targets
ere left unmodified such that the models were trained to map the

mooth signal as output. Three different standard deviations of Gaus-
ian distribution 𝜎 ∈ {0.25, 0.5, 0.8} applied to the 180 s long time series
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Fig. 7. Assessment of the prediction zone for sea state mapping (top) and vessel responses (bottom) using the MLP. The normalized mean absolute error (MAE) is plotted along
the temporal axis. The gray area marks the time frame outside of the time input interval. The response prediction horizon, see Fig. 1(b), is given.
Fig. 8. Example of sea state mapping: Based on the surface elevation at midship
in time interval 𝐓Input (top), the surface elevation at forward perpendicular and aft
perpendicular is determined (middle). Ground-truth is plotted in dashed lines and the
mapped results are plotted in solid lines. The domain where 1 − 𝑃 < 0.15 holds is
marked and values of SSP are given. At the bottom, the normalized deviation between
ground-truth and prediction is plotted as well as the response prediction horizon.

Fig. 9. Sliding window technique for predicting time signals longer than 180 s.
7 
Fig. 10. Examples of applied Gaussian noise to the features of the simulation data set.

were investigated. Fig. 10 shows an example of the modified features
with different noise levels. Both models were trained four times with
the fixed test set and the results of the SSP loss are plotted regarding
the mean and standard deviations in Fig. 11. The prediction accuracy
of the models get worse with increasing noise level. Furthermore, the
fluctuations in the results of the four runs increase with increasing noise
level. Fig. 12 shows the mapping results of the vertical bending moment
for the two cases of (i) no noise and (ii) 𝜎 = 0.8. Both models are able to
remove the noise in the estimations. The prediction using noisy input
data tends to under- and overestimate the ground-truth data, however
is still able to make reliable estimations. In summary, the models are
able to address noise in the input data to a certain level.

From the four runs carried out on the smooth input data, the best
models were selected based on the performance on the test set. The
results of the selected models are given in Table 3 in terms of the
median SSP and the corresponding box plots are shown in Fig. 13.
In addition to that, the results of a LSTM architecture inspired by the
studies of del Águila Ferrandis et al. (2021) are given, serving as state-
of-the-art. The MLP and FCNN perform similarly well compared to each
other as well as regarding the three targets 𝑋 , 𝑋 and VBM , as the
3 5
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Fig. 11. Bar plots of the noise sensitivity study for the different noise levels. The SSP
losses are plotted as mean and standard deviation.

Fig. 12. Example of the mapping performances for noise levels 𝜎 = 0 and 𝜎 = 0.8. The
MLP achieves results of SSP= 0.1 and SSP= 0.39, the predictions of the FCNN yields
SSP= 0.12 and SSP= 0.18.

Table 3
Median SSP error for predictions on training and test set. The results of the preliminary
study regarding the mapping of the surface elevation, see Section 4, are only given for
the MLP.

Model Data set Sea state mapping Vessel response prediction

𝜁 (𝑥fwd) 𝜁 (𝑥aft) 𝑋3 𝑋5 VBM

MLP train 0.049 0.044 0.0749 0.0701 0.0675
test 0.050 0.046 0.0764 0.0741 0.0709

FCNN train – – 0.0352 0.0671 0.0253
test – – 0.0343 0.0711 0.0255

LSTM train – – 0.2529 0.2108 0.2531
test – – 0.2505 0.2178 0.2561

edian error is in the range of SSP ≈ 0.03 − 0.08 and the variances are
imilar for all cases. In general, the FCNN achieves lower values for
he SSP than the MLP for all targets. The FCNN is performing worst
n the prediction of the pitch motion compared to heave and VBM
ith a median SSP of SSP ≈ 0.07. Compared to the LSTM, the proposed
LP and FCNN achieve more accurate mapping results. However, in

he comparison of the three models it should be pointed out that
hey contain different amounts of trainable parameters. In particular,
he LSTM has the lowest number of parameters, possibly affecting its
ossibility to represent the data. In Fig. 14, the performance of both
odels is evaluated in dependence of the sea state characteristics. The

est set samples were sorted by splitting the axis parameters ratio of
eak wave length to ship length 𝑟 and wave steepness 𝜖 into 7 bins.
or each bin, the average SSP of the corresponding predictions was
etermined. It can again be observed that the FCNN achieves lower
alues for the SSP as the MLP. No clear dependence of the prediction
ccuracy on the sea state conditions can be observed.

