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A B S T R A C T

The Double–Double concept of composite laminates suggests huge simplifications in aerospace structural design
and manufacturing. This work presents a homogenized composite formulation introducing an analytical DD
equivalent plate. Additionally, an optimization strategy is proposed using the DD parameterization as design
variables to derive an optimized thickness and stiffness distribution on the basis of gradient-based numerical
sensitivities. The method is applied to a simple wing box benchmark model for composite design applications.
Based on this model, the usage of gradients is verified for the newly implemented DD formulation with a
global optimum and a robust convergence. Furthermore, the DD design is compared to a lamination parameter-
based optimization of conventional Quad laminates. The DD optimized wing box shows small weight gains,
due to the fact that one building block is distributed to an assembly of panels, whereas the Quad design
provides individual optimality for each design region. At the same time, the proposed DD optimization process
shows lower computational efforts, due to a lower amount of variables and constraints, while all laminate
manufacturing constraints are implicitly fulfilled. Thus, the introduced DD formulation provides an efficient
option to obtain a feasible structural design and therefore improve the maturity level for early aircraft design
phases.
1. Introduction

The demand on the development of disruptive aircraft configura-
tions to face the climate impact of growing aviation and transport
requires multidisciplinary design optimization (MDO) strategies. The
additional need to reduce time to market requires a high physical
depth and reliability from contributing tools and modeling approaches.
With respect to composite structures, increasing design maturity can
be achieved by optimally designed discrete laminates in order to assess
manufacturing feasibility in early design phases. This is a challenging
task and only taken into account to a limited extent by conventional
structural optimization processes within known MDO environments
(e.g. [1,2]).

In general, the optimization of discrete stacking sequences and
its continuous thickness leads to a mixed-integer problem. However,
today’s state of the art MDO workflows use gradient-based optimiza-
tion methods [3,4]. In order to be able to provide sensitivities to an
overall optimization process, this applies also for contributing disci-
plinary sub-components like a structural sizing tool. Today, various
mono- and multidisciplinary composite optimization strategies exist,
as comprehensively summarized in [5,6]. For the use of gradients,
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continuous design variables are required. These can be obtained in-
troducing an equivalent plate, that represents the composite properties
continuously over thickness. Here, different theories exist e.g. the ply
share approach [7], polar parameter [8] or the common concept of
lamination parameter (LP) [9]. A comparison of different continuous
parameterization for composite structural optimization is given in [10].

One major challenge of using continuous parameter is the complex-
ity induced through the consideration of manufacturing rules, e.g. bal-
anced laminates and required symmetry. On the example of LP, these
can be applied with constraints on the design space in order to find
feasible layup solutions [11,12]. Especially, the problem of laminate
blending between adjacent design regions remain a complex exercise
(see e.g. [13,14]). Furthermore, as a second major challenge, the use
of equivalent plate theories requires a reverse transformation into
discrete layups. Therefore, a subsequent procedure is necessary to find a
stacking sequence which meets the stiffness obtained from an optimized
continuous parameterization. Different reverse transformation methods
are proposed in literature with different limitations, for instance within
the comprehensive consideration of manufacturing rules or efficiency
due to the exponential growth of stacking sequence permutations,
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from the number of plies or ply orientations [15–17]. Hence, it is
computationally challenging to comprehensively consider composites
for MDO applications from the conceptual level up to a discrete and

anufacturable structure.
Using Double–Double (DD) laminates, as suggested by [18], can

overcome the above-mentioned challenges for composite design prob-
lems. The DD idea basically intends the repetition of a balanced build-
ing block comprising four unidirectional plies. This unit will be dis-
tributed over respective shell structures and repeated locally over
thickness until desired design criteria are full-filled. This strategy leads
to laminate homogeneity and induces mechanical simplicity in compos-
ite design and manufacturing, as comprehensively summarized in [19].
The present paper provides a computational perspective, showcasing
the advantages of DD in gradient-based structural optimization. There-
fore, an equivalent plate representation for DD laminates is introduced,
that provides continuous design variables. The plate formulation is
feasible by definition, such that additional constraints for blending and
manufacturing as well as a stacking sequence reverse transformation
process can be avoided. The proposed DD optimization strategy is
analyzed on an academic benchmark wing box use case. Finally, the
DD design is compared to a reference design using conventional Quad
laminates, derived from an LP parameterization, in terms of stiffness,
mass and computational performance.

2. DD laminates

2.1. Laminate architecture

The family of DD laminates has been proposed by Steve Tsai [18]
s a promising challenger for the family of conventional laminates in
erospace practice, which are usually composed of the four-ply orienta-
ions 0◦,±45◦, 90◦. Those conventional stackings are denoted as ‘Quad’
n DD-related literature, what is adopted hereafter. Laminate symmetry
nd balanced stackings are essential rules for Quad laminates, which
re necessary to circumvent unwanted in-plane (shear) and out-of-plane
bending, warpage) coupling effects. Those requirements created com-

plexity in laminate-design tasks such as stacking-sequence optimization
for adjacent laminate zone.

DD laminates do not require symmetry, which is considered the
most-remarkable opportunity from a manufacturing perspective. The
aminate architecture differs. At the same time, laminate optimization
s simplified.

A DD laminate is composed of a particular sequence of four-ply
sub-laminates, which are usually denoted as building blocks (BB).

