
Università degli Studi di Napoli “Federico II” 

 
 

 

 
 

 

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE 

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE 

 
 

TESI DI LAUREA IN INGEGNERIA AEROSPAZIALE 

 

CLASSE DELLE LAUREE MAGISTRALI IN INGEGNERIA 

AEROSPAZIALE E ASTRONAUTICA 

(LM 20) 

 

LiDAR-based Global Registration Algorithms for 

Pose Acquisition of Non-cooperative Spacecraft 

 

 

 

 

 
Relatori: 
Prof. Michele Grassi 
Prof. Roberto Opromolla 

 
Correlatori: 

Dr. Alessia Nocerino 

Dr. Margherita Piccinin 

Dr. Ulrich Hillenbrand 

Candidato: 
Clemente Tecchia 

Matr. M53001593 

 

 

 

ANNO ACCADEMICO 2023 – 2024 



 

 

2 

 

 

  



 

 

3 

 

 

Table of Contents 

Table of Contents ...................................................................................................................... 3 

Abstract ..................................................................................................................................... 6 

List of Figures ........................................................................................................................... 7 

List of Tables ........................................................................................................................... 10 

Acronyms ................................................................................................................................. 11 

1. Introduction ........................................................................................................................ 13 

1.1. The Pose Estimation Problem ........................................................................................ 16 

1.2. LiDAR Sensors .............................................................................................................. 17 

1.2.1. Scanning LiDARs ................................................................................................... 19 

1.2.2. Detector Array LiDARs .......................................................................................... 20 

1.2.3. Spatial Light Modulators ......................................................................................... 21 

2. State of the Art .................................................................................................................... 22 

2.1. Feature-Based Methods ................................................................................................. 24 

2.1.1. Local-Feature-Based Methods ................................................................................ 25 

2.1.1.1. Local Feature Extraction/Description ............................................................... 25 

2.1.1.2. Point Cloud Alignment ..................................................................................... 32 

2.1.2. Global-Feature-Based Methods............................................................................... 37 

2.1.2.1. Global Feature Extraction/Description ............................................................. 38 

2.1.2.2. Recognition ....................................................................................................... 47 

2.1.3. Literature Analysis Conclusion ............................................................................... 52 

3. Methodologies ..................................................................................................................... 56 

3.1. Reference Geometry ...................................................................................................... 57 

3.2. Feature Extraction Analysis ........................................................................................... 58 

3.2.1. Normal Estimation Analysis ................................................................................... 58 



 

 

4 

 

 

3.2.2. FPFH Analysis ........................................................................................................ 63 

3.2.2.1. FPFH Distance Histogram ................................................................................ 63 

3.2.2.2. Persistence Analysis ......................................................................................... 65 

3.2.2.3. Geometric Primitives Recognition ................................................................... 67 

3.3. Hash Tables .................................................................................................................... 75 

3.3.1. Training Hash Tables .............................................................................................. 77 

3.3.1.1. Point Cloud Classifier ....................................................................................... 77 

3.3.1.2. Hash Table Construction for CS Scans in Label-Based RANSAC .................. 79 

3.3.1.3. Hash Table Construction for CS Scans in PA-Based RANSAC ...................... 81 

3.3.1.4. Hash Table Construction for CS Scans in PPF-Based RANSAC .................... 81 

3.3.1.5. Hash Table Construction for FS Scans ............................................................. 84 

3.3.2. Model Hash Tables.................................................................................................. 84 

3.4. Overview of the Offline Phase of the Algorithms ......................................................... 85 

3.4.1. Label-Based RANSAC ........................................................................................... 85 

3.4.2. PA-Based RANSAC ............................................................................................... 86 

3.4.3. PPF-Based RANSAC .............................................................................................. 87 

3.5. Initial Pose Determination ............................................................................................. 87 

3.5.1. Label-Based RANSAC ........................................................................................... 87 

3.5.2. PA-Based RANSAC ............................................................................................... 88 

3.5.3. PPF-Based RANSAC .............................................................................................. 89 

3.5.4. Hash Table Lookup ................................................................................................. 90 

3.5.4.1. Alignment Algorithms ...................................................................................... 91 

3.5.4.2. Alignment Evaluation ....................................................................................... 94 

3.6. Post-Processing .............................................................................................................. 96 

3.6.1. Iterative Closest Point ............................................................................................. 97 

3.6.2. Ambiguity Reduction Process ................................................................................. 98 



 

 

5 

 

 

