
Automatic Transcription of Air Traffic Controller to Pilot Communication
Training Speech Recognition Models with the Open Source Toolkit CoquiSTT

M. May, M. Kleinert, H. Helmke

German Aerospace Center, Institute of Flight Guidance,
Lilienthalplatz 7, 38108 Braunschweig, Germany

Abstract

Despite all the advances in automation and digitalization the majority of communication between air traffic
controllers and pilots is still implemented via analogue radio voice transmissions. If support systems also want
to benefit from the verbal controller-pilot-communication, manual time-consuming inputs via mouse and
keyboard are required. Automatic speech recognition (ASR) is a solution to minimize these manual inputs.
Recently DLR, Idiap and Austro Control demonstrated that pre-filling of radar label entries supported by ASR
already reaches a technology readiness level of six. The used ASR engine is based on Kaldi, which requires
high expert knowledge of ASR for implementation and adaptation. Besides Kaldi a lot of open-source end-to-
end ASR models like Whisper or wav2vec are available and are already pre-trained on large amounts of data
of normal voice communication. These open source end-to-end models are often easier to adapt even for none
speech recognition experts.
This paper presents the results, which the DLR achieved with the open-source CoquiSTT toolkit, which
provides an already pre-trained English end-to-end model with 47,000 hours of regular English speech
achieving a word error rate of 4.5% on the LibriSpeech clean test corpus. Using the model, however, on air
traffic control voice communication results in word error rates of worse than 50%, even in lab environments.
Training new models from scratch just on 10 hours of voice recordings from the target environment already
makes word error rates below 10% possible. The best performance, however, is achieved, when the CoquiSTT
pre-trained model is fine-tuned with air traffic control data from different areas. Word error rates below 5%
were achieved, which enable, e.g., callsign recognition rates of better than 95%.

1. INTRODUCTION

Despite all the advances in automation and digitalization
the majority of communication between air traffic controllers
(ATCos) on the ground and pilots in the aircraft cockpit is
still implemented via analogue radio voice transmissions.
For this task ATCos are supported by various systems that
provide information and make suggestions to improve the
flow of air and ground traffic. These support systems often
derive their information from surveillance data and flight
plan information. The content of analogue voice
transmissions, which directly influences the air traffic
behavior is usually hidden from these systems.

In recent years research has shown that systems capable
of recognizing and understanding air traffic control (ATC)
voice transmissions provide benefits in multiple areas:
Kerosene savings of up to 60 kg per flight are possible [1],
workload of ATCo is reduced [2] or the time an ATCo just
needs for maintaining the radar label content is reduced by
a factor of 30 [3]. The core of these systems usually
consists of two central components "Speech-To-Text"
(STT) and "Text-to-Concept" (TTC). STT transforms the
analogue voice transmission into a sequence of words that
represent the spoken content of the transmission. TTC
subsequently extracts defined concepts that clearly
describe the semantics of the word sequence. Most of the
time STT and TTC are implemented independent from each
other, which allows the use of different models and
approaches for both without affecting the performance of
the other component.

The implementation of the STT component in the context of
ATC-applications is often based on expert frameworks like
Kaldi [4]. These frameworks require high expert knowledge
in the field of automatic speech recognition (ASR) for
implementation and to reach a suitable performance. In
recent years so called open source end-to-end models like
whisper [5] or wav2vec [6] gained more and more attention,
see the application of wav2vec for ATC applications [7].
These end-to-end models often come with easier
implementation and adaptation processes. This enables
also none speech recognition experts to reach suitable
performances in different target areas.

In this paper we evaluate the CoquiSTT toolkit as solution
for the STT component in an automatic speech recognition
and understanding system for ATC applications. For this
purpose, we use the toolkit to train different speech
recognition models on ATC data sets for different ATC
areas, i.e. apron control, remote tower, approach and
enroute. Training and evaluation data are used from both
laboratory as well as operational environments from a
variety of sectors and airports. Based on the available data
sets different CoquiSTT training modalities for end-to-end
speech recognition are explored and compared.