In the next step, the models were tested on the experimental data in
rder to assess their reliability. Two time series were selected from the
xperiments carried out and the models were applied to the measured
8 
Fig. 13. Box plots of the SSP error from the results presented in Table 3. The left box
represents the results of the training set, the right box the ones of the test set.

Fig. 14. SSP error in dependence of wave steepness 𝜖 and ratio of peak wave length
to ship length 𝑟 for each target 𝑋3, 𝑋5 and VBM .

surface elevation from the wave gauge located at the midship section
using the sliding window technique. The examples selected are, on the
one hand, a sea state condition that is well represented in the training
set of the models (scenario 1 with 𝐻s = 3 m, 𝑇p = 12 s, 𝛾 = 3.3) and,
on the other hand, an extreme wave, the so-called ’new year wave’
(scenario 2). In a separate step, the strip theory code was also applied
to the experimental data and its results are included in the comparison
shown in Figs. 15 and 16. The SSP given in the figures are determined
for the strip theory code (STC) as well as the neural network models
with respect to the experimental data as ground-truth. In the first
example in Fig. 15, the models and the strip theory code give accurate
predictions of the vessel responses. It is noticeable that some amplitude
peaks are underestimated by all three models, as e.g. the heave motion
around 𝑡 ≈ 1 850 s. Here the neural networks show more agreement
with the results of the strip theory code. This is to be expected, as the
neural networks will tend to follow the numerical mathematics of the
strip theory code. The second example in Fig. 16 represents an extreme
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Fig. 15. Performance of the MLP and FCNN on experimental data for a sea state with 𝐻s = 3 m, 𝑇p = 12 s and 𝛾 = 3.3. On the top, the measured surface elevation amidships is
plotted. In the following three plots, the measurements of heave 𝑋3, pitch 𝑋5 and bending moment VBM are shown. The predictions of the MLP and FCNN are plotted in color
and compared to the simulation results of the strip theory code (STC). The time frame outside of the response prediction horizon is marked in gray.
event reaching a maximal crest height of 𝜁max
𝑐 = 18.5 m. Such extreme

events are of particular interest as their prediction should be reliable,
although being rare. Here, the strip theory code is able to estimate the
vessel responses accurately. The neural networks, however, although
making accurate predictions for the majority of the time signal, tend to
underestimate the extreme amplitudes resulting from the freak wave,
which can be observed at time 𝑡 ≈ 850 s for all three targets. Here the
deviation between experimental data and prediction is approximately
30%. This behavior might be linked to the domain shift in this case, as
the wave height as well as the response amplitudes are outside of the
distribution of the training data, c.f. Figs. 3 and 5.

6. Conclusions

This study introduces two neural network models, a MLP and FCNN,
as data-driven non-linear models for predicting the heave and pitch mo-
tions and the wave-induced loads of a vessel in irregular, long-crested
seaway based on surface elevation data amidships. The on-board pre-
diction of ship responses requires a model that is able to accurately
capture non-linearities that strongly impact the vessel responses in
severe sea state conditions and functions in close-to real time. The
training data was generated using a seakeeping code in time-domain
with zero forward speed of the vessel and one loading condition. The
data set comprises a variety of sea state conditions including steep
waves of large amplitude. The equations of motions are solved using
9 
strip theory and the solver computes the hydrostatic and Froude–Krylov
forces over the instantaneous wetted surface in order to model non-
linear effects in large-amplitude waves. The impact of the response
prediction horizon on the mapping capability was highlighted and
the resulting physical constraints of the models have been taken into
account in the final evaluation. The proposed models were compared to
a state-of-the-art LSTM architecture. The reliability of the predictions
was investigated on simulation data as well as on experimental data
obtained from model tests of the vessel in a seakeeping basin.

Both neural networks give promising results and perform similarly
well in terms of prediction accuracy with average error below of SSP≤
0.08 for all three ship responses, surpassing the chosen state-of-the-art
model. A strength of the method applied here is the ability of the neural
networks to cover a large range of sea state conditions. The importance
of the domain shift when applying neural networks to data outside of
the distribution of the training data can be observed on the example of
the ’new year wave’.

