
Object-Oriented Implementation of a Simulator for

Linear Implicit Equilibrium Dynamics

Dirk Zimmer 1*

1Institute of System Dynamics and Control, DLR, Münchener Straße 20, 82234 Weßling, Germany
*dirk.zimmer@dlr.de

Abstract. Models based on linear implicit equilibrium dy-

namics form a special but very useful sub-set of DAE systems

that can be applied for the simulation of technical physical

systems. Since these are based on differential-algebraic

equations, a transformation into executable code must be

performed for the purpose of model evaluation. One way to

achieve this is the object-oriented formulation of the simula-

tion code itself. To explore this path a dedicated simulator

prototype has been implemented and is outlined here. The

long-term goal is to define alternative compilation targets for

a Modelica compilers that enable highly scalable simulation

code for very large systems.

1 What is Linear Implicit

Equilibrium Dynamics?

Linear Implicit Equilibrium Dynamics (LIED) is techni-
cally defined as a special class of Differential Algebraic
Equation (DAE) Systems.

1.1 Formal Definition

A DAE system with potential state derivatives �̇�, time 𝑡
and algebraic variables 𝐰

𝟎 = 𝑭(�̇�, 𝒙, 𝐰, 𝑡)

is defined as LIED system when it can be transformed
into the following form:

[
𝐰𝐸
�̇�𝐸] = g(𝒙𝐼, 𝒙𝐸 , 𝑡)

𝐀(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸) [

𝐰𝐼
�̇�𝐼] = f(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸 , 𝑡)

We see that both the algebraic variables as well as the
state derivatives can be split into a fully explicit part

(�̇�𝐸; 𝐰𝐸) and a part (�̇�𝐼; 𝐰𝐼) with a linear system in im-
plicit form expressed by the regular matrix 𝐀. Further-
more, the following conditions shall hold true:

�̇�𝐸 ∩ �̇�𝐼 ⊆ �̇�
𝐰𝐸 ∩ 𝐰𝐼 ⊇ 𝐰

�̇�𝐸 ∩ �̇�𝐼 ∩ 𝐰𝐼 ⊇ �̇�
�̇�𝐸 , �̇�𝐼 , 𝐰𝐸 , 𝐰𝐼 are all disjoint

These conditions essentially mean that it is allowed to
perform certain symbolic mechanism of index reduction
such as the dummy derivative method [5] originating
from Pantelides [6]. Using this method, states variables
of 𝒙 can be transformed to algebraic variables in 𝐰𝐼 and
further derivatives may be added to 𝐰𝐼 or 𝐰𝐸 . In practice,
this is important because it means that the linear implicit
dynamics can be expressed by far fewer states than sug-
gested by the vector 𝒙 of the original DAE formulation.

1.2 Informal Explanation

The formal definition above may be primarily perceived
as a relatively strong restriction on the model equations
and not many systems may be intuitively expected to fall
into this category. Surprisingly, LIED can be applied suc-
cessfully for the object-oriented modelling of complex
thermofluid architectures [7],[8] or to mechanical sys-
tems with stiff contacts [9].

The idea is that the non-linear behaviour of the slow
mode is explicitly expressed whereas the fast dynamics
that typically is needed to uphold non-linear constraints
is expressed by a linear implicit system that fulfils the
constraint in its equilibrium. Hence the name: linear im-
plicit equilibrium dynamics. The equilibrium dynamics
is thereby often a replacement dynamic and only an ap-
proximation of reality (as all modelling is).

2 What is LIED good for?

As the above references demonstrate, LIED has been ap-
plied using Modelica [1] for the object-oriented modeling
of thermofluid or mechanical systems.

To this end, it is necessary to use triplets as interface
of the model components that consist in a signal for the
explicit non-linear part and a pair of potential as pre-
sented in Table 1.

Domain Signal Potential Flow

trans.

mechanics

position: 𝑟

 [m]

velocity:

 𝑣 [m/s]

force:

 𝑓 [N]

rotational

mechanics

angle: 𝜑

[rad]

angular

velocity: 𝜔

[rad/s]

torque:

 𝜏 [Nm]

thermofluid

streams

Thermo-

dynamic

state: Θ̂

inertial

pressure

𝑟 [Pa]

mass-

flow rate:

 �̇� [kg/s]

Table 1: Connection triplets for the object-oriented model-

ling of LIED Systems.

More background on the derivation of these triplets can
be found in [10]. It goes beyond the scope of this paper
how the equations are formulated in detail but the two
Modelica model diagrams shown in Figure 1 and 2 may
illustrate the practical usefulness.

Figure 1: Model diagram of a reversible heat pump systems

using the ThermoFluid Stream Library [8].

Especially the ThemoFluid Stream Library has mean-
while become a popular OpenSource library both by ac-
ademia [4] and by industry [7].

LIED systems have very benevolent characteristics

for object-oriented modelling. Following simple connec-
tion rules, the resulting matrix 𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) will be reg-
ular and an a-priori statement on solvability can be given
[7]. This makes this class of modeling very robust and
prevents many computational simulation errors.