Before the training of final speech recognition models for
different target areas an optimization of the
hyperparameters learning rate, batch size and dropout rate
is executed. The goal is to find the best parameters with
respect to achieving the best word error rate. The
optimization is evaluated and the resulting
hyperparameters are afterwards used for training models

Deutscher Luft- und Raumfahrtkongress 2024

1

DocumentID: 630171

doi: 10.25967/630171©2024

https://doi.org/10.25967/630171

with the full data sets. One of the tested approaches is to
train an end-to-end speech recognition model from scratch
with ATC data only specifically for a certain target area,
e.g., a specific apron or approach area.

In comparison to the ATC model from scratch another
approach utilizes the provided pre-trained CoquiSTT
model, which is already based on 47,000 hours of regular
English speech. This model is fine-tuned with different ATC
data sets to determine, whether a pre-trained regular
English model provides also benefits for recognition of
ATCo pilot voice communication with its special challenges
of, e.g., very high word rate and special phraseology.

The third approach aims at training a generalized end-to-
end model for the ATC domain. This model is trained from
scratch with data from multiple sectors and airports with the
goal of measuring, whether a generalized ATC model can
reach sufficient performance in case where not enough
data from a specific area is available. To further improve the
performance the CoquiSTT toolkit enables the integration
of KenLM language models to be combined with the already
trained end-to-end models. Therefore, for all tested
approaches different n-gram language models are created
and evaluated as well.

Section 2 gives an overview of related work with respect to
the usage of ASR in ATC. Section 3 describes the
conducted validations including a brief description of the
CoquiSTT toolkit, the used data sets, the validation
hypotheses and the conducted hyperparameter
optimization. Section 4 describes the achieved results with
respect to the defined hypotheses. Section 5 concludes the
work.

2. STATE OF THE ART

ATC refers to the personnel and technology responsible for
ensuring the safe flow and monitoring of both air and
ground traffic. As the number of flights increases annually
worldwide, the importance and complexity of air traffic
control grow, necessitating continuous improvements in the
methods and tools used by controllers. ASR presents
numerous opportunities to reduce controllers' workload [2]
and enhance air traffic safety [8].

One potential application of ASR systems in ATC is
replacing pseudo-pilots in simulations and controller
training. Automated pilots using speech recognition and
additional software could respond to controllers and carry
out their commands during simulations, eliminating the
need for pseudo-pilots and significantly reducing costs
during training [9]. Early applications of replacing pseudo-
pilots by ASR are from e.g., FAA [10] , DLR [11], MITRE
[12], DFS [13].

Measuring ATCo workload is challenging due to the many
factors involved. However, with an ASR system, radio
communications between ATCos and pilots can be
monitored and analyzed more accurately, allowing for
better workload assessment and more informed decisions
[2].

ASR systems can also simplify and enhance daily
operations for controllers. Currently, controllers must
manually input each command into flight strip systems

using a mouse, keyboard, or touch devices to ensure
accurate monitoring. ASR could automate this process,
transcribing spoken commands directly into the system [7].
Moreover, ASR could integrate with other controller
assistance systems, providing valuable information on
traffic conditions, specific flights, or potential conflicts
between aircraft.

However, implementing ASR in ATC comes with
challenges. Audio from communications between
controllers and pilots is often noisy, making it difficult to
accurately recognize commands. Additionally, pilots and
controllers do not always adhere to standardized
phraseology. They may use native language words or non-
standard abbreviations, requiring ASR systems to
recognize terms they aren't designed for. The international
nature of air traffic control further complicates recognition
due to differences in dialects, accents, and native
languages, which can affect the system's performance[14].

Previous research has explored training speech recognition
systems in the ATC communication domain using a deep
learning toolkit. This earlier work used the Mozilla Deep
Speech toolkit, the predecessor to the CoquiSTT toolkit,
and some of the same data was utilized. The previous study
achieved a word error rate of 6.0% using these datasets
and the Deep Speech toolkit [15]. A different research
approach was taken when a large-scale, weakly supervised
ASR model named Whisper was applied on ATC
communication data [16]. Whisper is a model developed by
OpenAI with 680,000 hours of training data. The method of
fine-tuning was also tested in this approach. On real world
ATC data, a WER of 13.5% could be achieved. On
simulated ATC traffic voice data, the achieved WER was
1.17%. Overall, this research approach showed that fine-
tuning led to a performance improvement by 60%. While
Whisper does not yet match human level performance, it
shows promise in reducing workload and supporting
incident analysis in ATC settings [16].