The drawbacks of deep learning models are (i) the large amount
of data for training and testing required and (ii) that the models
applicabilities are limited to the distribution within the training data, as
seen on the example of the ’new year wave’. Therefore, further research
and gathering of data is required. Most notably, the presented method is
yet limited to one loading condition at zero forward speed. The prob-
lem can be extended by generating a data set containing the vessel’s
responses with regards to more degrees of freedom in short-crested
sea state as well as forward speed and multiple loading conditions.
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Fig. 16. Performance of the MLP and FCNN on experimental data of the ‘new year wave’ reaching a maximal crest height of 𝜁max
𝑐 = 18.5 m. On the top, the measured surface

levation amidships is plotted. In the following three plots, the measurements of heave 𝑋3, pitch 𝑋5 and bending moment VBM are shown. The predictions of the MLP and FCNN
are plotted in color and compared to the simulation results of the strip theory code (STC). The time frame outside of the response prediction horizon is marked in gray.
F

w

Lastly, the wave elevation is assumed to be given at high accuracy.
In later application, however, the wave data will be determined from
wave propagation models. Therefore, the accuracy of the ship response
prediction will depend on the quality of the wave model. The coupling
of wave propagation model and ship response prediction was not part
of this study and has to be addressed in future.
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Appendix A. Literature research

Table A.4 summarizes the literature research given in Section 1.

Appendix B. Hyperparameter study

The neural networks were implemented and trained using Tensor-
low (Abadi et al., 2015) version 2.11.0 and Keras (Chollet et al.,

2015). The training was executed on a NVIDIA graphic card of type
GP102 with CUDA version 11.7 (NVIDIA et al., 2020). The hyperparam-
eter study was conducted using a four-fold cross-validation approach
with an independent test set. First, the data set of 𝑁 = 5 000 samples

as divided into a test set holding 20% or 𝑁t est = 1 000 samples, cf.
Fig. 3, and the remaining 4 000 samples being further split into four
equal-sized parts using a stratified data split technique. In each cross-
validation run, three parts functioned as training set and the remaining
part as validation set. The test set was excluded from the investiga-
tion. The early-stopping approach monitoring the validation loss was
implemented with a patience of 50 epochs starting after 700 epochs. The
weights of the model corresponding to the lowest validation loss were
restored. The results of the four-fold cross-validation hyperparameter
study are presented below in Tables B.5 and B.6 for the MLP and
FCNN. In addition to these two networks, a hyperparameter study of
a LSTM architecture (del Águila Ferrandis et al., 2021) was carried
out, whose results are presented in Table B.7. The SSP as loss function
and hyberbolic tangent as activation function were applied. The best
model was selected based on the performance on the validation set. In
addition to varying the architecture in terms of depth, different loss and
activation functions were employed in a second study for the final MLP
rchitecture and the results are listed in Table B.8.
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Table A.4
Examples of ship motion prediction models present in literature. The literature research includes three types of objectives; that are ship motion forecast, prediction of roll
hydrodynamics as well as the mapping of wave and vessel response data. The table distinguishes between simulated (sim.) and experimental (exp.) data, as well as long-crested
l.-c.) and short-crested (s.-c.) in various sea state conditions (var. cond.).
Forecasting ship motions

Input Data type Sea state pred. zone Prediction model Remarks

motion data,
sim. l.-c. 5 s Kalman filter noise-insensitive,

ship hydrody- Triantafyllou and Athans
(1981), Triantafyllou et al.
(1983)

estimation accuracy depending on

namics, 𝐻s, 𝜔p 𝜔p

motion data exp. s.-c,
2 − 4 s ARMA (Yumori, 1981) applicable for motion compensation

var. cond. equipment and aircraft landing

wave data exp. l.-c. ≡ theor. lin.wave theory,
var. cond. pred. zone RAOs (Naaijen and

Huijsmans, 2008)

wave data exp. s.-c,,
120 s lin.wave theory, tested on full-scale vessel in

var. cond. RAOs (Dannenberg et al.,
2010)

mild sea state conditions

motion data exp. l.-c.,
5 s HODMD (Chen et al., 2023b) prediction of ship maneuvering

var. cond. motion

motion data exp. s.-c., sea
7 s FCNN (Khan et al., 2007) prediction of roll angle

state code 5 − 6
wave and exp. l.-c.,

46.5 s LSTM-based noise-insensitive, tested using wave
motion data var. cond. model (Guo et al., 2021) and solely motion data as input

motion data sim. s.-c.,
100 s LSTM + CNN able to consider motion memory

var. cond. model (Lee et al., 2022) effects

motion data exp. – 50 s LSTM + GR prediction of ship rolling and pitch
model (Sun et al., 2022) angle, further testing in different sea

state conditions necessary

motion data CFD l.-c.,
15 s BiLSTM (Jiang et al., 2024) pitch and heave prediction of KCS

var. cond.