4. Open3D Global Registration Algorithms ....................................................................... 102 

4.1. FPFH-Based RANSAC ................................................................................................ 102 

4.2. Fast Global Registration .............................................................................................. 104 

5. Experiments ...................................................................................................................... 105 

5.1. Evaluation Metrics ....................................................................................................... 105 

5.2. Performance Analysis .................................................................................................. 106 

5.2.1. Comparison of the Main Algorithms .................................................................... 106 

5.2.1.1. Tuning Parameters .......................................................................................... 107 

5.2.1.2. Comparison Results ........................................................................................ 110 

5.2.2. Comparison of Algorithm Variants ....................................................................... 113 

5.2.2.1. Training Hash Table vs Model Hash Table .................................................... 113 

5.2.2.2. Nearest Neighbor vs Binary Matching ........................................................... 114 

5.2.3. Performance of Open3D Algorithms without and with Downsampling ............... 116 

5.3. Autonomous Failure Detection .................................................................................... 117 

6. Conclusions and Future Works ....................................................................................... 121 

References.............................................................................................................................. 124 

Acknowledgements ............................................................................................................... 131 

Ringraziamenti ..................................................................................................................... 134 

 

  



 

 

6 

 

 

Abstract 

This thesis work, developed in collaboration with the German Aerospace Center (DLR), is 

placed in the context of spacecraft pose determination, i.e., the problem of calculating the set 

of parameters that describe the relative position and attitude of an active satellite with respect 

to another space object, which is widely encountered in space missions such as On-Orbit 

Servicing (OOS) and Active Debris Removal (ADR), where algorithmic and technological 

solutions are essential to ensure the efficient execution of autonomous maneuvers of a chaser 

in close-proximity with respect to a designated target. 

Specifically, the work carried out addresses the problem of pose acquisition of a known non-

cooperative spacecraft, based on the use of target 3D point cloud scans produced by a LiDAR 

sensor, proposing a suite of feature-based algorithmic solutions, developed in Python 

environment, that leverage point-normal structures as local features (Fast Point Feature 

Histograms, FPFH) or as non-local primitives (Point Pair Features, PPF). Additionally, they 

exploit a Random-Sample-Consensus-based (RANSAC-based) strategy to perform the initial 

pose estimation and Hash Tables (HT) for fast and efficient matching.  

The performance of the proposed architecture is tested using a dataset of synthetic point clouds 

obtained using a LiDAR data simulator developed by DLR and considering as target the Client 

Satellite of the DLR On-Orbit Servicing Simulator for Capture (OOS-SIM). The achieved 

performance is compared against standard approaches in 3D registration, namely FPFH-based 

RANSAC and Fast Global Registration (FGR), implemented in the Python Open3D Library. 

The obtained results demonstrate that these algorithms are promising alternatives to standard 

approaches, showing comparable accuracy, but with a slight disadvantage in computational 

time. 

Finally, a description of an autonomous failure detection strategy is provided, which can be 

applied to increase robustness of the proposed pose estimation architectures. 
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1. Introduction 

The rapid expansion of space activities has resulted in a significant increase in the number of 

operational and defunct satellites, as well as orbital debris, in Earth's orbit. This growing 

population of space objects presents both opportunities and challenges. On one hand, the 

increase in operational satellites supports a wide range of applications, from communication 

and navigation to Earth observation. On the other hand, the accumulation of defunct satellites 

and debris poses risks to space missions, heightening the likelihood of collisions and the 

potential for a cascade effect known as the Kessler Syndrome. Figure 1.1 illustrates the 

reconstructed growth rate of catalogued objects in Earth’s orbit [1]. 

 

Figure 1.1 - Reconstructed number of catalogued objects in Earth’s orbit [1] 

This proliferation of space objects has led to an ever-increasing interest in developing strategies 

to manage both operational and non-operational assets in orbit. These strategies encompass On-

Orbit Servicing (OOS) [2], which focuses on satellite maintenance and lifespan extension, and 

Active Debris Removal (ADR) [3], which targets the removal of defunct objects. Central to 

these scenarios is the implementation of autonomous maneuvers of an active satellite, called 

chaser, in close-proximity to a designated target. 
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Figure 1.2 shows an OOS scenario in which the chaser, equipped with a robotic arm, approaches 

the target for maintenance operations. 