In another research approach, the performance of pre-
trained end-to-end ASR models like Wav2Vec 2.0 and XLS-
R within the domain of ATC communication was
investigated. The objective was to examine the robustness
of pre-trained ASR models in domain shifts, specifically in
ATC communication. The researchers analyzed the
models' performance in different scenarios using datasets
that include significant background noise. The pre-trained
models demonstrate strong performance even in
challenging ATC datasets, with a reduction in WER by 20-
40% compared to hybrid models. The study provided
valuable insights into the performance of ASR models in
specific domain-focused scenarios such as ATC [7].

3. VALIDATION

This section describes the validation trials. We start with the
descriptions of the CoquiSTT tool kit, followed by the used
data sets and the validation hypotheses.

3.1. CoquiSTT Toolkit

CoquiSTT is an open-source toolkit developed by the
company Coqui for speech-to-text applications. It enables
the training and deployment of deep learning models
designed to transcribe audio files into text. CoquiSTT was

Deutscher Luft- und Raumfahrtkongress 2024

2©2024

established in 2016 by a group of former Mozilla employees
who had previously worked on Mozilla's DeepSpeech
project [17]. After leaving Mozilla, they began developing
CoquiSTT based on Baidu's DeepSpeech algorithm [18].

CoquiSTT can be utilized for two interconnected purposes.
First, it allows for the training of an acoustic model that
converts audio data into corresponding transcriptions. This
process involves converting the audio into a sequence of
letter probabilities, which are then used to generate word
sequences [19]. Additionally, CoquiSTT can be used to
create a language model (LM) using a tool called KenLM
[20]. In CoquiSTT the language model is the so-called
scorer. The scorer model predicts the likelihood of a word
based on the preceding words in a sequence, which helps
improve the accuracy of transcription, especially when
dealing with noisy audio or unclear pronunciation. The
scorer model adjusts the probabilities of subsequent words
to better match the context, thereby enhancing the
recognition of domain-specific language data [21].

The CoquiSTT toolkit also includes an API that allows the
trained acoustic model and, optionally, the language model
to be used for transcribing audio files in various
applications.

3.2. Data Sets

To train an acoustic model with CoquiSTT, specific datasets
are required. Each dataset typically includes the path to an
audio file, the file's size in bytes, and a transcription of its
content. During training, the path allows the audio file to be
accessed, while the transcription provides the correct text.
The file size is used to optimize training, especially when
processing batches of audio files. The datasets are divided
into three categories: training data, validation data, and test
data. Training data is used solely to teach the model, while
validation data is used to assess the model's performance
after each training epoch, ensuring that the model is
improving. Test data is used at the end of the training
process to evaluate the model's final accuracy, typically
measured by the Word Error Rate (WER) and Character
Error Rate (CER). It's crucial that these datasets do not
overlap to maintain the integrity of the training, validation,
and testing processes. Preparing the datasets involves
combining the appropriate file size and transcription with
the corresponding audio file path, ensuring that the model
is trained, validated, and tested with accurate and well-
organized data.

The following TAB 1 shows the used data sets. We have 12
different data sets. Blue rows show recordings directly from
the operational environment. Seven data sets result from
the approach traffic, which covers from flight level 150 down
to 2000 feet. The apron area covers all apron commands
like push back and taxi clearances, but excludes all runway
related tower commands. Enroute traffic considers the
flights above flight level 300 including some approach traffic
to local airports. Remote tower stands for multiple remote
tower operations and includes the startup approved
clearances, taxi clearances, but also descend and climb
commands in the tower area.

TAB 1. Training, Validation and Test Data sample sizes

Data from the lab environment, but also from the
operational environment is used. For this evaluation we
excluded noisy pilot utterances. The approach traffic results
from four different airports, the remote tower traffic is based
on two different simulations and the enroute traffic is based
on traffic from two different air navigation providers. One
data set is only used for training (Remote Tower 1). No test
data was defined. Approach 4 and Remote Tower 2 are the
other way around. We did not use these data sets for
training, but just for the validations. TAB 2 summarizes the
different data sets of TAB 1.

TAB 2. Grouped Training, Validation and Test Data
sample sizes

Approach 4 contains not only 2.4 hours of training as shown
in TAB 1, but more than 66 hours of test data. For most of
the experiments we use only the subset of two hours,
because the processing of the total 38,716 files consumes
more than two days of processing time. The achieved WER
on the smaller data set in these cases already shows that
the WER are very bad, i.e. even with the smaller data set
we are easily able to falsify or verify the validation
hypotheses described in the next subsection.