motion data exp. l.-c.,
60 s RBF (Yin et al., 2018) ship roll prediction

var. cond.

motion data exp. l.-c. 30 s RC (Yang et al., 2023a) prediction of surge, heave
and pitch motions

Prediction of roll hydrodynamics and wave propagation forecast
Input Data type Sea state pred. zone Prediction model Remarks

wave time series, exp. l.-c. 5 s SVM (Sclavounos and Ma, 2018) able to predict roll hydrodynamics
roll hydrodynamics at different loading conditions

Mapping of wave data and ship responses (pitch, heave and roll)
Input Data type Sea state Prediction model Remarks

wave time series CFD l.-c., sea RNN, GRU, LSTM superior, however limited
state code 1&8 LSTM (del Águila Ferrandis

et al., 2021)
to chosen sea state conditions
Appendix C. Learning curves

After determining appropriate hyperparameters, the models were
urther investigated regarding under- or overfitting. The data of the
raining and validation sets from the prior hyperparameter study were
erged into a new training set. Next, the models were trained on the
ata from the new train set using different train set sizes and evaluated
n the unseen test set. The test set was the same for the investigations.
he training was carried out four times for each variation. Table C.9

depicts the results of the investigation. By lowering the amount of data
samples in the train set, the MLP model tends to overfit as the train loss
decreases while the test loss increases. For the FCNN, both the train loss
as well as the test loss increases with decreasing train set size. This is
an atypical behavior in a study of learning curves and a reason for this
was not found. Fig. C.17 shows exemplary loss curves.
11 
Fig. C.17. Loss curves of the selected model settings. The model achieving the lowest
test loss is marked. The 𝑦-axes are plotted in logarithmic scale.



J. Serr et al. Ocean Engineering 317 (2025) 119963 
Table B.5
Results of the hyperparameter study for the MLP architecture. Two model depths 𝑛𝑑 with varying number of neurons 𝑛𝑛 are
investigated. Two approaches are selected for the variation of the number neurons: first doupling the number of neurons in
each layer and second keeping the number constant. The amount of model parameters are given as well as the mean number
of epochs associated with the best model evaluated on the validation set. The performance of the models are measured by the
SSP loss for the train and validation set in terms of mean and standard deviation of the four-fold cross-validation runs. The best
model performing on the validation set is highlighted in the table.

MLP hyperparameters SSP loss

depth 𝑛𝑑 # neurons of each layer 𝑛𝑛 # weights # epochs train val

1

[16] 32 848 1 148 0.02357 ± 0.00105 0.02387 ± 0.00152
[32] 65 696 1 047 0.00926 ± 0.00027 0.00944 ± 0.00037
[64] 131 392 1 026 0.00667 ± 0.00010 0.00689 ± 0.00034
[128] 262 784 1 106 0.00619 ± 0.00018 0.00692 ± 0.00030
[256] 592 384 1 082 0.00608 ± 0.00015 0.00731 ± 0.00012

2

[16, 32] 58 096 1 170 0.02330 ± 0.00074 0.02392 ± 0.00058
[32, 64] 117 216 1 379 0.01077 ± 0.00042 0.01177 ± 0.00015
[64, 128] 238 528 1 318 0.01023 ± 0.00083 0.01148 ± 0.00107
[128, 256] 493 440 1 042 0.00994 ± 0.00050 0.01194 ± 0.00042

2

[16, 16] 33 184 1 071 0.00906 ± 0.00039 0.01188 ± 0.00037
[32, 32] 66 880 1 182 0.02374 ± 0.00092 0.02430 ± 0.00114
[64, 64] 135 808 1 410 0.00995 ± 0.00018 0.01046 ± 0.00038
[128, 128] 279 808 1 487 0.00949 ± 0.00056 0.01039 ± 0.00054
Table B.6
Results of the hyperparameter study for the FCNN architecture. For three model depths 𝑛𝑑 , different filter compositions as well
as kernel sizes 𝑠𝑘 are investigated. Two approaches are selected for the variation of the number of filters 𝑛𝑘: first doupling
the number of filters in each layer and second keeping the number constant. The amount of model parameters are given as
well as the mean number of epochs associated with the best model evaluated on the validation set. The performance of the
models are measured by the SSP loss for the train and validation set in terms of mean and standard deviation of the four-fold
cross-validation runs. The best model performing on the validation set is highlighted in the table.

