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Abstract 

Despite all the advances in automation and digitalization the majority of communication between air traffic 
controllers and pilots is still implemented via analogue radio voice transmissions. If support systems also want 
to benefit from the verbal controller-pilot-communication, manual time-consuming inputs via mouse and 
keyboard are required. Automatic speech recognition (ASR) is a solution to minimize these manual inputs. 
Recently DLR, Idiap and Austro Control demonstrated that pre-filling of radar label entries supported by ASR 
already reaches a technology readiness level of six. The used ASR engine is based on Kaldi, which requires 
high expert knowledge of ASR for implementation and adaptation. Besides Kaldi a lot of open-source end-to-
end ASR models like Whisper or wav2vec are available and are already pre-trained on large amounts of data 
of normal voice communication. These open source end-to-end models are often easier to adapt even for none 
speech recognition experts.  
This paper presents the results, which the DLR achieved with the open-source CoquiSTT toolkit, which 
provides an already pre-trained English end-to-end model with 47,000 hours of regular English speech 
achieving a word error rate of 4.5% on the LibriSpeech clean test corpus. Using the model, however, on air 
traffic control voice communication results in word error rates of worse than 50%, even in lab environments. 
Training new models from scratch just on 10 hours of voice recordings from the target environment already 
makes word error rates below 10% possible. The best performance, however, is achieved, when the CoquiSTT 
pre-trained model is fine-tuned with air traffic control data from different areas. Word error rates below 5% 
were achieved, which enable, e.g., callsign recognition rates of better than 95%. 
 

1. INTRODUCTION 

Despite all the advances in automation and digitalization 
the majority of communication between air traffic controllers 
(ATCos) on the ground and pilots in the aircraft cockpit is 
still implemented via analogue radio voice transmissions. 
For this task ATCos are supported by various systems that 
provide information and make suggestions to improve the 
flow of air and ground traffic. These support systems often 
derive their information from surveillance data and flight 
plan information. The content of analogue voice 
transmissions, which directly influences the air traffic 
behavior is usually hidden from these systems.  

In recent years research has shown that systems capable 
of recognizing and understanding air traffic control (ATC) 
voice transmissions provide benefits in multiple areas: 
Kerosene savings of up to 60 kg per flight are possible [1], 
workload of ATCo is reduced [2] or the time an ATCo just 
needs for maintaining the radar label content is reduced by 
a factor of 30 [3]. The core of these systems usually 
consists of two central components "Speech-To-Text" 
(STT) and "Text-to-Concept" (TTC).  STT transforms the 
analogue voice transmission into a sequence of words that 
represent the spoken content of the transmission. TTC 
subsequently extracts defined concepts that clearly 
describe the semantics of the word sequence. Most of the 
time STT and TTC are implemented independent from each 
other, which allows the use of different models and 
approaches for both without affecting the performance of 
the other component. 

The implementation of the STT component in the context of 
ATC-applications is often based on expert frameworks like 
Kaldi [4]. These frameworks require high expert knowledge 
in the field of automatic speech recognition (ASR) for 
implementation and to reach a suitable performance. In 
recent years so called open source end-to-end models like 
whisper [5] or wav2vec [6] gained more and more attention, 
see the application of wav2vec for ATC applications [7]. 
These end-to-end models often come with easier 
implementation and adaptation processes. This enables 
also none speech recognition experts to reach suitable 
performances in different target areas. 

In this paper we evaluate the CoquiSTT toolkit as solution 
for the STT component in an automatic speech recognition 
and understanding system for ATC applications. For this 
purpose, we use the toolkit to train different speech 
recognition models on ATC data sets for different ATC 
areas, i.e. apron control, remote tower, approach and 
enroute. Training and evaluation data are used from both 
laboratory as well as operational environments from a 
variety of sectors and airports. Based on the available data 
sets different CoquiSTT training modalities for end-to-end 
speech recognition are explored and compared. 