3.3. Validation Hypotheses

The following hypotheses were tested during the final
validation trials. The name in brackets is the short name of
the hypothesis.

 H1 (Basic-Coqui-OK): the basic CoquiSTT model
trained on 47,000 hours of regular English is suitable
for recognizing and understanding ATC
communication of air traffic controllers.

If we receive word error rates below 10%, we can accept
the hypothesis, otherwise the hypothesis is considered as
falsified.

Deutscher Luft- und Raumfahrtkongress 2024

3©2024

 H2 (One-From-Scratch-Fits-All): Training a recognition
model from scratch for one application area fits also for
other airports or application areas.

 H3 (One-Fine-Tuned-Fits-All): Fine-tuning the basic
CoquiSTT model for one application area fits also for
other airports or application areas.

If the average word error rate measured on the application
area increases by more than 5% absolute, the
corresponding hypothesis is considered as falsified.

 H4 (Fine-Tuning-Improves): Fine-tuning the basic
CoquiSTT model for one application area improves the
recognition performance for that application area.

If the average word error measured on the test data for the
corresponding application area decreases for the fine-
tuned model, we can accept this hypothesis.

 H5 (General-Fine-Tuning-Improves): Fine-tuning the
basic CoquiSTT model with training data from different
application areas make the model more robust.

If the average word error measured on the test data for
different application areas decreases for the model fine-
tuned with data from different application areas we can
accept this hypothesis.

3.3.1. Independent Variables

The independent variables (IV) of the final validation trials
were as follows:

 (IV-Scen): Selected scenarios, i.e. 30 to 120 minutes
time slot with utterances from an ATCo either from a
simulation run or from the operational environment.

3.3.2. Dependent Variables

The dependent variables of the final validation trials are

 (DV-WER): Word error rate as defined by the
Levenshtein distance [22].

 (DV-SER): Sentence error rate, i.e. number of ATCO
transmissions with a WER greater 0% divided by the
total number of transmissions.

3.4. Hyperparameter Tuning

Hyperparameters significantly influence the training
process of neural networks. Unlike model parameters,
which are learned from the data during training,
hyperparameters are predefined before the training
process begins and more or less remain constant for the
whole process. To achieve optimal performance when
training speech recognition models on our ATC data sets
using the CoquiSTT toolkit, we conducted a series of
hyperparameter tuning evaluations. We focused on
optimizing the three key hyperparameters dropout rate,
learning rate, and batch size. The reported WER are based
on training the acoustic model and in a second step the
scorer. Although training the scorer does not influence the

results with respect to the best hyperparameter
combination, we perform this additional training step,
because it reduces the word error rate by a factor of two to
three. Training the scorer just takes some minutes of
runtime. Therefore, we always present the WER after also
having trained the scorer. The WER are then more
meaningful. We get a better feeling which order of
magnitude we can expect when, using the corresponding
combination of hyperparameters.

Given the computational demands and time constraints of
hyperparameter optimization, particularly for large data
sets, we limited our hyperparameter tuning evaluation to the
data set Appron-5 which, with 22.3 hours of training data, is
the largest individual data set available for our analysis (see
TAB 1 for a detailed description of used data). Therefore,
we assumed that the results would be representative
across the other data sets. Furthermore, for the tuning
process the validation portion of the data set (5.0 hours)
was used as test set for the WER evaluation. The test
portion of the data set (6.0 hours) was not used within the
tuning process to not unintentionally bias the results of
speech recognition models, which are trained after
hyperparameter tuning.

For the optimization, a range of values for each
hyperparameter was selected. Each selected value or a
combination of values was used to train a speech
recognition model from scratch for 20 epochs with the
Appron-5 data set. This process was repeated three times
for each value or value combination and the WER was
averaged to ensure robust results.

3.4.1. Dropout Rate

Dropout refers to the technique of randomly ignoring a
fraction of neurons during the training process during each
iteration. This helps to prevent overfitting by ensuring that
the network does not become overly reliant on particular
neurons, thereby improving the model's ability to generalize
to new data.