A BB consists of only four ply orientations, which is a similarity
o established Quad laminates (from a design-space perspective). How-
ver, a BB in the DD concept shall be balanced in addition. Thus,
nly two individual ply angles (𝛷 and 𝛹 ) remain to describe a DD
aminate stacking. A full, 4-ply BB is therefore described by [±𝛷 ,±𝛹 ].1

A laminate is composed of multiple BBs in order to tailor the local lami-
nate thickness according to given loads. The number of building-blocks
is described by the repeat index 𝑟, leading to the laminate notation
[±𝛷 ,±𝛹 ]𝑟𝑇 . The index 𝑇 in the preceding expression denotes ‘total’,
which follows the convention of Nettles [20] and the aforementioned
publication in the context of DD. The index 𝑇 also helps to clearly
istinguish from the often used index ‘s’, which indicated symmetry
or Quad laminates

1 Note, that the reduction to only two ply-angle parameters allows for
particularly elegant plots of the DD (𝛷 , 𝛹 ) design space, as can be seen in
Figs. 6 and 7. Those, plots are valuable for composite designers. Similar plots
do not exist for Quad laminates.
2 
Thickness-normalized descriptions are usually used in the context
of DD (see [18,21]). Those are deduced from the CLT’s (see [20]) basic
relation, as shown hereafter.
(

{𝑁}
{𝑀}

)

=
[

[𝐴] [𝐵]
[𝐵] [𝐷]

]

⋅
({

𝜀0
}

{𝜘}

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
CLT

(1)

Inserting stresses and strains, as {𝜎0} = 1
𝑡𝑙 𝑎𝑚 ⋅ {𝑁}, {𝜎𝑓 } = 6

𝑡2𝑙 𝑎𝑚
⋅ {𝑀}

and {𝜀𝑓 } = 𝑡𝑙 𝑎𝑚
2 ⋅ {𝜘}, yields the normalized form.

({

𝜎0
}

⋅ 𝑡𝑙 𝑎𝑚
{

𝜎𝑓
}

⋅
𝑡2𝑙 𝑎𝑚
6

)

=
[

[𝐴] [𝐵]
[𝐵] [𝐷]

]

⋅

(
{

𝜀0
}

{

𝜀𝑓
}

⋅ 2
𝑡𝑙 𝑎𝑚

)

(
{

𝜎0
}

{

𝜎𝑓
}

)

=

[

[𝐴]∕𝑡𝑙 𝑎𝑚 [𝐵] ⋅ 2∕𝑡2𝑙 𝑎𝑚
[𝐵] ⋅ 6∕𝑡2𝑙 𝑎𝑚 [𝐷] ⋅ 12∕𝑡3𝑙 𝑎𝑚

]

⋅

(
{

𝜀0
}

{

𝜀𝑓
}

)

{

𝜎0
}

{

𝜎𝑓
}

)

=
[

[𝐴∗] [𝐵∗]
3[𝐵∗] [𝐷∗]

]

⋅
({

𝜀0
}

{

𝜀𝑓
}

)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Normalized format

(2)

The thickness normalization leads to the fact that all matrices have
the same unit, MPa. With the laminate thickness being defined as 𝑡𝑙 𝑎𝑚 =
4 ⋅ 𝑟 ⋅ 𝑡𝑝𝑙 𝑦, the normalized matrices are given by

[𝐴∗] = [𝐴]
𝑡𝑙 𝑎𝑚

, [𝐵∗] = 2 ⋅ [𝐵]
𝑡2𝑙 𝑎𝑚

, [𝐷∗] = 12 ⋅ [𝐷]
𝑡3𝑙 𝑎𝑚

. (3)

Thorough examination of the [𝐵∗], [𝐷∗] explains why a DD laminate
can be free of warpage and extension–bending coupling, although the
aminate architecture is completely asymmetric. The matrix popula-
ions of the thickness-normalized matrices are outlined hereafter. The
articular, BB-based laminate architecture creates proportionality for
ome elements in the ABD-matrix.

[𝐴∗] ≠ 𝑓 (𝑟),

[𝐵∗] =
⎡

⎢

⎢

⎢

⎢

⎣

1
𝑟 ⋅ (…) 1

𝑟 ⋅ (…) 1
𝑟 ⋅ (…)

1
𝑟 ⋅ (…) 1

𝑟 ⋅ (…) 1
𝑟 ⋅ (…)

1
𝑟 ⋅ (…) 1

𝑟 ⋅ (…) 1
𝑟 ⋅ (…)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐷∗] =
⎡

⎢

⎢

⎢

⎢

⎣

��𝑓 (𝑟) ��𝑓 (𝑟)
1
𝑟2

⋅ (…)

��𝑓 (𝑟) ��𝑓 (𝑟)
1
𝑟2

⋅ (…)
1
𝑟2

⋅ (…) 1
𝑟2

⋅ (…) ��𝑓 (𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

One find that all entries of the [𝐵∗]-matrix, which is responsible for
xtension–bending coupling of a laminate, scales proportional with 1∕𝑟.

Both the 𝐷∗
16 and the 𝐷∗

26 coefficients of the normalized bending-
stiffness matrix even scale proportional with 1∕𝑟2.

This process is denoted as homogenization. It leads to the fact
that critical couplings diminish when the number of BBs (parameter
𝑟) increases. Experiments show and analyses suggest that a minimum
of 3–4 BBs is a reasonable lower limit.

Assessing the process of ‘homogenization’ is essential, when a DD
laminate is designed.