Before the training of final speech recognition models for 
different target areas an optimization of the 
hyperparameters learning rate, batch size and dropout rate 
is executed. The goal is to find the best parameters with 
respect to achieving the best word error rate. The 
optimization is evaluated and the resulting 
hyperparameters are afterwards used for training models 
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with the full data sets. One of the tested approaches is to 
train an end-to-end speech recognition model from scratch 
with ATC data only specifically for a certain target area, 
e.g., a specific apron or approach area. 

In comparison to the ATC model from scratch another 
approach utilizes the provided pre-trained CoquiSTT 
model, which is already based on 47,000 hours of regular 
English speech. This model is fine-tuned with different ATC 
data sets to determine, whether a pre-trained regular 
English model provides also benefits for recognition of 
ATCo pilot voice communication with its special challenges 
of, e.g., very high word rate and special phraseology. 

The third approach aims at training a generalized end-to-
end model for the ATC domain. This model is trained from 
scratch with data from multiple sectors and airports with the 
goal of measuring, whether a generalized ATC model can 
reach sufficient performance in case where not enough 
data from a specific area is available. To further improve the 
performance the CoquiSTT toolkit enables the integration 
of KenLM language models to be combined with the already 
trained end-to-end models. Therefore, for all tested 
approaches different n-gram language models are created 
and evaluated as well.  

Section 2 gives an overview of related work with respect to 
the usage of ASR in ATC. Section 3 describes the 
conducted validations including a brief description of the 
CoquiSTT toolkit, the used data sets, the validation 
hypotheses and the conducted hyperparameter 
optimization. Section 4 describes the achieved results with 
respect to the defined hypotheses. Section 5 concludes the 
work. 

2. STATE OF THE ART 

ATC refers to the personnel and technology responsible for 
ensuring the safe flow and monitoring of both air and 
ground traffic. As the number of flights increases annually 
worldwide, the importance and complexity of air traffic 
control grow, necessitating continuous improvements in the 
methods and tools used by controllers. ASR presents 
numerous opportunities to reduce controllers' workload [2] 
and enhance air traffic safety [8]. 

One potential application of ASR systems in ATC is 
replacing pseudo-pilots in simulations and controller 
training. Automated pilots using speech recognition and 
additional software could respond to controllers and carry 
out their commands during simulations, eliminating the 
need for pseudo-pilots and significantly reducing costs 
during training [9]. Early applications of replacing pseudo-
pilots by ASR are from e.g., FAA [10] , DLR [11], MITRE 
[12], DFS [13]. 

Measuring ATCo workload is challenging due to the many 
factors involved. However, with an ASR system, radio 
communications between ATCos and pilots can be 
monitored and analyzed more accurately, allowing for 
better workload assessment and more informed decisions 
[2]. 

ASR systems can also simplify and enhance daily 
operations for controllers. Currently, controllers must 
manually input each command into flight strip systems 

using a mouse, keyboard, or touch devices to ensure 
accurate monitoring. ASR could automate this process, 
transcribing spoken commands directly into the system [7]. 
Moreover, ASR could integrate with other controller 
assistance systems, providing valuable information on 
traffic conditions, specific flights, or potential conflicts 
between aircraft. 

However, implementing ASR in ATC comes with 
challenges. Audio from communications between 
controllers and pilots is often noisy, making it difficult to 
accurately recognize commands. Additionally, pilots and 
controllers do not always adhere to standardized 
phraseology. They may use native language words or non-
standard abbreviations, requiring ASR systems to 
recognize terms they aren't designed for. The international 
nature of air traffic control further complicates recognition 
due to differences in dialects, accents, and native 
languages, which can affect the system's performance[14]. 

Previous research has explored training speech recognition 
systems in the ATC communication domain using a deep 
learning toolkit. This earlier work used the Mozilla Deep 
Speech toolkit, the predecessor to the CoquiSTT toolkit, 
and some of the same data was utilized. The previous study 
achieved a word error rate of 6.0% using these datasets 
and the Deep Speech toolkit [15]. A different research 
approach was taken when a large-scale, weakly supervised 
ASR model named Whisper was applied on ATC 
communication data [16]. Whisper is a model developed by 
OpenAI with 680,000 hours of training data. The method of 
fine-tuning was also tested in this approach. On real world 
ATC data, a WER of 13.5% could be achieved. On 
simulated ATC traffic voice data, the achieved WER was 
1.17%. Overall, this research approach showed that fine-
tuning led to a performance improvement by 60%. While 
Whisper does not yet match human level performance, it 
shows promise in reducing workload and supporting 
incident analysis in ATC settings [16]. 