Dropout rate Word error rate
(WER)

Standard deviation
of WER

0.40 8.46 % 0.13%
0.50 8.61 % 0.08%
0.20 8.62 % 0.21%
0.35 8.77 % 0.15%
0.30 8.94 % 0.33%
0.05 9.14 % 0.48%
0.10 9.47 % 0.28%

TAB 3. Results hyperparameter tuning dropout rate
sorted by best WER first

TAB 3 shows the evaluated dropout rates and the results
with respect to the WER. These are the averaged results
achieved after training three models for 20 epochs with the
same hyperparameters. We repeat the training runs with
the same dropout rate value three times to compensate for
random effects because the ignored neuros are randomly
chosen. All hyperparameters beside the dropout rate
remained constant for the training runs and used the
CoquiSTT toolkit default values. Overall the best output was
achieved with a dropout rate of 0.40, which resulted in a
WER of 8.46%. The standard deviations in the last column
shows that the randomization has an effect, but not a big
effect. Therefore, all further model training after the

Deutscher Luft- und Raumfahrtkongress 2024

4©2024

hyperparameter tuning are executed with a dropout rate of
0.40.

3.4.2. Batch Size and Learning Rate

Batch size and learning rate both significantly influence the
model's convergence, stability, and ability to generalize.
The learning rate controls the size of the steps a model
makes, when it updates its weights, while the batch size
determines the number of samples processed before an
update is made. Both hyperparameters influence each
other. A smaller batch size introduces more noise into the
training process, often requiring a lower learning rate for
stability, whereas a larger batch size allows for a higher
learning rate. Therefore, it makes sense to optimize both
parameters together to get the best values for an improved
model performance.

Batch Size Learning rate Word error rate

1 0.0001 8.64 %
1 0.00005 8.65 %
4 0.0005 8.85 %
2 0.0001 8.91 %
4 0.0002 8.96 %
2 0.0005 9.02 %
1 0.0002 9.03 %
2 0.0002 9.03 %
16 0.0005 9.28 %
16 0.0002 9.48 %
8 0.0002 9.51 %
4 0.0001 9.51 %
8 0.0005 9.59 %
16 0.0001 10.16 %
2 0.00005 10.17 %
8 0.0001 10.44 %
4 0.00005 10.53 %
8 0.00005 10.73 %
16 0.00005 11.03 %
8 0.001 16.28 %
1 0.0005 20.85 %
2 0.001 81.23 %
1 0.005 99.04 %
1 0.001 99.64 %
16 0.001 99.64 %
4 0.001 99.69 %
2 0.002 99.71 %
16 0.005 99.71 %
16 0.002 99.75 %
4 0.002 99.77 %
1 0.002 99.78 %
8 0.002 99.78 %
8 0.005 99.81 %
4 0.005 99.84 %
2 0.005 99.87 %

TAB 4. Results hyperparameter tuning batch size and
learning rate sorted by best WER first

Overall, we tested the combination of 5 batch sizes with 7
different learning rates, which results in 35 different
combinations of these hyperparameters. The same as for
the dropout evaluations for all 35 combinations we ran the
training process three times with the Apron-5 data set for
20 epochs to ensure reliable results. One training run
needed up to four hours of runtime time.

The results of the tuning process with respect to WER is
shown in TAB 4. Overall the best WER of 8.64% were
achieved with a learning rate of 0.0001 and a batch size of
one on the test data set. Therefore, all further model

trainings after the hyperparameter tuning are executed with
this learning rate and batch size. The results also show that
the batch size has a smaller effect than the learning rate. A
learning rate of 0.001 or bigger results in useless results.

However, the table also demonstrates that many of the
tested combinations produced acceptable results. If large
amounts of data are available for the training process it
might be suitable to go for a parameter combination with a
higher batch size like 16 for example. Even if the tuning
process indicates on smaller data sets that a small batch
size will lead to a better performance, this performance gap
might diminish or even reverse with much larger data sets.
Additionally, a larger batch size typically accelerates the
training process, as many operations can be parallelized,
particularly on powerful GPUs.

4. RESULTS

This section presents the results for the different
hypotheses. We always have trained the acoustic model
and in a second step the scorer of CoquiSTT.