[18] proposed the homogeneity condition as :
|𝐴∗

𝑖𝑗 −𝐷∗
𝑖𝑗 | < 2% ⋅ Tsai,

|𝐵∗
𝑖𝑗 | < 2% ⋅ Tsai for 𝑖, 𝑗 = 1, 2, 6, (5)

which refers to the ‘Trace’ parameter, which has been denoted as
Tsai-modulus, to honor its creator. The ‘Tsai’ parameter is defined as:
‘𝑇 𝑟𝑎𝑐 𝑒’ = 𝑇 𝑠𝑎𝑖

= 𝑄11 +𝑄22 + 2 ⋅𝑄66

= 𝑄̄11 + 𝑄̄22 + 2 ⋅ 𝑄̄66

= 𝐴∗
11 + 𝐴∗

22 + 2 ⋅ 𝐴∗
66

= 𝐷∗
11 +𝐷∗

22 + 2 ⋅𝐷∗
66

(6)

It is of importance in the later presented DD laminate optimization
procedure.
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2.2. A comment on the DD design space

A graphical representation of the design space of a composite lam-
inate can be made on the basis of LP, as introduced in [22]. There
it is shown, that the ABD-matrix entries can be expressed as a linear
combination of the material invariants {𝑈} and the LP [𝑉 ]:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴11
𝐴22
𝐴12
𝐴66
𝐴16
𝐴26

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

= 𝑡𝑙 𝑎𝑚 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑉 𝐴
1 𝑉 𝐴

2 0 0
1 −𝑉 𝐴

1 𝑉 𝐴
2 0 0

0 0 −𝑉 𝐴
2 1 0

0 0 −𝑉 𝐴
2 0 1

0 𝑉 𝐴
3 ∕2 𝑉 𝐴

4 0 0
0 𝑉 𝐴

3 ∕2 −𝑉 𝐴
4 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈1
𝑈2
𝑈3
𝑈4
𝑈5

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(7)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐵11
𝐵22
𝐵12
𝐵66
𝐵16
𝐵26

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=
𝑡2𝑙 𝑎𝑚
4

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑉𝐵 𝑉 𝐵
2 0 0

0 −𝑉 𝐵
1 𝑉 𝐵

2 0 0

0 0 −𝑉 𝐵
2 0 0

0 0 −𝑉 𝐵
2 0 0

0 𝑉 𝐵
3 ∕2 𝑉 𝐵

4 0 0

0 𝑉 𝐵
3 ∕2 −𝑉 𝐵

4 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈1
𝑈2
𝑈3
𝑈4
𝑈5

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(8)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐷11
𝐷22
𝐷12
𝐷66
𝐷16
𝐷26

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=
𝑡3𝑙 𝑎𝑚
12

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑉 𝐷
1 𝑉 𝐷

2 0 0

1 −𝑉 𝐷
1 𝑉 𝐷

2 0 0

0 0 −𝑉 𝐷
2 1 0

0 0 −𝑉 𝐷
2 0 1

0 𝑉 𝐷
3 ∕2 𝑉 𝐷

4 0 0

0 𝑉 𝐷
3 ∕2 −𝑉 𝐷

4 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈1
𝑈2
𝑈3
𝑈4
𝑈5

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9)

The LP are defined as

𝑉 𝐴
𝑥 = 1

𝑡𝑙 𝑎𝑚

𝑁
∑

𝑘=1
(𝑧𝑘 − 𝑧𝑘−1) ⋅𝑊𝑥

𝑉 𝐵
𝑥 = 1

𝑡2𝑙 𝑎𝑚

𝑁
∑

𝑘=1
(𝑧2𝑘 − 𝑧2𝑘−1) ⋅𝑊𝑥

𝑉 𝐷
𝑥 = 4

𝑡3𝑙 𝑎𝑚

𝑁
∑

𝑘=1
(𝑧3𝑘 − 𝑧3𝑘−1) ⋅𝑊𝑥

(10)

𝑧𝑘 is the distance of the 𝑘th-ply from the laminate mid-plane. The
respective trigonometric identity 𝑊𝑥 denotes with

𝑊𝑥 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos(2𝜃𝑘), 𝑥 = 1
sin(2𝜃𝑘), 𝑥 = 2
cos(4𝜃𝑘), 𝑥 = 3
sin(4𝜃𝑘), 𝑥 = 4

(11)

The design space of the DD laminate family is shown as projections
of 2D LP combinations in Fig. 1 and compared to the design space, that
is covered by symmetric Quad laminates with 0◦, ±45◦ and 90◦ plies
only. The DD design space is slightly wider for membrane and bending
properties, represented by the 𝑉 𝐴,𝐷

2 − 𝑉 𝐴,𝐷
1 -projections, covering the

whole range of ply orientations. However, it has to be noted that the
convex hull approach used to plot the feasible domain [12] neglects two
parabolic regions at the upper bound which cannot be covered by DD
(see [23]). Significant differences also occur in 𝑉 𝐷 over 𝑉 𝐴 sections. It
reflects the tied coupling of A and D matrix, due to the homogenization
of DD (Eq. 4), resulting into a smaller design space. This reduces com-
plex composite behavior, as already mentioned before in Section 2.1.
In turn, the ‘‘tear-drop’’-shaped design space of Quad provides options
for aeroelastic tailoring, due to the fact that inhomogeneous laminates
are allowed.

However, using inhomogeneous laminates differ from established
practice in industrial applications. Furthermore, for conventional lam-
inates additional stacking rules are applied, like adding a minimum of
10% of each layer orientation, requiring not more than 45◦ deviation
3 
Fig. 1. Comparison of the feasible region of Quad laminates and DD in LP space.

between neighbors etc. (see e.g. [24]), which further reduces the Quad
design space.