In another research approach, the performance of pre-
trained end-to-end ASR models like Wav2Vec 2.0 and XLS-
R within the domain of ATC communication was 
investigated. The objective was to examine the robustness 
of pre-trained ASR models in domain shifts, specifically in 
ATC communication. The researchers analyzed the 
models' performance in different scenarios using datasets 
that include significant background noise. The pre-trained 
models demonstrate strong performance even in 
challenging ATC datasets, with a reduction in WER by 20-
40% compared to hybrid models. The study provided 
valuable insights into the performance of ASR models in 
specific domain-focused scenarios such as ATC [7]. 

3. VALIDATION  

This section describes the validation trials. We start with the 
descriptions of the CoquiSTT tool kit, followed by the used 
data sets and the validation hypotheses. 

3.1. CoquiSTT Toolkit 

CoquiSTT is an open-source toolkit developed by the 
company Coqui for speech-to-text applications. It enables 
the training and deployment of deep learning models 
designed to transcribe audio files into text. CoquiSTT was 
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established in 2016 by a group of former Mozilla employees 
who had previously worked on Mozilla's DeepSpeech 
project [17]. After leaving Mozilla, they began developing 
CoquiSTT based on Baidu's DeepSpeech algorithm [18]. 

CoquiSTT can be utilized for two interconnected purposes. 
First, it allows for the training of an acoustic model that 
converts audio data into corresponding transcriptions. This 
process involves converting the audio into a sequence of 
letter probabilities, which are then used to generate word 
sequences [19]. Additionally, CoquiSTT can be used to 
create a language model (LM) using a tool called KenLM 
[20]. In CoquiSTT the language model is the so-called 
scorer. The scorer model predicts the likelihood of a word 
based on the preceding words in a sequence, which helps 
improve the accuracy of transcription, especially when 
dealing with noisy audio or unclear pronunciation. The 
scorer model adjusts the probabilities of subsequent words 
to better match the context, thereby enhancing the 
recognition of domain-specific language data [21]. 

The CoquiSTT toolkit also includes an API that allows the 
trained acoustic model and, optionally, the language model 
to be used for transcribing audio files in various 
applications. 

3.2. Data Sets 

To train an acoustic model with CoquiSTT, specific datasets 
are required. Each dataset typically includes the path to an 
audio file, the file's size in bytes, and a transcription of its 
content. During training, the path allows the audio file to be 
accessed, while the transcription provides the correct text. 
The file size is used to optimize training, especially when 
processing batches of audio files. The datasets are divided 
into three categories: training data, validation data, and test 
data. Training data is used solely to teach the model, while 
validation data is used to assess the model's performance 
after each training epoch, ensuring that the model is 
improving. Test data is used at the end of the training 
process to evaluate the model's final accuracy, typically 
measured by the Word Error Rate (WER) and Character 
Error Rate (CER). It's crucial that these datasets do not 
overlap to maintain the integrity of the training, validation, 
and testing processes. Preparing the datasets involves 
combining the appropriate file size and transcription with 
the corresponding audio file path, ensuring that the model 
is trained, validated, and tested with accurate and well-
organized data. 

The following TAB 1 shows the used data sets. We have 12 
different data sets. Blue rows show recordings directly from 
the operational environment. Seven data sets result from 
the approach traffic, which covers from flight level 150 down 
to 2000 feet. The apron area covers all apron commands 
like push back and taxi clearances, but excludes all runway 
related tower commands. Enroute traffic considers the 
flights above flight level 300 including some approach traffic 
to local airports. Remote tower stands for multiple remote 
tower operations and includes the startup approved 
clearances, taxi clearances, but also descend and climb 
commands in the tower area. 