4.1. Hypothesis H1 Basic-Coqui-OK

Coqui-STT includes already a model, which is trained on
47,000 hours of normal English conversation, which
provides already acceptable results on normal English
conversation [23]. The results achieved on ATC
communication, i.e. a subset of the apron data of TAB 1 of
2.1 hours with 2015 transmissions, were, however,
disappointing as shown in the bachelor thesis of May [24]:
A WER of 91.0% was achieved without scorer. Adding the
scorer of CoquiSTT very slightly improves the WER to
90.3%. Only retraining the scorer with the training apron
data improves the WER down to 54.8%.

All in all, we are rejecting the hypothesis, i.e. the basic
model of CoquiSTT is usable for ATC communication
transcription, because the achieved WER is far beyond
10%. We have not performed new experiments, but relied
on the results of May [24].

4.2. Hypotheses H2 One-From-Scratch-Fits-All
and H3 One-Fine-Tuned-Fits-All

We used the 8.5 hours of training data plus 2.7 hours of
validation data from airport 1 from the lab to train a new
acoustic model and a new scorer from scratch. We trained
a second independent model with 22.3 hours of training
data from the apron data plus 5.0 hours of validation data.
The results are shown in TAB 5.

TAB 5. Results, when tuning only one airspace

When just using all the 8.5 hours of training data from Appr-
1 and train the CoquiSTT acoustic model and the scorer
from scratch, we get an average word error of 6.2% with a
sigma of 1.4% considering 12 different sessions in the test
data. For training the model for the apron environment we
receive an average WER of 6.0%. When fine-tuning the

Deutscher Luft- und Raumfahrtkongress 2024

5©2024

already available CoquiSTT standard model we even get a
WER of 4.8% and 4.1%, respectively.

The hypotheses H2 and H3 claim now that the WER of the
other test areas are also acceptable. The results are shown
in TAB 6.

TAB 6. Results, for different test area for all trained
models

The light green column “App1Fine” shows the results when
fine-tuning the CoquiSTT model with the training data of
approach area 1. We receive an overall WER of 60.4% and
we get a WER of 75.6% e.g. for approach area 4. Only for
the areas for, which the models are trained on we get good
WER. These are the red values in TAB 6, which are of
course the same as the WER in TAB 5.

Hypotheses H2 and H3 are falsified, because the average
word error rates for the other application areas heavily
increase, at least by more than 5% absolute. We did not
calculate the rates for all combinations, because it is
already clear that the hypotheses are falsified.

4.3. Hypotheses H4 Fine-Tuning-Improves

We trained a CoquiSTT model including an acoustic model
and a scorer by training with only the training data from
Appr-1 and we created a second model by using only the
training data from Apron-5, i.e. we trained both models from
scratch. Additionally, we just fine-tuned the basic model of
CoquiSTT by just using the training data of the
corresponding airspace. Sample sizes and results are
already presented in TAB 1 and TAB 6, respectively.
Nevertheless, we repeat the WER and sample sizes in TAB
7.

TAB 7. Sample sizes and WER for validating H4

The average WER gives strong hints that the fine-tuning is
better than training from scratch with the same amount of
data. TAB 8 provides more metrics, i.e. also standard
deviation, median, minimum and maximum WER.

TAB 8. Average, Sigma, Median of WER for H4

Additionally, we performed a paired t-test to falsify the null
hypothesis that the average value of training from scratch
is better. Due to the 59 (47+12) data samples we can
assume a normal distribution. A p-value of 8.7 * 10-5 results
from the performed paired t-test. Even the null hypothesis
that the absolute WER when training from scratch is only
1% worse than the fine-tuning is falsified with a p-value of
3%.

4.4. Hypotheses H5 General-Fine-Tuning-
Improves

TAB 8 has already shown in rows “Finetune” the results we
get, when we fine-tune the basic model just with the training
data from the corresponding area. We now compare with
the results we get, if we fine-tune the basic model with
training data from different application areas, i.e. we fine-
tune with 79.2 hours of data (see TAB 1 row “Sums”). TAB
9 shows the results. Rows “All” show the results for Apron-
5 and Approach-1, respectively, when the basic model is
fine-tuned with the 79.2 hours of training data.

TAB 9. Average, Sigma, Median of WER for H5

Additionally, we performed a paired t-test to falsify the null
hypothesis that the average value of fine-tuning with just
one application area is better than fine-tuning with all
available training data. The achieved p-value for
considering all 59 test sessions results in a p-value of 3.3 *
10-6. When considering only the 47 samples for Apron-5,
we get 2.3*10-3. For the samples for approach-1, we would
even get a p-value of 1.6*10-6, but we have only 12
samples. Therefore, we cannot assume a normal
distribution. We perform a Wilcoxon test, resulting in a p-
value of 0.1%.