Figure 2: Model diagram of a mechanical system for a kine-

matic using the Dialectic Mechanics library [9].

3 A dedicated simulator

3.1 Why?

The libraries are currently developed using Modelica and
since LIED systems are a subset of DAE systems and
Modelica can deal with DAEs in general, any Modelica
compiler can be used to generate simulation code out of
LIED systems. A dedicated simulator is thus not needed.
Existing and mature simulation software can be used.

However, Modelica compilers are very complex and
algorithms for the processing of general DAEs involve
drawbacks: all Modelica compilers create a “flat” model,

where all equations are collected in a single set. For very
large systems, this poses problems primarily because
large amounts of code are generated.

Out of practical experience, many LIED systems have
very benevolent structural characteristics that enable a
compilation already on the component level. A compiler
for standard Modelica cannot exploit these benefits, al-
beit they may greatly increase the ability to deal with
large systems or with variable structure systems.

To explore alternative compile targets dedicated for
LIED systems, a prototypical simulator has been devel-
oped with the name zimsim.

Figure 3: Illustration of different pathways for the compila-

tion of simulation code. The blue boxes on the

left illustrate the classic compilation of Modelica

where all equations are collected in a single set.

The green boxes on the right illustrate a potential

pathway for LIED systems. This paper focuses on

the compile target which is the object-oriented

simulation code.

3.2 Computational structure and

implementation of blocks

Figure 5 presents a simple planar mechanical system of a

crane crab (a pendulum attached to a slider). To each

component of the system 3 computational blocks are as-

signed of different color: blue, green, and orange. The

blue and green blocks form thereby a computational se-

quence directed from the root whereas the orange signal

leads to the root. For this particular domain of LIED sys-

tems, the blue signal contains the positional state and un-

dergoes non-linear transformations. The transformation

of the green and orange signal forms a linear response

which can be used to solve the linear equations system

that spans across the components.

Figure 4: C++ class diagram of a revolute component.

Figure 5: Crane crab modelling diagram

In practice this means that the code for each component

can be represented by dedicated C++ class and the com-

putational blocks can be expressed by C++ member func-

tions. This is illustrated in Figure 4 with matching colors.

3.3 Handling of meta information

It is necessary to register the state-variables and their de-

rivatives in the system. This is done by member objects.

In similar vein, tearing variables and residuals are regis-

tered. The tearing variable belongs to the green signal and

used to probe the system whose linear response can be

assessed by the residual belonging to the orange signal

flow. Furthermore, for each block (or member function)

the dependence on the input and output signals needs to

be registered.
For these purposes each component class must con-

tain a virtual member function called metainfo. This

function takes a crawler object by reference and depend-

ing on the implementation of the crawler different me-

tainformation may be extracted.

3.4 Ordering of blocks, compacting and

extracting of sub-blocks.

When instantiating a component class, all structural rele-

vant meta data are collected. With this information, it is

now possible to put all calls to member functions of all

components in correct order. First a partial order is cre-

ated based on the signal dependence, then the linear sys-

tems (of different dimension) marked by tearing and

residual variables are compacted and in the last stage the

dynamic part is compacted (meaning that the all constant

evaluations are placed upfront and all calls not needed for

derivative evaluation are put last). With this ordering the

linear subsystems can be constructed and solved and the

overall model can be evaluated.

3.5 ODE simulation

Runge-Kutta solvers with fixed step size of order 1 to 4

as well as Backward Euler and ESDIRK23 [3] with vari-

able step-size control have been implemented as numeri-

cal ODE solvers.

3.6 Overall Simulator Software Design

The major classes of the simulator are:
• ModelEvaluation instantiates the model, collects

structural meta-information, orders the computational

blocks and offer model evaluation
• Simulator implements numerical ODE solver
• Recorder collects references to desired outputs and

generates output either to file, memory or TCP port.

4 First scaling results

4.1 The scaling experiments

The crane crab model of Figure 5 has been used to per-

form a simple scaling experiment. Using a logarithmic

grid of factor 4, 1 to 16384 crane crabs have been instan-

tiated and simulated using zimsim. The same exercise

has been performed within a commercial Modelica tool.

Here, this generates models ranging from 206 equations

up to 3.1 million equations. In Figures 6 and 7, we use

the equation number since this quantity is more familiar

to Modelica users.

4.2 Scaling results in terms of memory usage

Peak memory usage for model translation, compilation

and simulation is orders of magnitudes lower using zim-

sim. The likely reasons are:
• Avoidance of flattening
• On demand generation of meta-information
• More variables on stack than on heap

For small models, comparing the memory usage hardly

makes sense because we compare the memory usage of a

dedicated simulator (LIED) with the one of a whole mod-

eling and simulation environment (Modelica Tool). The

two orders of magnitude for small models is thus not sur-

prising. What is surprising that this gap does not signifi-

cantly close for larger models. Peak memory consump-

tion seems to appear in the models at model translation.
Zimsim has been written with efficient use of memory in

mind: Meta information is generated only on-demand

and also the object-oriented formulation enables to do

more computation on the steak than on the heap.