 

 

TAB 1. Training, Validation and Test Data sample sizes 

Data from the lab environment, but also from the 
operational environment is used. For this evaluation we 
excluded noisy pilot utterances. The approach traffic results 
from four different airports, the remote tower traffic is based 
on two different simulations and the enroute traffic is based 
on traffic from two different air navigation providers. One 
data set is only used for training (Remote Tower 1). No test 
data was defined. Approach 4 and Remote Tower 2 are the 
other way around. We did not use these data sets for 
training, but just for the validations. TAB 2 summarizes the 
different data sets of TAB 1.  

 

TAB 2. Grouped Training, Validation and Test Data 
sample sizes  

Approach 4 contains not only 2.4 hours of training as shown 
in  TAB 1, but more than 66 hours of test data. For most of 
the experiments we use only the subset of two hours, 
because the processing of the total 38,716 files consumes 
more than two days of processing time. The achieved WER 
on the smaller data set in these cases already shows that 
the WER are very bad, i.e. even with the smaller data set 
we are easily able to falsify or verify the validation 
hypotheses described in the next subsection. 

3.3. Validation Hypotheses 

The following hypotheses were tested during the final 
validation trials. The name in brackets is the short name of 
the hypothesis. 

 H1 (Basic-Coqui-OK): the basic CoquiSTT model 
trained on 47,000 hours of regular English is suitable 
for recognizing and understanding ATC 
communication of air traffic controllers. 

If we receive word error rates below 10%, we can accept 
the hypothesis, otherwise the hypothesis is considered as 
falsified.  
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 H2 (One-From-Scratch-Fits-All): Training a recognition 
model from scratch for one application area fits also for 
other airports or application areas. 

 H3 (One-Fine-Tuned-Fits-All): Fine-tuning the basic 
CoquiSTT model for one application area fits also for 
other airports or application areas. 

If the average word error rate measured on the application 
area increases by more than 5% absolute, the 
corresponding hypothesis is considered as falsified. 

 H4 (Fine-Tuning-Improves): Fine-tuning the basic 
CoquiSTT model for one application area improves the 
recognition performance for that application area. 

If the average word error measured on the test data for the 
corresponding application area decreases for the fine-
tuned model, we can accept this hypothesis. 

 H5 (General-Fine-Tuning-Improves): Fine-tuning the 
basic CoquiSTT model with training data from different 
application areas make the model more robust. 

If the average word error measured on the test data for 
different application areas decreases for the model fine-
tuned with data from different application areas we can 
accept this hypothesis. 

3.3.1. Independent Variables 

The independent variables (IV) of the final validation trials 
were as follows: 

 (IV-Scen): Selected scenarios, i.e. 30 to 120 minutes 
time slot with utterances from an ATCo either from a 
simulation run or from the operational environment. 

3.3.2. Dependent Variables 

The dependent variables of the final validation trials are  

 (DV-WER): Word error rate as defined by the 
Levenshtein distance [22]. 

 (DV-SER): Sentence error rate, i.e. number of ATCO 
transmissions with a WER greater 0% divided by the 
total number of transmissions. 

3.4. Hyperparameter Tuning 

Hyperparameters significantly influence the training 
process of neural networks. Unlike model parameters, 
which are learned from the data during training, 
hyperparameters are predefined before the training 
process begins and more or less remain constant for the 
whole process. To achieve optimal performance when 
training speech recognition models on our ATC data sets 
using the CoquiSTT toolkit, we conducted a series of 
hyperparameter tuning evaluations. We focused on 
optimizing the three key hyperparameters dropout rate, 
learning rate, and batch size. The reported WER are based 
on training the acoustic model and in a second step the 
scorer. Although training the scorer does not influence the 

results with respect to the best hyperparameter 
combination, we perform this additional training step, 
because it reduces the word error rate by a factor of two to 
three. Training the scorer just takes some minutes of 
runtime. Therefore, we always present the WER after also 
having trained the scorer. The WER are then more 
meaningful. We get a better feeling which order of 
magnitude we can expect when, using the corresponding 
combination of hyperparameters. 