The hypothesis H5 that fine-tuning the basic CoquiSTT
model with training data from different application areas
makes the model more robust is validated with high
statistical significance.

4.5. Dependency on training data size

TAB 10 summarizes again the contents of TAB 1 and TAB
6. It shows the dependency of the training data size in hours
versus the achieved WER of the best model, which is the
fine-tuned base line model of CoquiSTT. Blue shaded
columns show data from the ops room environment. The
average WER is 7.1% (green shaded cell) for the 23.3
hours of test data, when the basic CoquiSTT model is fine-
tuned with 79.2 hours of data from 10 different
environments.

Deutscher Luft- und Raumfahrtkongress 2024

6©2024

TAB 10. Training data size versus achieved WER

We observed a correlation between training data size and
the achieved WER. For recognition in ops room
environment, we need more training data. A general rule of
thumb that x hours of training data are sufficient cannot be
derived, however.

5. CONCLUSIONS

This work has clearly demonstrated that training a speech
recognition model for ATC is even possible for non-experts
of Automatic Speech Recognition (ASR).

We falsified the hypothesis that using the basic CoquiSTT
model trained on 47,000 hours of regular English is suitable
for recognizing and understanding of ATC communication
of air traffic controllers. A fine-tuning of the basic model is
required. A training data size of roughly four hours should,
however be available as a minimum.

Using a pre-trained CoquiSTT model for one airport is not
usable for another airport. This is independent of training
the model from scratch or fine-tuning it. Using a model fine-
tuned for just one airport gives even for that airport worse
results than a general model trained with the data of many
different airports. This is independent of fine-tuning the
baseline CoquiSTT model or adapting a model from
scratch. The best performance on all test data resulting
from different airports is achieved when fine-tuning the
baseline CoquiSTT model with nearly 80 hours of voice
recordings from ten different airports and approach areas.
Then we could achieve an average WER of 7%.

REFERENCES

[1] H. Helmke; O. Ohneiser; J. Buxbaum; C. Kern (2017):
Increasing ATM efficiency with assistant-based speech
recognition. 12th USA/Europe Air Traffic Management
Research and Development Seminar (ATM2017),
Seattle, WA, USA.

[2] H. Helmke; O. Ohneiser; T. Mühlhausen; M. Wies
(2016): Reducing Controller Workload with Automatic
Speech Recognition. in IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), Sacramento,
CA, USA.

[3] N. Ahrenhold; H. Helmke, T. Mühlhausen, O. Ohneiser;
M. Kleinert; H. Ehr; L. Klamert; J. Zuluaga-Gómez

(2023): Validating Automatic Speech Recognition and
Understanding for Pre-Filling Radar Labels—
Increasing Safety While Reducing Air Traffic
Controllers’ Workload. Aerospace 2023, 10, 538.

[4] D. Povey; A. Ghoshal; G. Boulianne; L. Burget; O.
Glembek; N. Goel; M. Hannemann; P. Motlicek; Y.
Qian; P. Schwarz; et al: The Kaldi speech recognition
toolkit. In Proceedings of the IEEE Workshop on
Automatic Speech Recognition and Understanding
IEEE Signal Processing Society, Waikoloa, HI, USA,
11–15 December 2011.

[5] A. Radford; J. W. Kim; T. Xu; G. Brockman; C.
McLeavey; I. Sutskever (2022): Robust Speech
Recognition via Large-Scale Weak Supervision. Online
available via http://arxiv.org/pdf/2212.04356v1.

[6] A. Baevski; S. Schneider; M. Auli.: vq-wav2vec: Self-
Supervised Learning of Discrete Speech
Representations. In Proceedings of the 8th
International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
26–30 April 2020.

[7] J. Zuluaga-Gomez; A. Prasad; I. Nigmatulina; S.
Sarfjoo; P. Motlicek; M. Kleinert; H. Helmke; O.
Ohneiser; Q. Zhan: How Does Pre-trained
Wav2Vec2.0 Perform on Domain Shifted ASR? An
Extensive Benchmark on Air Traffic Control
Communications. In Proceedings of the IEEE Spoken
Language Technology Workshop (SLT), Doha, Qatar,
9–12 January 2023.