3. DD - design approach

3.1. An equivalent plate for DD laminates

The given homogeneity over the DD laminate thickness, as outlined
in Section 2.1, is the key property that enables continuous design
variables for numerical sensitivities. Therefore, an equivalent plate can
be formulated representing the stiffness properties of DD based on
the DD angles and the plate thickness. The implemented procedure
uses only one representative BB and its two independent angles 𝛷
and 𝛹 (Fig. 2). The BB constitutive properties are composed by the
transformed reduced stiffnesses

[

𝑄̄
]

of four plies 𝑘, given with
[

𝑄̄
]

𝑘 =
[

𝑇
]−1
𝑘

[

𝑄
] [
𝑇
]

𝑘 (12)

with the transformation matrix
[

𝑇
]

𝑘 being

[

𝑇
]

𝑘 =
⎡

⎢

⎢

⎣

cos2(𝜃) sin2(𝜃) 2 sin(𝜃) cos(𝜃)
sin2(𝜃) cos2(𝜃) −2 sin(𝜃) cos(𝜃)

− sin(𝜃) cos(𝜃) sin(𝜃) cos(𝜃) cos2(𝜃) − sin2(𝜃)

⎤

⎥

⎥

⎦

(13)

and 𝜃 taking angles [−𝛷 , 𝛹 , 𝛷 ,−𝛹 ] for 𝑘 = 1...4.
This BB now provides the in-plane stiffness

[

𝐴
]

, which is inde-
pendent of the amount of repetitions, using

[

𝑄̄
]

𝑘 of the four plies
contributing with a proportion of 𝑡𝑙 𝑎𝑚∕4 each.
[

𝐴
]

=
4
∑

𝑘=1

(

[

𝑄̄
]

𝑘 ⋅
𝑡𝑙 𝑎𝑚
4

)

(14)

With the assumption of homogeneity and coupling terms being 0,
due to sufficient repetitions, the

[

𝐷
]

matrix is then set to
[

𝐷
]

∶=
𝑡2𝑙 𝑎𝑚
12

⋅
[

𝐴
]

(15)

and the
[

𝐵
]

matrix is set to 0. This way, the stiffness can be adjusted
using only three design variables per optimization region.

One major advantage of a DD design is that continuous plies over
adjacent panels are always given, which avoids the problem of laminate
blending. For the design optimization, that means that the DD angles
𝛷 and 𝛹 are the same for all BB plies of one assembly, like wing
covers or spars. The optimized combination is a compromise between
all panels, while the thicknesses 𝑡𝑙 𝑎𝑚 can be adjusted individually. With
this procedure the design problem is further reduced, but in turn the
composite design is less specific, which effects the structural mass.
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Fig. 2. Illustration of the implemented DD parameterization from continuous (back)
to discrete (front).

3.2. Stacking sequence retrieval

The derivation of a discrete stacking from optimized continuous
design regions, that fulfills all design rules, is the most challenging
point for common equivalent plate theories (see Section 1). In case
of DD, a simple post-processing procedure can be applied. Therefore,
the panel thickness 𝑡𝑙 𝑎𝑚 has only to be rounded onto the next whole
multiple ⌈𝑟⌉ of the determined BB with a predefined ply thickness
(Fig. 2).

⌈𝑟⌉ =
𝑡𝑙 𝑎𝑚

4 ⋅ 𝑡𝑝𝑙 𝑦
(16)

Ensuring that homogeneity is satisfied for the stacking with the number
of BB repeats, the condition of Eq. (5) is proven for each panel. If the
stated condition is not full-filled, 𝑟 is increased iteratively. In fact, this
violation should occur very seldom for common aerospace structures,
because homogeneity is usually already achieved with 3–4 BBs (see
Section 2.1), which corresponds to a very low thickness.

3.3. Design criteria

In order to evaluate the implemented DD parameter subject to
critical loading, suitable design criteria have to be applied on the
laminate level. For strength, this can be obtained by superimposing a
ply-based failure criterion for all ply orientations to obtain a so-called
omni-envelope for the entire laminate [25]. The principal is shown in
Fig. 3 for the T300/N5208 composite material, that is chosen for the
design study later on. Specifically, in the present work a first-ply-failure
(FPF) criterion is implemented according to [26], where the Tsai–Wu
failure surface is applied to materials in strain space to determine the
worst case for all possible ply angles. The envelope can be divided in
two cases. For each case an elliptical form given in Eq. (17) has to be
solved. The particular coefficients are given in Appendix A.

𝐶𝑖𝑗𝜀𝑖𝜀𝑗 + 𝑅𝐶𝑖 + 𝑅2𝐶0 = 0, 𝑖, 𝑗 = 𝐼 , 𝐼 𝐼 (17)

𝑅 in Eq. (17) represents the strain exposure, where 𝑅 ≤ 1 means
that the current strains are lower than the critical ones and no failure
appear.

𝑅 =
𝜀𝑎𝑝𝑝𝑙 𝑖𝑒𝑑
𝜀𝑐 𝑟𝑖𝑡

(18)
4 
Fig. 3. Omni-FPF envelope for T300/N5208 material using Tsai–Wu criterion. Principal
strains shown in ‰.
Source: Data from [27].

The highest root 𝑅 from Eq. (17) gives the constraint value for
optimization.

In addition to laminate strength, buckling stability is evaluated
analytically within the applied optimization process, since it is a typical
failure mode in composite shell structures. [28] gives for a simply-
supported plate of length a and width b, under axial compression, the
following expression for critical longitudinal stress resultant.