Given the computational demands and time constraints of 
hyperparameter optimization, particularly for large data 
sets, we limited our hyperparameter tuning evaluation to the 
data set Appron-5 which, with 22.3 hours of training data, is 
the largest individual data set available for our analysis (see 
TAB 1 for a detailed description of used data). Therefore, 
we assumed that the results would be representative 
across the other data sets. Furthermore, for the tuning 
process the validation portion of the data set (5.0 hours) 
was used as test set for the WER evaluation. The test 
portion of the data set (6.0 hours) was not used within the 
tuning process to not unintentionally bias the results of 
speech recognition models, which are trained after 
hyperparameter tuning. 

For the optimization, a range of values for each 
hyperparameter was selected. Each selected value or a 
combination of values was used to train a speech 
recognition model from scratch for 20 epochs with the 
Appron-5 data set. This process was repeated three times 
for each value or value combination and the WER was 
averaged to ensure robust results.  

3.4.1. Dropout Rate 

Dropout refers to the technique of randomly ignoring a 
fraction of neurons during the training process during each 
iteration. This helps to prevent overfitting by ensuring that 
the network does not become overly reliant on particular 
neurons, thereby improving the model's ability to generalize 
to new data.  

Dropout rate Word error rate 
(WER) 

Standard deviation 
of WER 

0.40 8.46 % 0.13% 
0.50 8.61 % 0.08% 
0.20 8.62 % 0.21% 
0.35 8.77 % 0.15% 
0.30 8.94 % 0.33% 
0.05 9.14 % 0.48% 
0.10 9.47 % 0.28% 

TAB 3. Results hyperparameter tuning dropout rate 
sorted by best WER first 

TAB 3 shows the evaluated dropout rates and the results 
with respect to the WER. These are the averaged results 
achieved after training three models for 20 epochs with the 
same hyperparameters. We repeat the training runs with 
the same dropout rate value three times to compensate for 
random effects because the ignored neuros are randomly 
chosen. All hyperparameters beside the dropout rate 
remained constant for the training runs and used the 
CoquiSTT toolkit default values. Overall the best output was 
achieved with a dropout rate of 0.40, which resulted in a 
WER of 8.46%. The standard deviations in the last column 
shows that the randomization has an effect, but not a big 
effect. Therefore, all further model training after the 
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hyperparameter tuning are executed with a dropout rate of 
0.40. 

3.4.2. Batch Size and Learning Rate 

Batch size and learning rate both significantly influence the 
model's convergence, stability, and ability to generalize. 
The learning rate controls the size of the steps a model 
makes, when it updates its weights, while the batch size 
determines the number of samples processed before an 
update is made. Both hyperparameters influence each 
other. A smaller batch size introduces more noise into the 
training process, often requiring a lower learning rate for 
stability, whereas a larger batch size allows for a higher 
learning rate. Therefore, it makes sense to optimize both 
parameters together to get the best values for an improved 
model performance. 

 
Batch Size Learning rate Word error rate 

1 0.0001 8.64 % 
1 0.00005 8.65 % 
4 0.0005 8.85 % 
2 0.0001 8.91 % 
4 0.0002 8.96 % 
2 0.0005 9.02 % 
1 0.0002 9.03 % 
2 0.0002 9.03 % 
16 0.0005 9.28 %  
16 0.0002 9.48 % 
8 0.0002 9.51 % 
4 0.0001 9.51 % 
8 0.0005 9.59 % 
16 0.0001 10.16 % 
2 0.00005 10.17 % 
8 0.0001 10.44 % 
4 0.00005 10.53 % 
8 0.00005 10.73 % 
16 0.00005 11.03 % 
8 0.001 16.28 % 
1 0.0005 20.85 % 
2 0.001 81.23 % 
1 0.005 99.04 % 
1 0.001 99.64 % 
16 0.001 99.64 % 
4 0.001 99.69 % 
2 0.002 99.71 % 
16 0.005 99.71 % 
16 0.002 99.75 % 
4 0.002 99.77 % 
1 0.002 99.78 % 
8 0.002 99.78 % 
8 0.005 99.81 % 
4 0.005 99.84 % 
2 0.005 99.87 % 

TAB 4. Results hyperparameter tuning batch size and 
learning rate sorted by best WER first 

Overall, we tested the combination of 5 batch sizes with 7 
different learning rates, which results in 35 different 
combinations of these hyperparameters. The same as for 
the dropout evaluations for all 35 combinations we ran the 
training process three times with the Apron-5 data set for 
20 epochs to ensure reliable results. One training run 
needed up to four hours of runtime time.  