[8] H. Helmke; M. Kleinert; N. Ahrenhold; H. Ehr; T.
Mühlhausen; O. Ohneiser; L. Klamert; P. Motlicek; A.
Prasad; J. Zuluaga-Gomez; J. Dokic; E. Pinska
Chauvin (2023): Automatic Speech Recognition and
Understanding for Radar Label Maintenance Support
Increases Safety and Reduces Air Traffic Controllers’
Workload, 15th USA/Europe Air Traffic Management
Research and Development Seminar (ATM2023),
Savannah Georgia.

[9] J. Zuluaga-Gomez; A. Prasad; I. Nigmatulina; P.
Motlicek; M. Kleinert: A Virtual SimulationPilot Agent
for Training of Air Traffic Controllers. Aerospace 2023,
10, 490. https://doi.org/10.3390/ aerospace10050490.

[10] FAA (2012): 2012 National Aviation Research Plan
(NARP:) March 2012.

[11] D. Schäfer (2001): Context-sensitive speech
recognition in the air traffic control simulation.
Eurocontrol EEC Note No. 02/2001 and PhD Thesis of
the University of Armed Forces, Munich, 2001.

[12] R. Tarakan, K. Baldwin, and R. Rozen (2008): An
automated simulation pilot capability to support
advanced air traffic controller training. in 26th Congress
of the International Council of the Aeronautical
Sciences, Anchorage, AK.

[13] S. Ciupka (2012): Siris big sister captures DFS, original
German title: “Siris große Schwester erobert die DFS,”
transmission, Vol. 1.

[14] V. N. Nguyen; H. Holone (2015): Possibilities,
Challenges And The State Of The Art Of Automatic
Speech Recognition In Air Traffic Control. In:
International Journal of Computer and Information
Engineering 9 (8), 1933--1942. DOI:
10.5281/zenodo.1108428.

[15] M. Kleinert; N. Venkatarathinam; H. Helmke; O.
Ohneiser; M. Strake, T. Fingerscheidt (2021): Easy
Adaptation of Speech Recognition to Different Air
Traffic Control Environments using the DeepSpeech
Engine. In: 11th SESAR Innovation Days.

Deutscher Luft- und Raumfahrtkongress 2024

7©2024

[16] J. L. P. M. van Doorn (2023): Applying Large-Scale
Weakly Supervised Automatic Speech Recognition to
Air Traffic Control. Master Thesis, TU Delft, Faculty
Aerospace Engineering, Aerospace Engineering,
2023.

[17] Mozilla: Project DeepSpeech. Online available via
https://github.com/mozilla/DeepSpeech, last access
20.09.2024.

[18] A. Hannun; C. Case; J. Casper, B. Catanzaro; G.
Diamos; E. Elsen et al. (2014): Deep Speech: Scaling
up end-to-end speech recognition. In: arXiv preprint
arXiv:1412.5567, 2014.

[19] Coqui GmbH (2021): Coqui STT. Documentation. Eds.
v. Coqui GmbH. online available at https://stt.
readthedocs.io/en/latest/, last access 17.09.2024.

[20] K. Heafield: KenLM Language Model Toolkit. Online
available via. https://kheafield.com/code/kenlm/, last
access 20.09.2024.

[21] D. Jurafsky, J. H. Martin. (2009): Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and
Speech Recognition, :2nd Edition. Upper Saddle River,
NJ, USA: Prentice Hall, Inc.

[22] V.I: Levenshtein (1965): “Binary codes capable of
correcting deletions, insertions, and reversals. In
Soviet Physics—Doklady; American Institute of
Physics: College Park, ML, USA; Volume 10, pp. 707–
710.

[23] Coqui GmbH (2024): Persian STT v0.1.0:
https://github.com/coqui-ai/STT-models/releases,
English STT 1.0.0-huge-vocab, last access
17.09.2024.

[24] M. May (2024): Speech recognition for air traffic voice
communication with the deep-learning toolkit
CoquiSTT, German title „Spracherkennung für
Flugführungssprechfunk mit dem Deep-Learning-
Toolkit CoquiSTT“; Bachelor thesis, Ostfalia University
of Applied Science.

Deutscher Luft- und Raumfahrtkongress 2024

8©2024