𝑛𝑥,𝑐 𝑟𝑖𝑡 = 𝑘𝑥 ⋅
𝜋2

𝑏2
√

𝐷11𝐷22 (19)

𝑛𝑥,𝑐 𝑟𝑖𝑡 is the critical axial compression stress resultant. 𝑘𝑥 is the
buckling factor, which depends on stiffness and geometry related co-
efficients, which are given in Appendix B.

For the critical shear stress resultant 𝑛𝑠,𝑐 𝑟𝑖𝑡, no exact closed form
solution exists. Some approximations exist for infinitesimal long plates.
The Aeronautical Engineering Handbook [29] provides a method to
determine the buckling factor for a shear loaded rectangular plate to
determine 𝑘𝑠. The relevant coefficients are provided in Appendix B.

𝑛𝑠,𝑐 𝑟𝑖𝑡 = 𝑘𝑠 ⋅
(𝜋
𝑏

)2
4
√

𝐷11𝐷3
22

(20)

If axial and shear loads exist, [28] provides an interaction formula
for coupled loads.

𝑅𝑥 + 𝑅2
𝑠 ≤ 1 (21)

where 𝑅 represents the ratio of applied and the critical load of the cor-
responding load type. The aforementioned methods provide a reliable
design of composite structures considering the most relevant design
criteria.

4. Least weight design studies

4.1. Wing box use case

The proposed DD formulation is implemented to a gradient-based
optimization process and applied to a simplified wing box model.
This benchmark model is first suggested by [30] and used for various
composite optimization studies, as summarized in [10]. There, a simple
rectangular wing box represents the structural model (Fig. 4). The
upper and lower shell is divided into nine design regions each and 18
in total (Fig. 5). These regions are defined by four equally distributed
spars and ribs, that are fixed to a shear layup of [(±45◦) ]. The wing
22



D. Zerbst et al. Composite Structures 354 (2025) 118786 
Fig. 4. Wing box topological layout, with: l = 3543 mm; w = 2240 mm; h = 381 mm;
𝐹1 = 90 009.77 N; 𝐹2 = 187 888.44 N; 𝐹3 = 380 176.16 N.

Fig. 5. Panels resp. design regions on upper shell (left) and lower shell (right).

box is clamped at the root section and loaded on the wing tip. The
objective is to minimize the total mass of the upper and lower shell.

The constants of the used graphite–epoxy composite material are
listed in Table 1. Most of the aforementioned studies use maximum
strain allowables for the failure evaluation, which appear unusually
high, especially for transverse failure strain with 0.029 and without
distinction between tension and compression. Thus, the present work
applies the constants as used in [8] and in accordance with [27].

For the suggested optimization strategy, a CPACS model [31] is used
as input, containing the parameterized wing box. The CPACS file is
available from an open repository [32]. Based on this data, a finite-
element model is generated for the internal analysis. More detailed
information about the used mesh and boundary conditions can be found
in [10]. With this model, optimizations of the total mass are carried out
as described hereafter.

4.2. Problem formulation and optimization strategy

On the basis of the continuous DD formulation an optimization
strategy is presented, using the lightworks framework, as introduced
in [10].

The objective to be minimized is the structural mass collected from
an assembly of simply supported panel units for each rib bay of the
wing box use case (Fig. 5). These panels represent a design region to
be adjusted with the help of the design variables, subject to critical
strength and buckling load, as well as feasibility-related criteria and
upper and lower bounds. An overview of the optimization problems
solved are given in Table 2.

A panel is characterized through its dimensions and constitutive
properties according to the CLT. The ABD-stiffness is composed by the
continuous DD formulation. Hence, for the DD specific optimization
5 
Table 1
Composite material properties used for rectangular wing box use case according to
literature.

Constants Unit T300/N5208

𝐸1 (GPa) 181
𝐸2 (GPa) 10.3
𝜈12 (−) 0.27
𝐺12 (GPa) 7.17
𝜌 (k g m−3) 1760
𝑋𝑡 = 𝑋𝑐 (MPa) 1500
𝑌𝑡 (MPa) 40
𝑌𝑐 (MPa) 246
𝑆 (MPa) 68

problem, the design variable vector denotes: {𝑥}𝐷 𝐷 ∶=
{

𝛷𝑚, 𝛹𝑚,
𝑡𝑙 𝑎𝑚𝑛 ∣ 𝑚 = 1, 2; 𝑛 = 1,… , 18

}

. whereas the DD angles 𝛷 and 𝛹 are
optimized for each assembly structure 𝑚, which is the upper and lower
shell, the thickness 𝑡𝑙 𝑎𝑚 is adjusted for each panel 𝑛. In sum, the wing
box problem results into 22 variables.

Furthermore, the DD design is compared to a conventional Quad
laminate design. Therefore, LP are used as continuous design variables
(Eq. (10)), as it is implemented in lightworks. Assuming symmetric and
balanced Quad laminates (0◦, 90◦ and ±45◦-plies), the total number
of 12 LP can be reduced to 5 for the complete design space. Hence,
together with the thickness, the design variable vector is given with:
{𝑥}𝑄𝑢𝑎𝑑 ∶=

{

𝑉 𝐴
1 𝑛, 𝑉 𝐴

2 𝑛, 𝑉 𝐷
1 𝑛, 𝑉 𝐷

2 𝑛, 𝑉 𝐷
3 𝑛, 𝑡𝑙 𝑎𝑚𝑛 ∣ 𝑛 = 1,… , 18

}

. Collecting 6
variables for each panel denotes 108 in total for the wing box use case.