 

Figure 1.2 - Close-proximity scenario example [2] 

Figure 1.3, instead, illustrates some real-world OOS mission concepts, which are briefly 

described below: (a) the Experimental Test Satellite VII (ETS-VII) of the Japan Aerospace 

Exploration Agency (JAXA), considered the first robotic OOS demonstration mission. This 

mission included robotic servicing tasks such as orbital replacement unit exchange, capture and 

berthing of a target satellite; (b) the Orbital Express mission of the Defense Advanced Research 

Projects Agency (DARPA), a demonstration mission in which autonomous rendezvous and 

docking, as well as in-orbit refueling operations, were performed. Additionally, during the 

mission, a robotic arm autonomously transferred a supplemental battery and backup computer 

to the target spacecraft; (c) the Technology Satellites for Demonstration and Verification of 

Space Systems (TECSAS) mission, developed by the German Aerospace Center (DLR), the 

Canadian Space Agency (CSA), and the Russian Space Agency (RKA). This mission included 

rendezvous, close approach, flying-around inspection, formation flight, capture and 

manipulation of the target satellite; (d) the Deutsche Orbital Servicing Mission (DEOS) of the 

DLR, which aimed to develop and evaluate procedures and techniques for rendezvous, capture, 

and deorbiting of a noncooperative spacecraft from its operational orbit. 
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Figure 1.3 - Different concepts of on-orbit servicing missions: (a) ETS-VII of JAXA, (b) 

orbital express of DARPA, (c) TECSAS of DLR/CSA/RKA and (d) DEOS of DLR [2] 

To properly perform these tasks, accurate knowledge of the relative position and attitude 

between the two space objects is essential: this problem is called spacecraft pose estimation. 

The problem of pose estimation of space targets is approached differently depending on: 

• The type of target (cooperative or uncooperative). A target is cooperative if it is 

designed to provide information that simplifies the estimation of its pose with respect 

to the chaser. Examples are targets equipped with a dedicated communication link or 

with easily recognizable markers - typical in both Formation Flying (FF) and OOS 

applications. More challenging, however, is the estimation of the pose of uncooperative 

targets, which are not able to communicate with the chaser and are not equipped with 

markers. A further distinction can be made between uncooperative targets whose 

geometry is known (case that can occur in OOS and ADR scenarios) and targets of 

partially or totally unknown shape (case of some ADR missions as well as asteroid 

exploration scenarios, for example) [4]; 
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• The type of Electro-Optical (EO) sensor mounted on the chaser. EO sensors represent 

the best option to ensure pose determination in close-proximity; many research efforts 

are currently dedicated to the design and development of vision-based pose estimation 

techniques relying on either monocular or stereo cameras [5, 6], in light of the relatively 

small size, weight, and low power consumption of passive imaging sensors. 

Nevertheless, active Light Detection and Ranging (LiDAR) systems are preferred as 

main relative navigation sensors, as demonstrated by the recent success of the Mission 

Extension Vehicle missions [7], given their advantages in terms of operative range, 

direct depth observability and robustness against unfavorable illumination conditions. 

Given the relevance of this topic, it has been and still is the object of study by various 

universities and research centers, which over the years have developed ad-hoc techniques and 

algorithms for solving this problem in the various conditions previously mentioned. 

In this context, this thesis work is placed, which focuses on the problem of LiDAR-based pose 

acquisition of non-cooperative spacecraft of known geometry. Specifically, this work presents 

novel feature-based pose estimation algorithms, whose performance is compared with well-

known strategies in 3D registration.  

In the next sections, the points briefly mentioned in this introduction are explored further, 

specifically concerning the problem of pose estimation and the characteristics of a LiDAR 

sensor. 

1.1. The Pose Estimation Problem 

The pose represents the set of parameters that characterize the translation and rotation between 

two reference systems. Therefore, given a Sensor Reference Frame (SRF), centered in the 

chaser, and a Target Reference Frame (TRF), centered in the target, the pose allows to define 

the transformation that aligns the two reference systems.  

The SRF to TRF pose matrix is defined as a 4𝑥4 matrix that includes a 3𝑥3 rotation matrix 𝑹 

and a translation vector 𝒕, where 𝑹 aligns the TRF to the SRF while 𝒕 represents the position of 
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the TRF origin with respect to the SRF origin, expressed in SRF. The pose matrix is defined by 

the Equation 1.1: 

 
𝑻 = [

𝑹 𝒕
0 1

] 

 

(1.1) 

The determination of this transformation matrix is of great importance in the field of robotics 

in general, and is in fact widely studied to promote the implementation of close-proximity 

operations between a service satellite and a target, with ever-increasing precision, as already 

stated in the introduction to Chapter 1.  