Figure 6: Memory usage in bytes

4.3 Scaling results in terms of performance

Figure 7: Time for single model evaluation in ms.

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11
1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

equations

Peak Mem LIED [bytes]

Peak Mem Modelica Tool

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

1,E+01

1,E+02
1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

equations

ms per f-eval (LIED)

ms per f-eval (Modelica Code)

Simulation speed is up to an order of magnitude slower
using zimsim. The likely reasons are:
• More overhead in zimsim due to interface variables

and many function calls.
• Numerical solution of linear equation system in zim-

sim instead of symbolical transformation.

Pure simulation time is compared here. Time for transla-

tion, compilation and instantiation is ignored. Generation

of output has been reduced to a negligible amount.
One has to consider that the code generation of the Mod-

elica tool underwent decades of optimization whereas

zimsim is still prototypical. A reduction of 50% in com-

putational effort might be achievable for zimsim, how-

ever a certain gap will always remain.
We can observe that for larger systems, the perfor-

mance penalty is smaller, the reason is unknown but is
probably due the higher memory efficiency in zimsim.

A final remark: results for even larger systems could
not be attained for zimsim as well as for the Modelica
tool, however for completely different reasons. The Mod-
elica tool started to hit the limits of memory leading to
excessive translation time due to disk swapping. zimsim
had no such problems but the instantiation has been im-
plemented with a low-performing algorithm, requiring
too much time. This is however a pure implementation
issue and will be improved.

5 Outlook

The prototypical simulator demonstrates that LIED sys-
tem can actually be coded directly in C++ and executed
with acceptable efficiency and while using comparably
little memory. The complexity of the software is thereby
significantly lower than of any Modelica environment.
The scaling capabilities are promising and can be im-
proved by going to code dedicated for GPUs.

Although the modeling in C++ turned out to be much
more natural than originally conceived, it is still not a de-
sirable target. Instead, the existing C++ modelling librar-
ies shall be used as an inspiration for Modelica compilers.
Especially open compilers such as the OMC [2] could be
modified to compile from Modelica libraries into a set of
pre-compiled components.

The main, albeit preliminary, conclusion is that LIED
systems not only form an interesting class for robust
modelling but also an interesting class for large scale sys-
tem simulation, worthy of further investigation.

References

[1] Fritzson, P., Principles of Object-Oriented Modeling and

Simulation with Modelica 3.3, 2nd ed., IEEE Press, Pis-

cataway, New Jersey, 2014, pp. 1256.

[2] Fritzson, Peter A. et al. (2019) “The OpenModelica

Integrated Modeling, Simulation, and Optimization

Environment.” Proceedings of The American Modelica

Conference 2018, October 9-10, USA

[3] Jørgensen, J.B., Kristensen M. R. and Grove, P. (2018)

A Family of ESDIRK Integration Methods. arXiv Nu-

merical Analysis eprint :1803.01613

[4] Junglas, P. (2023) Implementing Thermodynamic

Cyclic Processes Using the DLR Thermofluid Stream

Library. Simulation News Europe E 33(4)

[5] Mattsson, S.E., Gustaf Söderlind (1993). “Index Re-

duction in Differential-Algebraic Equations Using

Dummy Derivatives” In: SIAM Journal on Scientific

Computing 1993 14:3, 677-692

[6] Pantelides, C. (1988), The consistent initialization of

differential-algebraic systems, SIAM J. Sci. Statist.

Comput., 9, 213–231

[7] Zimmer, D. (2020), Robust Object-Oriented Formu-

lation of Directed Thermofluid Stream Networks .

Mathematical and Computer Modelling of Dynamic Sys-

tems, Vol 26, Issue 3.

[8] Zimmer, D., N. Weber, M. Meißner (2022) The DLR

ThermoFluid Stream Library. MDPI Electronics -

Special Issue.

[9] Zimmer, D., C. Oldemeyer (2023). “Introducing Dia-

lectic Mechanics”. Proceedings of the 15th International

Modelica Conference, Aachen.

[10] Zimmer (2024) Object-Oriented Modeling of Classic

Physical Systems using Linear Implicit Equilibrium

Dynamics Preprints 2024, 2024031139

	1 What is Linear Implicit Equilibrium Dynamics?
	1.1 Formal Definition
	1.2 Informal Explanation

	2 What is LIED good for?
	3 A dedicated simulator
	3.1 Why?
	3.2 Computational structure and implementation of blocks
	3.3 Handling of meta information
	3.4 Ordering of blocks, compacting and extracting of sub-blocks.
	3.5 ODE simulation
	3.6 Overall Simulator Software Design

	4 First scaling results
	4.1 The scaling experiments
	4.2 Scaling results in terms of memory usage
	4.3 Scaling results in terms of performance

	5 Outlook
	References