The load state of a panel is provided by an external solver. There-
fore, the panels ABD-stiffnesses are mapped on an analysis model.
In this study, the b2000++ finite element solver is used. With this,
the displacement field is solved and external loads are transformed
into internal loads {𝑁}, {𝑀}. Then, the obtained internal loads are
transformed on the panels in order to evaluate the design criteria, as
outlined in Section 3.3. In addition, the LP require a feasible domain to
consider respective laminate design rules, as already visualized section-
wise in Fig. 1. The implemented approach to create the 5-dimensional
design space for Quad laminates as a convex hull on the basis of
hyperplanes is given in [12].

The optimization of both equivalent plate formulations is done on
the basis of numerical sensitivities 𝜕 𝑓

𝜕 𝑥𝑗 and 𝜕 𝑔𝑖
𝜕 𝑥𝑗 . For the calculation the

complex step method is used, which is based on a truncated Taylor
series expansion, assuming an imaginary step of a parameter. This
allows a numerical exact gradient determination [33]. The gradient
processing is the most expensive process step within the computation
and therefore distributed to available parallel cores. For the numerical
optimization, the SNOPT optimizer [34] with the open pyOptSparse
package is used. All calculations are performed on an Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60 GHz with 12 physical cores. All 12 cores are
used in parallel to evaluate the gradients.

4.3. Optimization results

4.3.1. DD design sensitivity analysis
The result of the proposed optimization approach is analyzed and

verified within a sensitivity study. Basically, the wing box upper shell
is driven through buckling stability due to the combined bending and
torsional loading. This leads generally to a shear dominant BB with
[±48,±48] for the DD upper shell. On the lower shell, strength is
critical at the wing root (panels 10–14), caused by the upward bending
moment. At the wing tip shear buckling is critical again such that
the found angles of [0,±46] are a compromise, that balances both
constraints.

The found optimal BB’s for the upper and lower shell are supported
by contour plots of the respective design space in Figs. 6 and 7. The
plots are obtained using only the panel thicknesses for optimization.
Thereby, the objective function is analyzed generating a minimum mass
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Table 2
Optimization problem descriptions.

Constraint/Variable Description Quantity Bounds

DD LP

Minimize m Mass of upper and lower covers 1 1

With respect to 𝑡 Thickness of each panel 18 18 (0, 𝑖𝑛𝑓 )
𝛹 First double double angle 2 – [0, 90]
𝛷 Second double double angle 2 – [0, 90]
𝑉 𝑚
𝑙 Lamination parameters – 90 [−1, 1]

Total parameters 22 108

Subject to 𝑔𝑠𝑡𝑎𝑏𝑖𝑙 𝑖𝑡𝑦 Panel buckling 18 18 <0
𝑔𝑠𝑡𝑟𝑒𝑛𝑔 𝑡ℎ Strength Omni-FPF 270 270 <0
𝑔𝑙 𝑝 LP design space – 882 <0

Total constraints 288 1170
Fig. 6. Upper shell mass subject to the BB, derived from thickness optimizations with
optimal BB for lower shell [0,±46].

result within 5◦ increments for 𝛷 and 𝛹 , where the BB of the respective
other shell is fixed to its optimum. The mass contours over 𝛷 and 𝛹
in the range of 0◦–90◦ show a continuous design space, that provides
a global optimum, which is required for gradient-based algorithms. It
can be seen, that the region of optimality of the lower shell is quite flat
(Fig. 7). In this range, different DD angle combinations lead to only
small mass deviations, which opens possibilities for multi-objective
optimization.

A second requirement which allows for the usage of gradients is
the robustness against varying initialization and perturbations. This is
analyzed starting optimizations from different DD angle combinations
within 5◦ increments. Thereby, the mass optimum is reliably achieved
for 92% of all starting values, with a deviation of the optimal mass
of 𝛥𝑓 ≤ ±2 k g and the highest constraint value being in the range of
𝑐 < 0.01. A poorer convergence reveals at the outer boundaries of the
DD angle space, where some starting values needs more iterations or
even do not converge (Fig. 8). However, a robust optimization process
is verified for the suggested parameterization. It has to be noted that
this response is analyzed specifically for one use case, representing a
6 
Fig. 7. Lower shell mass subject to the BB, derived from thickness optimizations with
optimal BB for upper shell [±48,±48].

typical wing design problem, using a specific optimization algorithm
and gradient determination procedure (see Section 4.1).

4.3.2. Comparison of quad and DD parameterized wing box optimization
In order to compare the DD design to a conventional Quad design,

an optimization was carried out, using the LP parameterization as
outlined in Section 4.3. The optimized laminate properties of both
designs are visualized with the polar distribution of the 𝐴11 in-plane
stiffness (Fig. 9). For DD the BBs are the same for upper shell and lower
shell, such that the polar properties are constant for all panels. For the
LP model the stacking is allowed to be adjusted individually for each
panel which leads to a more specific stiffness subject to its panel load
state.

On Fig. 10 the thickness distribution of the LP and the DD approach
is plotted. Here, it can be seen that the panel DD stiffness is a compro-
mise for the total structure. The thicknesses of the LP variant exhausts
its design freedom with higher thickness amplitudes locally, whereas
the DD thickness is smoother distributed. An overview of both results
is given in Table 3



D. Zerbst et al. Composite Structures 354 (2025) 118786 
Table 3
Results of DD and Quad laminate wing box optimization, with 𝑐 being the maximum constraint value, either buckling stability, or laminate strength or ply strength respectively.

