VOM HIMMEL HERAB GEFALLEN: WAS WIR ÜBER DIE ROBUSTE MODELLIERUNG AUS DER LUFTFAHRT LERNEN KÖNNEN

Dirk Zimmer, Institute of System Dynamics and Control, German Aerospace Center (DLR) dirk.zimmer@dlr.de

10.09.2024, ThermoSim 2024, München

THERMOFLUID STREAMS

The Practical Problem

The Practical Problem

- Using text-book equations (as in standard libraries) leads to large non-linear equation systems.
- >200 variables or >40 dimensions for the numerical solver.
- Whether you attain a solution is completely uncertain and the computational effort may be substantial.
- Other applications in energy and buildings share this problem.

Simulation Error

A fatal exception ocurred at 027:C8127 by the non-linear equation system solver. Here is a cryptic error code that is of absolutely no use: 420. Simulation has been stopped to prevent damage from your virtual universe.

*press any key to acknowledge defeat
*press Ctrl+Alt+Del if you think that this is any better
 *by the way, we deleted your hard-drive

Press any key to continue

Understanding the Problem

• The constraint of pressure equivalence leads to a non-linear dependence on mass flow rates.

Understanding the Problem

"God does not play dice." -Albert Einstein

"God does not solve non-linear equation systems"

-Dirk Zimmer

We shall revisit the fundamental laws of physics and let them guide us to the solution.

The Inertial Pressure

$$p = \hat{p} + r$$
 with $\Delta r = \frac{d\dot{m}}{dt} \int \frac{1}{A_s} ds$

Structure of the resulting equation system

$$p = \hat{p} + r$$

$$\Delta r = \frac{d\dot{m}}{dt} \int \frac{1}{A_s} ds$$

 The inertial pressure is defined by a linear law that is independent of its thermodynamic state
 → Only linear equations in implicit form

 When choosing a different spatial resolution for r then for p̂, enables us to formulate all non-linear equations downstream in explicit form

Structure of the resulting equation system

The black variables can be computed downstream

Structure of the resulting equation system

The black variables can be computed downstream

What about the red variables? How to determine: $d\dot{m}_1/dt$, $r_1 d\dot{m}_2/dt$, r_2

Structure of the resulting equation system

 $\begin{vmatrix} r_2 \\ d\dot{m_1}/dt \end{vmatrix} = \begin{vmatrix} 0 \\ \hat{p}_2 - \hat{p}_1 \end{vmatrix}$

We can extract:

At junction B:

 $\hat{p}_1 + r_1 = \hat{p}_2 + r_2$

 $\frac{d\dot{m}_1}{dt} \cdot L_1 = r_1 - r_A = r_1$

 $\frac{d\dot{m}_2}{dt} \cdot L_2 = r_2 - r_A = r_2$

Differentiation splitter A:

 $\bullet d\dot{m}_1/dt = -d\dot{m}_2/dt$

from $\dot{m}_1 + \dot{m}_2 = \dot{m}_0$, \dot{m}_0 is given

Linear Equation System

- Matrix with constant elements
- Can be inverted upfront
- Dymola does this automatically

L₂

Diese Methode skaliert

- The ENERGIZE Model represents a More-Electric Aircraft with approx. 220 passengers
- Combined electrical and thermal load management.
- Simulation of complete flight missions under different environmental conditions
- > 18,000 Equations
- > 300 States

Open Source Library: DLR ThermoFluid Stream

Conduction Element

Splitter / Junctions

Flow Resistance

Pump, Compressor, Fan

Reservoir, Accumulator, Receiver

E-NTU Heat Exchanger, Discretzied Heat Exchanger

Pressure Control Valve, Linear valve

Switching Valve

Loop Splitter Valve

Example of Reversible Heat Pump

- Support for bi-directional components
- Two-Phase Heat Exchanger Models
- Interface for various Media Models (esp TIL Media)
- New Pump Models
- New Models for Pipes based on Idel'chik

New Development for Ideal Processes

Where to get the library?

Find it on GitHub: <u>https://github.com/DLR-SR/ThermofluidStream</u>

Feel free to contribute!!

GitHub

Release	Dymola Version 2021 (64-bit) 2020-04-17	OpenModelica v1.19.0-dev-38-ge9f86ba1ce (64- bit) OMSimulator v2.1.1.post80-g1bf17f4-mingw	Modelon Impact	
v0.1-beta	(runs and passes regression test)	\bigotimes	\bigotimes	
v0.2-beta	(runs and passes regression test)	Fully compiles, mostly runs and passes regression test	(runs)	
Latest release	(runs and passes regression test)	Fully compiles, mostly runs and passes regression test	(runs)	

Problem with correct setting of assertion level (should be fixed in future release of OpenModelica)
 Not available for testing to us

The DLR ThermoFluid Stream Library • The 14th International Modelica Conference, Linköping • Niels Weber • 21.09.2021

Comparison to existing Methods

Finite Volume Approach:

- no implicit non-linearities
- many states
- stiff
- high frequencies

QRE

DLR ThermoFluid Stream:

- No implicit non-linearities
- few states
 - Stiffness can be manipulated
- Frequency can be manipulated

Algebraic Stream Approach:

- Complex non-linearities in implicit form
- No states or very few
- Not stiff

Performance

Robustness

LINEAR IMPLICIT EQUILIBRIUM DYNAMICS

Our current standard interfaces.

They are what is *necessary* for object-oriented modeling.

Domain	Translational Mechanics	Rotational Mechanics	Hydraulics	Electrics	Thermal	
Potential	r	arphi	Р	V	Т	
Flow	f	τ	Ż	i	Q	

 We can find extended interfaces that offer a <u>sufficient</u> form. (Unfortunately hardly anyone is looking for these forms)

Domain	Translational Mechanics	Rotational Mechanics	Thermo Fluids	Electrics	?		<u>e</u> 🤧
Potential	v_{kin}	ω_{kin}	r	?			
Flow	f	τ	'n	?			
Signal	r	arphi	Θ	?			

Definition of a Linear Equilibrium Dynamics System

The way of modeling that we derived leads to a special class of DAE systems: Linear Implicit Equilibrium Dynamics.

$$\begin{bmatrix} \dot{\mathbf{x}}_E \\ \mathbf{w}_E \end{bmatrix} = \mathbf{g}(\mathbf{x}_E, \mathbf{x}_I, t)$$

$$\mathbf{A}(\mathbf{x}_E, \mathbf{x}_I, \mathbf{w}_E) \begin{bmatrix} \dot{\mathbf{x}}_I \\ \mathbf{w}_I \end{bmatrix} = \mathbf{f}(\mathbf{x}_E, \mathbf{x}_I, \mathbf{w}_E, t)$$

The DAE is linear in the state derivatives $\dot{\boldsymbol{x}}$ and the algebraic variables \boldsymbol{w}

What looks like a very restrictive class of models is actually much more powerful than expected.

Further Developments

Robust Modeling Libraries for Entry-Level Use

- ThermoFluid Streams
- Mechanics 1D, 2D, 3D
- Electrics
- Controlled Power Flow for Design

New Compilation Mechanism for Modelica

- Better use of Modelica in Teaching
- Avoid Flattening
- Simulation of Large Systems
- New options for NVIDIA, ARM, WebAssembly based on LLVM