The results of the tuning process with respect to WER is 
shown in TAB 4. Overall the best WER of 8.64% were 
achieved with a learning rate of 0.0001 and a batch size of 
one on the test data set. Therefore, all further model 

trainings after the hyperparameter tuning are executed with 
this learning rate and batch size. The results also show that 
the batch size has a smaller effect than the learning rate. A 
learning rate of 0.001 or bigger results in useless results. 

However, the table also demonstrates that many of the 
tested combinations produced acceptable results. If large 
amounts of data are available for the training process it 
might be suitable to go for a parameter combination with a 
higher batch size like 16 for example. Even if the tuning 
process indicates on smaller data sets that a small batch 
size will lead to a better performance, this performance gap 
might diminish or even reverse with much larger data sets. 
Additionally, a larger batch size typically accelerates the 
training process, as many operations can be parallelized, 
particularly on powerful GPUs. 

4. RESULTS 

This section presents the results for the different 
hypotheses. We always have trained the acoustic model 
and in a second step the scorer of CoquiSTT. 

4.1. Hypothesis H1 Basic-Coqui-OK 

Coqui-STT includes already a model, which is trained on 
47,000 hours of normal English conversation, which 
provides already acceptable results on normal English 
conversation [23]. The results achieved on ATC 
communication, i.e. a subset of the apron data of TAB 1 of 
2.1 hours with 2015 transmissions, were, however, 
disappointing as shown in the bachelor thesis of May [24]: 
A WER of 91.0% was achieved without scorer. Adding the 
scorer of CoquiSTT very slightly improves the WER to 
90.3%. Only retraining the scorer with the training apron 
data improves the WER down to 54.8%. 

All in all, we are rejecting the hypothesis, i.e. the basic 
model of CoquiSTT is usable for ATC communication 
transcription, because the achieved WER is far beyond 
10%. We have not performed new experiments, but relied 
on the results of May [24]. 

4.2. Hypotheses H2 One-From-Scratch-Fits-All 
and H3 One-Fine-Tuned-Fits-All 

We used the 8.5 hours of training data plus 2.7 hours of 
validation data from airport 1 from the lab to train a new 
acoustic model and a new scorer from scratch. We trained 
a second independent model with 22.3 hours of training 
data from the apron data plus 5.0 hours of validation data. 
The results are shown in TAB 5. 

 

TAB 5. Results, when tuning only one airspace 

When just using all the 8.5 hours of training data from Appr-
1 and train the CoquiSTT acoustic model and the scorer 
from scratch, we get an average word error of 6.2% with a 
sigma of 1.4% considering 12 different sessions in the test 
data. For training the model for the apron environment we 
receive an average WER of 6.0%. When fine-tuning the 
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already available CoquiSTT standard model we even get a 
WER of 4.8% and 4.1%, respectively. 

The hypotheses H2 and H3 claim now that the WER of the 
other test areas are also acceptable. The results are shown 
in TAB 6. 

 

TAB 6. Results, for different test area for all trained 
models 

The light green column “App1Fine” shows the results when 
fine-tuning the CoquiSTT model with the training data of 
approach area 1. We receive an overall WER of 60.4% and 
we get a WER of 75.6% e.g. for approach area 4. Only for 
the areas for, which the models are trained on we get good 
WER. These are the red values in TAB 6, which are of 
course the same as the WER in TAB 5.  

Hypotheses H2 and H3 are falsified, because the average 
word error rates for the other application areas heavily 
increase, at least by more than 5% absolute. We did not 
calculate the rates for all combinations, because it is 
already clear that the hypotheses are falsified. 