Panel DD laminate Quad laminate

[𝛷 , 𝛹 ] Continuous Discrete 𝑉 𝐴
1 𝑉 𝐴

2 𝑉 𝐷
1 𝑉 𝐷

2 𝑉 𝐷
3 𝑡𝑙 𝑎𝑚 𝑐

𝑡𝑙 𝑎𝑚 𝑐 ⌈𝑡𝑙 𝑎𝑚⌉ 𝑐

1

48, 48

16.7 1e−10 17.0 −6e−2 0.16 −0.43 −0.01 −0.95 0.00 13.1 −5e−13
2 17.5 1e−10 18.0 −7e−2 0.50 −0.68 −0.01 −1.00 0.00 16.7 −2e−13
3 17.1 2e−10 17,5 −8e−3 −0.17 −0.68 −0.01 −1.00 0.00 20.4 −4e−14
4 14.0 2e−10 14.0 −2e−2 0.16 −0.43 −0.01 −0.95 0.00 11.1 7e−14
5 14.7 1e−10 15.0 −5e−2 0.05 −0.68 −0.01 −1.00 0.00 14.1 −4e−14
6 14.0 2e−10 14.5 −9e−2 −0.17 −0.68 −0.01 −1.00 0.00 17.1 2e−14
7 9.9 3e−10 10.0 −6e−2 −0.06 −0.43 −0.01 −0.95 0.00 8.4 −5e−13
8 9.6 3e−10 10.0 −1e−1 −0.17 −0.68 −0.01 −1.00 0.00 9.0 −4e−13
9 10.0 2e−10 10.0 −3e−2 −0.28 −0.45 −0.03 −0.95 0.00 11.9 −3e−13

10

0, 46

4.6 −2e−11 5.0 −1e−1 0.58 0.22 0.36 −0.05 −0.44 2.2 −1e−16
11 4.2 −1e−2 4.5 −1e−1 0.70 0.43 0.30 −0.22 0.13 1.0 5e−17
12 4.3 −1e−11 4.5 −5e−2 0.84 0.62 0.66 0.28 0.17 7.6 5e−17
13 3.5 −1e−10 3.5 −9e−2 0.39 0.16 −0.15 −0.25 0.18 1.9 −1e−16
14 3.0 1e−11 3.0 −8e−2 0.50 0.40 −0.06 −0.03 0.12 1.0 −9e−13
15 3.1 −3e−11 3.5 −3e−2 0.72 0.40 0.51 −0.03 0.28 5.1 −5e−13
16 4.1 −4e−12 4.5 −3e−1 0.20 0.23 −0.46 0.16 0.13 2.4 −9e−13
17 4.7 −4e−11 5.0 −2e−1 0.34 0.26 −0.27 0.00 0.13 4.0 −4e−13
18 4.7 −5e−11 5.0 −2e−1 0.54 0.31 0.05 −0.25 0.17 4.0 2e−14
Fig. 8. Iterations needed to convergence dependent on varying starting angle combi-
nations (blank points are not converged).

The lower design freedom of the DD parameterization w.r.t the total
structure leads to a wing box mass of 247.7 kg, which is 6.5% higher
compared to the Quad laminate design with 232.5 kg.

For the subsequent step of rounding the thickness to whole multiples
of BBs a common ply thickness of 0.125 mm is chosen. In order to
verify intact plies after this transformation, one constraint analysis
is run subsequently with a new structural model of these discrete
stackings. There, instead of the laminate strength envelope, the Tsai–
Wu criterion is evaluated on the ply level. It can be shown that all
constraints have a higher reserve after transformation into a discrete
7 
Fig. 9. Optimized thicknesses and polar distribution of 𝐴11 of LP (top) and DD (bottom)
on upper shell (left) and lower shell (right).

stacking, due to the rounded thickness ⌈𝑡𝑙 𝑎𝑚⌉ (Table 3). The BB round-
ing adds 3% more mass to the continuous DD result. In case of LP
stiffness the stacking sequence retrieval is much more complex, as
already discussed in Section 1. Especially, the consideration of discrete
blending between adjacent panels induces deviations of the continu-
ously formulated Quad stackings, which is given for the DD approach.
In [14] the retrieved layup including blending leads to 5.5% additional
mass compared to an optimally designed continuous laminate on the
example of the so-called ‘‘horse shoe’’ problem. Assuming this mass



D. Zerbst et al. Composite Structures 354 (2025) 118786 
Fig. 10. Comparison of distributed thicknesses of Quad and DD design for upper shell
(upper curves) and lower shell (lower curves).

increase, the difference between DD and Quad yields 4.5% higher mass
for DD.

A comparison of the computational performance is done w.r.t. the
different parameterization approaches. Where the Quad laminate needs
5 LP together with the thickness, the DD plate can be depicted by two
angles and the thickness, as stated in Section 4.2. The lower amount of
design variables also lowers the number of constraints and especially
the number of gradients ( 𝜕 𝑓

𝜕 𝑥𝑗 , 𝜕 𝑔𝑖
𝜕 𝑥𝑗 ), which accounts for the most expen-

sive step of the computation. In consequence, the DD structural design
optimization is much more efficient. The mean time to calculate the DD
gradients amounts to 10 s, whereas the LP problem takes 48 s.