Pose estimation is performed thanks to the extraction of information from the observed scene, 

by a sensor, and the comparison of this information with a model. Clearly, the problem is 

approached differently depending on the sensor used. In Section 1.2, the characteristics of the 

EO Sensors investigated in this thesis work, i.e. LiDARs, are briefly described. 

1.2. LiDAR Sensors 

A LiDAR (Light Detection And Ranging), also called LaDAR (Laser Detection and Ranging) 

is an active 3D EO sensor. A sensor is called 3D when it is able to produce a three dimensional 

representation of the observed scene, while it is called active when the source of the detected 

radiation is internal to the system. The main components of a LiDAR are: (1) the laser source, 

from which the radiation is emitted; (2) the optics, which is fundamental for determining the 

minimum range from which the sensor is able to measure the distance from objects observed; 

(3) the detector, which captures the radiation as it comes back. 

LiDAR sensors use light (typically a laser) to illuminate the target and measure the time it takes 

for the emitted signal to return to the sensor. Since the light must travel from the source to the 

target, and back to the detector, the range 𝑅 to the observed point may be computed as shown 

in Equation 1.2: 

 𝑅 =
𝑐𝑡

2
 (1.2) 
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where 𝑅 is the distance from the sensor to the point on the target, 𝑐 is the speed of light and 𝑡 

is the laser Time-Of-Flight (TOF). Hence, this sensor is able to provide multiple 3D vectors 

within its field of view. The set of these 3D position vectors can be interpreted as a point cloud. 

The above is just one example of how a LiDAR can extract information from the observed 

scene; in fact, those that use the principle just described are called TOF-based LiDARs. 

There are a multitude of types of LiDAR, which can be classified according to: (1) The 

characteristics of the emitted laser beam; (2) The measurement principle; (3) The technological 

solution. A schematic of the above is shown in Figure 1.4. 

 

Figure 1.4 - Taxonomy of LiDARs [4] 

As can be seen from Figure 1.4, regarding the laser source, LiDARs can be classified into Pulsed 

and Continuous Wave (CW) systems. 

Pulsed LiDARs emit energy in discrete intervals (pulses), are less expensive than CW LiDARs 

and are typically used when long operating ranges are desired. They measure distance by 

measuring the time delay between transmitted and received laser pulses. These systems 

represent the already mentioned TOF-based LiDARs. 

On the other hand, CW LiDARs emit energy continuously and are mainly classified according 

to the modulation type Amplitude-Modulated (AM) or Frequency-Modulated (FM). They 
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measure distance by measuring the phase difference between the emitted signal and the 

reflected echo.  

CW LiDARs can also exploit the triangulation method as measurement principle. Basically, the 

same principle is adopted as for a stereo system, positioning the laser source with a certain 

offset with respect to the detector and therefore to the relative optics. The laser is projected onto 

a surface and the location of the reflected image on an offset detector depends on the range to 

the surface at that projected location, hence measurement of the image position indicates range 

[8]. In Figure 1.5, the basic triangulation geometry is shown. 

 

Figure 1.5 - Basic triangulation geometry [8] 

Regarding the technological solutions, instead, LiDARs can be classified as: (1) Scanning 

LiDARs; (2) Detector Array LiDARs; (3) Spatial Light Modulator LiDARs. 

1.2.1. Scanning LiDARs 

Scanning LiDARs use a narrow laser beam that is swept over the sensor's Field Of View (FOV) 

according to a pre-established pattern to obtain range measurements to objects within the scene. 

The direction of the laser is changed using lenses, mirrors, or other devices. A simplified 

representation is shown in Figure 1.6. 
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Figure 1.6 - Simplified representation of a scanning LiDAR [9] 

There are several scanning patterns; Figure 1.6 shows the Raster pattern as an example, but 

there are also more complex ones (e.g. Lissajous pattern). 

Since they only use one detector (or a very small number of detectors), these sensors are 

relatively easy to calibrate; in addition, scanning LiDARs can point the narrow laser beam very 

precisely and create very high-resolution point clouds. On the other hand, these devices contain 

moving parts that can potentially be a source of hardware failure; furthermore, these sensors 

are expensive, sensitive to motion blur and it is necessary to wait a certain amount of time for 

the entire scene of interest to be scanned. 

1.2.2. Detector Array LiDARs 

Detector Array LiDARs (or scannerless LiDARs) illuminate the entire scene with a single broad 

laser beam and use a detector array to detect the echoes backscattered in the pixel direction [4]. 