FCNN hyperparameters SSP loss

depth 𝑛𝑑 # # filters in layers 𝑛𝑘 kernel size 𝑠𝑘 # weights # epochs train val

3 [4, 8, 16]
3 887 885 0.01199 ± 0.00047 0.01241 ± 0.00044
5 1 215 1 039 0.00749 ± 0.00044 0.00757 ± 0.00053

4 [4, 8, 16, 32]
3 2 823 1 076 0.00651 ± 0.00020 0.00649 ± 0.00033
5 4 175 1 088 0.00483 ± 0.00016 0.00500 ± 0.00018

5 [4, 8, 16, 32, 64]
3 9 767 1 037 0.00532 ± 0.00017 0.00538 ± 0.00027
5 15 215 1 084 0.00459 ± 0.00028 0.00483 ± 0.00033

3 [8, 16, 32]
3 2 719 881 0.01182 ± 0.00036 0.01218 ± 0.00052
5 4 015 970 0.00746 ± 0.00026 0.00766 ± 0.00038

4 [8, 16, 32, 64]
3 9 663 972 0.00621 ± 0.00032 0.00640 ± 0.00049
5 15 055 1 033 0.00467 ± 0.00013 0.00484 ± 0.0001

5 [8, 16, 32, 64, 128]
3 35 839 1 033 0.00506 ± 0.00016 0.00518 ± 0.00010
5 57 615 1 078 0.00433 ± 0.00046 0.00462 ± 0.00028

3 [16, 16, 16]
3 2 079 861 0.01187 ± 0.00053 0.01209 ± 0.00065
5 3 135 912 0.00752 ± 0.00040 0.00762 ± 0.00040

4 [16, 16, 16, 16]
3 2 927 1 187 0.00631 ± 0.00039 0.00636 ± 0.00040
5 4 495 1 038 0.00502 ± 0.00024 0.00535 ± 0.00033

5 [16, 16, 16, 16, 16]
3 3 775 1 053 0.00488 ± 0.00011 0.00525 ± 0.00011
5 5 855 1 003 0.00481 ± 0.00027 0.00492 ± 0.00005

3 [32, 32, 32]
3 7 215 813 0.01165 ± 0.0001 0.01200 ± 0.00016
5 11 375 942 0.00738 ± 0.00041 0.00771 ± 0.00049

4 [32, 32, 32, 32]
3 10 447 999 0.00615 ± 0.00032 0.00628 ± 0.00034
5 16 655 987 0.00458 ± 0.00019 0.00483 ± 0.00029

5 [32, 32, 32, 32, 32]
3 13 679 998 0.00488 ± 0.00047 0.00508 ± 0.00041
5 21 935 1 028 0.00457 ± 0.00030 0.00476 ± 0.00018
12 
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Table B.7
Results of the hyperparameter study for the LSTM architecture. For varying model depths, different neuron arrangements are
investigated. The hourglass, inverted hourglass structure as well as a constant distribution of neurons are considered. The amount
of model parameters are given as well as the mean number of epochs associated with the best model evaluated on the validation
set. The performance of the models are measured by the SSP loss for the train and validation set in terms of mean and standard
deviation of the four-fold cross-validation runs.