4.3. Hypotheses H4 Fine-Tuning-Improves 

We trained a CoquiSTT model including an acoustic model 
and a scorer by training with only the training data from 
Appr-1 and we created a second model by using only the 
training data from Apron-5, i.e. we trained both models from 
scratch. Additionally, we just fine-tuned the basic model of 
CoquiSTT by just using the training data of the 
corresponding airspace. Sample sizes and results are 
already presented in TAB 1 and TAB 6, respectively. 
Nevertheless, we repeat the WER and sample sizes in TAB 
7.  

 

TAB 7. Sample sizes and WER for validating H4 

The average WER gives strong hints that the fine-tuning is 
better than training from scratch with the same amount of 
data. TAB 8 provides more metrics, i.e. also standard 
deviation, median, minimum and maximum WER. 

 

TAB 8. Average, Sigma, Median of WER for H4 

Additionally, we performed a paired t-test to falsify the null 
hypothesis that the average value of training from scratch 
is better. Due to the 59 (47+12) data samples we can 
assume a normal distribution. A p-value of 8.7 * 10-5 results 
from the performed paired t-test. Even the null hypothesis 
that the absolute WER when training from scratch is only 
1% worse than the fine-tuning is falsified with a p-value of 
3%. 

4.4. Hypotheses H5 General-Fine-Tuning-
Improves 

TAB 8 has already shown in rows “Finetune” the results we 
get, when we fine-tune the basic model just with the training 
data from the corresponding area. We now compare with 
the results we get, if we fine-tune the basic model with 
training data from different application areas, i.e. we fine-
tune with 79.2 hours of data (see TAB 1 row “Sums”). TAB 
9 shows the results. Rows “All” show the results for Apron-
5 and Approach-1, respectively, when the basic model is 
fine-tuned with the 79.2 hours of training data. 

 

TAB 9. Average, Sigma, Median of WER for H5 

Additionally, we performed a paired t-test to falsify the null 
hypothesis that the average value of fine-tuning with just 
one application area is better than fine-tuning with all 
available training data. The achieved p-value for 
considering all 59 test sessions results in a p-value of 3.3 * 
10-6. When considering only the 47 samples for Apron-5, 
we get 2.3*10-3. For the samples for approach-1, we would 
even get a p-value of 1.6*10-6, but we have only 12 
samples. Therefore, we cannot assume a normal 
distribution. We perform a Wilcoxon test, resulting in a p-
value of 0.1%. 

The hypothesis H5 that fine-tuning the basic CoquiSTT 
model with training data from different application areas 
makes the model more robust is validated with high 
statistical significance. 

4.5. Dependency on training data size 

TAB 10 summarizes again the contents of TAB 1 and TAB 
6. It shows the dependency of the training data size in hours 
versus the achieved WER of the best model, which is the 
fine-tuned base line model of CoquiSTT. Blue shaded 
columns show data from the ops room environment. The 
average WER is 7.1% (green shaded cell) for the 23.3 
hours of test data, when the basic CoquiSTT model is fine-
tuned with 79.2 hours of data from 10 different 
environments. 
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TAB 10. Training data size versus achieved WER 

We observed a correlation between training data size and 
the achieved WER. For recognition in ops room 
environment, we need more training data. A general rule of 
thumb that x hours of training data are sufficient cannot be 
derived, however. 

5. CONCLUSIONS 

This work has clearly demonstrated that training a speech 
recognition model for ATC is even possible for non-experts 
of Automatic Speech Recognition (ASR).  

We falsified the hypothesis that using the basic CoquiSTT 
model trained on 47,000 hours of regular English is suitable 
for recognizing and understanding of ATC communication 
of air traffic controllers. A fine-tuning of the basic model is 
required. A training data size of roughly four hours should, 
however be available as a minimum. 

Using a pre-trained CoquiSTT model for one airport is not 
usable for another airport. This is independent of training 
the model from scratch or fine-tuning it. Using a model fine-
tuned for just one airport gives even for that airport worse 
results than a general model trained with the data of many 
different airports. This is independent of fine-tuning the 
baseline CoquiSTT model or adapting a model from 
scratch. The best performance on all test data resulting 
from different airports is achieved when fine-tuning the 
baseline CoquiSTT model with nearly 80 hours of voice 
recordings from ten different airports and approach areas. 
Then we could achieve an average WER of 7%. 
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