A simplified representation is shown in Figure 1.7. 
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Figure 1.7 - Simplified representation of a detector array LiDAR [9] 

Unlike scanning LiDARs, Detector Array LiDARs have no moving parts, are less susceptible 

to motion blur, and are cheaper. On the other hand, having multiple detectors makes them more 

difficult to calibrate and does not reach the accuracy of scanning LiDARs. 

1.2.3. Spatial Light Modulators 

Finally, Spatial Light Modulators (SLMs) illuminate the observed scene with a light pattern and 

detect the reflected signal through compressed sensing algorithms capable of reconstructing the 

scene observed from the time history of the reflected signal. 

SLMs have the advantage of having no moving parts and a single detector. On the other hand, 

they require assumptions about the geometry of the observed scene; furthermore, they are still 

a developing technology [9].  
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2. State of the Art 

In the literature there are different methods to face the challenge presented in Chapter 1; these 

pose acquisition methods from 3D point clouds fall into the broader field of Point Cloud 

Registration. To accurately follow the evolution of the relative pose of an object, two main steps 

are carried out: 

• Pose Initialization. An initial estimate of the pose of the spacecraft is made, using the 

first set of data acquired by the sensor, without knowing any a priori information on its 

position and attitude. Pose initialization methods are also called global methods and are 

typically used to provide input information to pose tracking methods; 

• Pose Tracking. An update of the pose parameters is carried out, using as input the pose 

information obtained thanks to global methods, in order to obtain a more accurate 

estimate at the output. Pose tracking methods are also called local methods. 

A diagram of the pose determination process is shown in Figure 2.1. 

 

Figure 2.1 - Logical scheme of the pose determination process [10] 

Point cloud registration methods are very varied and it is not trivial to find a way to effectively 

classify the types of existing methods. In Figure 2.2 a very simple diagram is shown which 

highlights the class of methods explored in depth in this work; in particular, the focus is on 

global methods. 
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Figure 2.2 - Classification of point cloud registration methods. Highlighted in blue is the 

method class of interest 

From Figure 2.2 it can be observed that a first major distinction is done between classical 

methods and learning-based methods. The substantial difference between these two classes of 

methods lies in the fact that the classical methods are generally based on developing an iterative 

optimization algorithm to estimate the rigid or, in general, non-rigid transformation, while the 

learning-based methods use machine learning and deep learning techniques to learn the 

transformation based on the geometric features of the point clouds. The learned descriptors may 

contain more detailed features than geometric characteristics or other classic descriptors [11, 

12]. In this Chapter, only classical methods are covered.  

In general, point cloud registration methods can be classified into coarse and fine approaches 

or, as shown in the diagram, global and local methods. The methods that are mainly used as 

global methods are the feature-based methods. These techniques are designed to extract 

distinctive and robust local geometrical characteristics and exploit them as correspondences to 

estimate a transformation between two point clouds. These extracted characteristics, called 

features, can be subdivided into local features and global features. Local ones are extracted 

from specific regions of interest of the point cloud, while global ones are generated by encoding 

the overall geometric properties of the entire point cloud. 

Then, there are the local methods, which have the aim of refining the pose given as input by the 

global methods and making it as precise as possible. The most popular and widely used 

technique is the Iterative Closest Point (ICP), an algorithm which, given as input the two point 

clouds to be aligned and the initial guess, iteratively determines the correspondences between 
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them, attributes weights to them and performs outlier removal to handle noisy conditions and 

updates the transformation until convergence, set by a cost function to be minimized or by the 

maximum number of iterations. Numerous variants of this algorithm have been subsequently 

proposed to counteract the limitations affecting the general algorithm and improve its 

performance. 

One of the main limitations of the ICP is that its performance strongly depends on the initial 

guess, i.e. how much it differs from the true pose of the target: in other words, the ICP is not 

very robust if the initial pose is poor. Some local methods overcome this limitation, 

demonstrating robustness even with poor initialization, and are classified as robustified local 

methods [13]. Common examples are probabilistic methods that represent data through specific 

probability density functions, i.e. Coherent Point Drift (CPD) [14] and Normal Distributions 

Transform (NDT) [15]. 

In the following paragraphs, some state-of-the-art feature-based methods are analyzed in detail, 

describing them by individually analyzing the logical blocks that constitute their pipelines, and 

finally highlighting their advantages and disadvantages. 

Of the methods that are analyzed, only some have actually been used for space applications, 

while other algorithms have been initially developed more generally for object recognition 

purposes. 