5. Conclusion

In the present contribution, a continuous equivalent plate is sug-
gested, which depicts the properties of a DD laminate. It is shown how
this approach can be implemented and used for structural optimiza-
tion of a composite wing box use case. A robust convergence against
varying starting values to a global optimum is verified for the usage of
gradients. It is recommended to start from a BB with some offset to the
DD angle boundaries. In comparison with a common Quad laminate,
the DD design reveals a higher weight. Whereas the DD design space
is generally comparable to Quad laminates, the mass gains are caused
by the blending approach that requires the same BB for an assembly
of design regions, e.g. a wing shell. Hence, the Quad-based design is
specific for each individual design region and therefore lighter. In the
specific case of the academic wing box example, the higher mass is the
price to pay for a much simplified design. Opposed to other continuous
composite models, the derived DD structure is discrete and feasible by
definition, which provides increased maturity in early design phases.
Additionally, the reduction of design variables, that is enabled by the
DD plate formulation, provides large computational savings. This effect
grows with the amount of design regions of a real wing design problem,
which makes it even more advantageous, especially in expensive MDO
workflows. Additional benefits through the induced simplicity of DD
reveal in detailed aircraft wing design including cut-outs, connection
points and interface regions, e.g. when local support patches can be

added without unbalancing the laminate mechanics. On the other hand

8 
further mass gains could occur for DD in more complex load scenarios,
where a more specific tailoring of the composite is advantageous.
However, in sum, the DD design strategy combines the lightweight
benefits of composites, providing a tailored stiffness, with the simplicity
of isotropic materials and can be represented with continuous design
variables.
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Appendix A. Strength coefficients

The coefficients of Tsai–Wu failure criterion:

𝑢1 = 𝐺22 −
𝐺22
2

; 𝑢2 =
𝐺66
2

; 𝑢3 = 2𝐺12 − 2(𝐺22 −
𝐺66
2

)

𝑢4 = 𝐺11 − 2𝐺12 + 𝐺22 − 𝐺66; 𝑢5 = 𝐺2; 𝑢6 = 𝐺1 − 𝐺2,

where 𝐺𝑖 and 𝐺𝑖𝑗 (𝑖, 𝑗 = 1, 2,… , 6) are the coefficients of Tsai–Wu failure
criterion in terms of principal strains:

𝐺11 −𝑄2
11𝐹11 +𝑄2

12𝐹22 + 2𝐹12𝑄11𝑄12

𝐺22 = 𝑄2
12𝐹11 +𝑄2

22𝐹22 + 2𝐹12𝑄12𝑄22

𝐺1 = 𝑄11𝐹1 +𝑄12𝐹2; 𝐺2 = 𝑄12𝐹1 +𝑄22𝐹2

𝐺12 = 𝑄11𝑄12𝐹11 +𝑄12𝑄22𝐹22 + 𝐹12𝑄
2
12 + 𝐹12𝑄11𝑄22

𝐺66 = 4𝑄2
66𝐹66

The coefficients of Tsai–Wu expressed as an ellipse equation in terms
of principal strains (Eq. (17)) for the materials with a critical second
order envelope are:

𝐶0 = −
(1∕4)𝑢26

𝑢4
− 1; 𝐶𝐼 = −(1∕2)𝑢3𝑢6

𝑢4
+ 𝑢5; 𝐶𝐼 𝐼 = 𝐶𝐼 ;

𝐶𝐼 𝐼 = −
(1∕4)𝑢23

𝑢4
+ 𝑢2 + 𝑢1; 𝐶𝐼 𝐼 𝐼 = 𝑢1 −

(1∕4)𝑢23
𝑢4

;

𝐶𝐼 𝐼 𝐼 𝐼 = −
(1∕4)𝑢23

𝑢4
+ 𝑢2 + 𝑢1

For the fourth order envelope as the critical envelope, these coefficients
for each of the two branches of the envelope are used:
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𝐶

𝐶

𝐶

H

𝑎

𝑎

𝑎

d
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𝐶0(1) = 𝐶0(2) = −1; 𝐶𝐼 (1) = 𝐶𝐼 𝐼 (2) = 𝑢5

𝐼 𝐼 (1) = 𝐶𝐼 (2) = 𝑢6 + 𝑢5; 𝐶𝐼 𝐼 (1) = 𝐶𝐼 𝐼 𝐼 𝐼 (2) = 𝑢2 + 𝑢1

𝐼 𝐼 𝐼 (1) = 𝐶𝐼 𝐼 𝐼 (2) = (1∕2)𝑢3 + 𝑢1

𝐼 𝐼 𝐼 𝐼 (1) = 𝐶𝐼 𝐼 (2) = 𝑢2 + 𝑢1 + 𝑢3 + 𝑢4.

Appendix B. Buckling coefficients

Coefficients for compression buckling.
𝑛𝑥,𝑐 𝑟 = 𝑘𝑥 ⋅

𝜋2

𝑏2
√

𝐷11𝐷22

𝑘𝑥 = 𝑚2

𝛼̄2
+ 𝛼̄2

𝑚2 + 2𝛽

𝛼̄ = 𝑎
𝑏 ⋅ 4

√

𝐷22
𝐷11

𝛽 = 𝐷12+2𝐷33
√

𝐷11𝐷22

An interpolation of the curves from the Aeronautical Engineering
andbook was done by the author based on polynomial functions.

𝑘𝑠 = 𝑎2 ⋅ 𝛼̄
−2 + 𝑎1 ⋅ 𝛼̄

−1 + 𝑎0

2 = 2, 7 ⋅ 𝛽 + 0, 94 ,
1 = 0, 34
0 = −0, 15𝛽2 + 2, 15 ⋅ 𝛽 + 3.34

Data availability

The raw data required to reproduce these findings are available to
ownload from https://doi.org/10.5281/zenodo.10302734.
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