LSTM hyperparameters SSP loss

depth 𝑛𝑑 # neurons of each layer # weights # epochs train val

3 [8, 4, 8] 1 168 1 350 0.03189 ± 0.00201 0.03209 ± 0.00159
5 [16, 8, 4, 8, 16] 4 624 940 0.02162 ± 0.00022 0.02166 ± 0.00068
7 [32, 16, 8, 4, 8, 16, 32] 17 680 894 0.01918 ± 0.00010 0.02488 ± 0.00346
3 [4, 8, 4] 880 1 188 0.03250 ± 0.00154 0.03280 ± 0.00221
5 [4, 8, 16, 8, 4] 3 376 1 030 0.02333 ± 0.00023 0.02423 ± 0.00800
7 [4, 8, 16, 32, 16, 8, 4] 12 976 1 026 0.021720 ± 0.0003 0.02184 ± 0.00026
1 [5] 268 1 374 0.03525 ± 0.00302 0.03536 ± 0.00235
2 [5, 5] 508 1 295 0.03370 ± 0.00718 0.03452 ± 0.00864
3 [5, 5, 5] 748 1 003 0.02531 ± 0.01465 0.02546 ± 0.01477
4 [5, 5, 5, 5] 988 983 0.02337 ± 0.01363 0.02339 ± 0.01362
5 [5, 5, 5, 5, 5] 1 228 1 432 0.03506 ± 0.00382 0.03538 ± 0.00508
1 [20] 2 128 1 055 0.02657 ± 0.00137 0.02662 ± 0.00122
2 [20, 20] 5 488 1 030 0.02673 ± 0.00118 0.02732 ± 0.00174
3 [20, 20, 20] 8 848 1 091 0.02534 ± 0.00130 0.02567 ± 0.00154
4 [20, 20, 20, 20] 12 208 1 032 0.02551 ± 0.00106 0.02582 ± 0.00185
5 [20, 20, 20, 20, 20] 18 928 1 632 0.02540 ± 0.00320 0.02567 ± 0.00321
Table B.8
Results of the MLP applying different loss functions and activation functions. For the final MLP architecture resulting from the
hyperparameter study, the Huber loss, mean absolute error (MAE) and mean of squares (MSE) are tested in addition to the SSP
with the hyberbolic tangent as activation function. Besides the tangent, the sigmoid and rectified linear unit (ReLU) are tested.
The results are given as loss values in terms of mean and standard deviation of the four-fold cross-validation.

SSP loss MAE loss MSE loss [10−5]
Settings train val train val train val

Loss function
SSP 0.00667 ± 0.0001 0.00689 ± 0.0004 0.00486 ± 0.0001 0.00496 ± 0.0003 6.6 ± 0.3 7.3 ± 0.8
Huber 0.00677 ± 0.0002 0.00783 ± 0.0003 0.00489 ± 0.0001 0.00581 ± 0.0002 6.3 ± 0.2 9.3 ± 0.9
MAE 0.00698 ± 0.0005 0.00702 ± 0.0004 0.00502 ± 0.0001 0.00506 ± 0.0003 6.5 ± 0.3 7.8 ± 0.9
MSE 0.00672 ± 0.0002 0.00782 ± 0.0004 0.00483 ± 0.0001 0.00578 ± 0.0002 6.1 ± 0.3 9.4 ± 0.6

Activation function
tanh 0.00667 ± 0.0001 0.00689 ± 0.0004 0.00486 ± 0.0001 0.00496 ± 0.0003 6.6 ± 0.3 7.3 ± 0.8
sigmoid 0.01342 ± 0.0007 0.01394 ± 0.0006 0.00964 ± 0.0004 0.01005 ± 0.0003 17 ± 1.5 19 ± 1.3
ReLU 0.00712 ± 0.0005 0.00802 ± 0.0005 0.00512 ± 0.0004 0.00579 ± 0.0003 5.9 ± 6.6 9.5 ± 1.4
Table C.9
Results of the learning curves. All three models were trained for different training set sizes. The test set remains the same for
all runs carried out. The number of epochs represent the mean amount of epochs associated with the best model on the test
set. The loss values are given in terms of mean and standard deviation of the four repetitions carried out. The setting belonging
to the best model performing on the test set is highlighted.

Data set sizes MLP FCNN

train test # epochs train loss test loss # epochs train loss test loss

250 1 000 1 174 0.00557 ± 0.00026 0.03074 ± 0.00528 1 097 0.00475 ± 0.00013 0.00543 ± 0.00027
500 1 000 1 137 0.00627 ± 0.00020 0.01601 ± 0.00216 1 012 0.00495 ± 0.00022 0.00532 ± 0.00025

1 000 1 000 1 120 0.00651 ± 0.00009 0.00883 ± 0.00050 1 034 0.00453 ± 0.00015 0.00473 ± 0.00029
2 000 1 000 1 129 0.00665 ± 0.00076 0.00714 ± 0.00036 1 024 0.00422 ± 0.00020 0.00475 ± 0.00016
4 000 1 000 1 038 0.00666 ± 0.00006 0.00686 ± 0.00005 945 0.00422 ± 0.00028 0.00464 ± 0.00022

LSTM

250 1 000 983 0.02128 ± 9𝑒 − 05 0.0269 ± 0.2𝑒 − 05
500 1 000 959 0.02338 ± 0.00072 0.02533 ± 0.00106

1 000 1 000 1 111 0.02112 ± 0.00102 0.02324 ± 0.00102
2 000 1 000 1 044 0.02092 ± 0.00064 0.02272 ± 0.00076
4 000 1 000 988 0.02111 ± 0.00063 0.02252 ± 0.00101
13 
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