2.1. Feature-Based Methods 

A feature is an individual and measurable property of an observed phenomenon. This is a 

discriminating characteristic with a high information content, which can be codified and 

converted into numerical form. In the case of interest, features can be used to extract 

information about the geometry of the point cloud under study, and they are a very useful tool 

for facilitating and speeding up classification processes, pattern recognition and so on. These 

features can be geometric primitives (such as points or lines) [16, 17], polygons [18], 

tetrahedrons [19], point-normal structures [20, 21, 22, 23, 24] or even the point cloud itself [10, 

25, 26, 27, 28]. 
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As anticipated, features can be grouped into two large categories: local and global ones: local 

features contain information about the local geometry of the point cloud, while global features 

are representative of the entire point cloud. This difference in approach has advantages and 

disadvantages. Local features are less discriminating than global ones, but they are more robust 

in occlusion and cluttered environment. On the other hand, global features are efficient in 

computation time and memory consumption. However, global-feature-based methods are 

affected generally by occlusion and clutter. In the next Subsections, both these classes are 

analyzed in more detail. 

2.1.1. Local-Feature-Based Methods 

In this Subsection, local-feature-based methods are illustrated, starting with a look at the 

pipeline these methods employ, shown in Figure 2.3. The objective, given two point clouds, i.e. 

the point cloud acquired by the LiDAR and a model point cloud, obtained for example from the 

known 3D CAD model of the target, is to align one to the other. Therefore, given the point 

clouds as input, the basic idea is to exploit the local features detected from both point clouds to 

generate sets of correspondences, which will be used for alignment. 

 

Figure 2.3 - Local-feature-based methods pipeline 

Note that the first step is not just called Feature Extraction as some of the methods that are 

presented are point-based approaches that work directly with the raw dataset and do not require 

computationally expensive feature extraction steps [18, 19]. 

2.1.1.1. Local Feature Extraction/Description 

The first step of a local-feature-based method is the extraction - not in all cases - and storage of 

the features. This paragraph illustrates the types of features and the methodologies adopted by 

some local feature methods to exploit them. 
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Geometric Hashing 

Lamdan and Wolfson [16] proposed an indexing-based approach that exploits geometric 

primitives for model-based object recognition in occluded scenes and is Geometric Hashing 

(GH). These local features are encoded and stored in a database; the idea is to use it for storing 

pieces of information of known geometric objects in order to allow fast recognition of an 

unknown query object [29]. 

In a pre-processing step, 𝑛 model’s point features are extracted, with respect to a world 

coordinate system [30]. Then, using these points, a base is defined, made up of 2 points in the 

case of 2D objects, or 3 points in the case of 3D data (as in the case of interest) and a reference 

system is defined using this base, within which the coordinates of these point features are 

determined. Finally, this model information is stored in a large memory, a hash table. The 

contents of the hash table are independent of the scene and can thus be computed offline, not 

affecting the recognition time. 

Figure 2.4 shows a summary diagram of the Geometric Hashing pre-processing phase. Note 

that this diagram refers to 2D objects, in the case of 3D data the hash table will also be three-

dimensional, using the 3-point bases as indices. 

 

Figure 2.4 - Geometric Hashing pre-processing step [31] 
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Polygonal Aspect Hashing 

In the wake of Geometric Hashing, a method for object localization was subsequently 

developed by Ruel et al. [18], specifically for point cloud processing: it is the Polygonal Aspect 

Hashing (PAH) and is a point-based method that works directly on the raw dataset and therefore 

is not based on computationally expensive extraction steps of features, an aspect that constitutes 

a great improvement compared to its predecessor. This method exploits one or more polygons 

selected from the input scan data as local features, as shown in Figure 2.5. The number of 

polygons selected for the subsequent matching phase constitutes a trade-off between 

computational cost and greater robustness to outliers. 

 

Figure 2.5 - Local features exploited by PAH architecture [18] 

The first step of this method - offline processing - consists in generating a reference database 

(hash table) using a polygonal model of the object to localize, which has the aim of speeding 

up the polygon matching process. Let 𝑀 be a polygonal model of the object to localize and 𝑆 a 

sparse set of 3D points located on the model surface. The offline processing first generates the 

set of all segments that can be created on 𝑀 from point pairs of 𝑆. The set of segments is then 

arranged in a hash table that efficiently stores length and connectivity information to allow 

direct segment lookup.  
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The first step of the algorithm is used to reduce the 6 dimensions pose search space. The search 

space is reduced by keeping (in the next step) the set of poses that have at least some 

overlapping surfaces between the input point cloud and the polygonal model 𝑀. 

Congruent Tetrahedron Align 

Another point-based approach, improved from PAH, is the Congruent Tetrahedron Align 

(CTA) algorithm, developed by Yin et al. and described in [19]. This method, instead of 

extracting features, finds the congruent tetrahedrons that are built on the scanning point cloud 

and on the model point cloud and, through the alignment of these tetrahedrons, performs the 

estimation of the pose. The scanning point cloud is the one acquired by the sensor while the 

model point cloud can be obtained from the 3D CAD model, which is known. When the 

scanning point cloud is obtained, a 3D convex hull will be constructed, through specific 

algorithms, to simplify it. Then, a tetrahedron with the largest volume is found in the vertices 

of the convex hull and, thanks to a hash table, the tetrahedron congruent to the latter is detected, 

making it possible to calculate the transformation between them. The algorithm pipeline is 

shown in Figure 2.6. 

 

Figure 2.6 - CTA pipeline [19] 

Based on the necessary and sufficient condition for two tetrahedrons to be congruent (according 

to which, if six sides of a tetrahedron are equal to the corresponding six sides of another 

tetrahedron, then the tetrahedrons are regarded as being congruent), the key idea of the CTA 
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algorithm is the search for the six corresponding sides. In order to find the correspondences in 

the next step more efficiently, in the first step of this method a Two Level Index Hash Table is 

built to store the information, which includes not only the point pair length of model point cloud 

but also the location topology information. To construct the hash table, a linear hash function 

is used to classify the various distance measures into a certain number of buckets. 

Point Feature Histograms 

A local feature that has been much studied in recent years is the Point Feature Histograms 

(PFH), introduced by Wahl et al. in [20] and then further developed by Rusu et al. in [21]. PFH 

is the first of a series of histogram descriptors, some of which are analyzed in Subsection 2.1.2, 

being global features. The PFH descriptor exploits the use of local and pose-invariant features 

and focuses on the use, for each point 𝒑𝑖 of the point cloud, of the point 𝒑𝑖 (query point) and a 

group of points close to it (𝑘– neighborhood). The estimation of these features is based on the 

use of geometric relationships between the 𝑘-neighbors closest to 𝒑𝑖 involving: 

• The 3D coordinates of these points 𝑥, 𝑦, 𝑧; 

• The normals to the surface at each point 𝒏𝑥, 𝒏𝑦, 𝒏𝑧. 

For each pair of points 𝒑𝑗 and 𝒑𝑘 in the 𝑘-neighborhood of 𝒑𝑖 and their estimated normals 𝒏𝑗 

and 𝒏𝑘, a source point 𝒑𝑠 and target point 𝒑𝑡 are selected and then a Darboux Reference Frame 

with the origin in the source point is defined as: 𝒖 = 𝒏𝑠, 𝒗 = (𝒑𝑡 − 𝒑𝑠) × 𝒖 and 𝒘 = 𝒖 × 𝒗. 

Four features are estimated, which are shown in Equation 2.1: 

 {

𝑓1 = 𝒗 ⋅ 𝒏𝑡

𝑓2 = ‖𝒑𝑡 − 𝒑𝑠‖
𝑓3 = 𝒖 ⋅ (𝒑𝑡 − 𝒑𝑠)/𝑓2

𝑓4 = atan(𝒘 ⋅ 𝒏𝑡, 𝒖 ⋅ 𝒏𝑡)

 

 

(2.1) 

These features are then classified in the so-called bins, depending on the values they assume. 

In Figure 2.7 the diagram of the region of influence of a PFH is shown. 
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Figure 2.7 - The influence region diagram for a Point Feature Histogram. In red: query 

point. In blue: k – neighbors [21] 

In this way, a multidimensional vector is obtained as output that encodes the local geometry of 

the point cloud, in the vicinity of the query point. The size of the vector depends on the number 

of features inserted (in this case four) and on the number of distinguishable cases depending on 

the value assumed by the single feature.  

Therefore, for each point of the point cloud its PFH is estimated. Clearly, the more particular 

a PFH is compared to the others, the better and more robust the feature is for the correspondence 

determination phase. The technique that provides such PFH is called Persistence Analysis, 

which analyses the neighborhood of each point 𝒑 of the point cloud, contained in a sphere 

whose center is 𝒑 and whose radius is varied in an interval dependent on the size and density 

of the point cloud. 

The main advantage of this feature is that it is invariant to position, orientation and point cloud 

density, and the histograms cope well with noisy datasets, but, a very important drawback of 

the PFH is the computational complexity: the theoretical computational complexity of the PFH 

for a given point cloud with 𝑛 points is 𝑂(𝑛 · 𝑘2), where 𝑘 is the number of neighbors for each 

point 𝒑 of the point cloud. 

Fast Point Feature Histograms 

The problem of the computational cost of PFH led to the development of a simpler and faster 

variant, called Fast Point Feature Histograms (FPFH), presented by Rusu et al. in [22], in which: 
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• Each query point is connected only to the nearest neighbors, then the features between 

the pairs of points are calculated, which this time are no longer 4 but 3, excluding the 

Euclidean distance 𝑓2 (See Equation 2.1), obtaining for each point considered the 

Simplified Point Feature Histogram (SPFH); 

• For each point considered in the previous step, the k-neighbors are considered, and 

therefore, exploiting the SPFH of the neighbors previously calculated, the final 

histogram (FPFH) relating to the point 𝒑 is estimated, as shown in Equation 2.2: 

 𝐹𝑃𝐹𝐻(𝒑) = 𝑆𝑃𝐹𝐻(𝒑) +
1

𝑘
∑

1

𝜔𝑘
 𝑆𝑃𝐹𝐻(𝒑𝑘)

𝑘

𝑖=1

 

 

(2.2) 

 where the weight 𝜔𝑘 is the distance between 𝒑 and 𝒑𝑘. 

In Figure 2.8 the diagram of the region of influence of a FPFH is shown. The great advantage 

of the FPFH descriptor is that it maintains most of the discriminative power as PFH, but in 

addition it is much faster; in fact, the theoretical computational cost of the FPFH is reduced to 

𝑂(𝑛 · 𝑘), becoming able to estimate features almost in real time.  

 

Figure 2.8 - The influence region diagram for a Fast Point Feature Histogram [22] 

The output of this first phase is a set of candidate features which will be analyzed and compared 

with the features of the acquired point cloud in the next phase of correspondence search to find 

the optimal matching and thus align the two point clouds. 
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2.1.1.2. Point Cloud Alignment 

Once the set of candidate features is obtained, the local features on one surface are compared 

with the local features on the other surface to obtain point-to-point correspondences. Finally, 

the transformation is estimated from the constructed correspondences for registering the two 

surfaces. This task is particularly challenging, as the generated correspondences may contain a 

large number of outliers due to symmetric structures, noise, clutter and occlusions. To address 

and solve this problem, various algorithms have been developed, and some of these are 

presented in this paragraph. 

Sample Consensus Initial Alignment 

A very popular algorithm in the field of computer vision, capable of counteracting this problem, 

is the Random Sample Consensus (RANSAC) algorithm, developed by Fischler and Bolles and 

presented in [32]. RANSAC is an iterative method to estimate the best parameters for a 

mathematical model that fits a dataset with outliers, which are ignored in the estimation. It is a 

non-deterministic algorithm in the sense that it produces a reasonable result only with a certain 

probability, which is greater the higher the number of iterations. 

Starting from this method, a family of RANSAC-based algorithms has been developed for point 

cloud initial alignment purposes, one of which was presented by Rusu et al. in [22] and applied 

to the FPFH descriptor, the Sample Consensus Initial Alignment (SAC-IA). This algorithm 

iteratively carries out the following steps: 

• Keypoints Sampling. At least three sample points are selected from the model point 

cloud while making sure that their pairwise distances are greater than a user-defined 

minimum distance; 

• Correspondence Search. For each sample point, a list of 𝐾 candidate points in the scene 

point cloud, with a similar local descriptor, is found. Then, one point from the candidates 

is randomly selected as the correspondence point; 

• Transformation Matrix Estimation. With three correspondence pairs, it is possible to 

estimate the transformation matrix 𝑻𝑗  , where 𝑗 is the iteration index; 
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• Performance Evaluating. The model point cloud is transformed using 𝑻𝑗  and is 

compared to the scene point cloud. The quality of the comparison is measured using a 

Huber penalty measure as an error metric [33]. 

The robustness is proportional to the trial number. However, too many trials will decrease the 

efficiency. In spite of that, SAC-IA can still get a good result after many iterations and be widely 

used in the initial alignment process. Since the obtained transformation matrix may deviate 

from the real one, a refinement step follows, commonly performed through the ICP. Being a 

RANSAC-based method, SAC-IA is robust to noise and outliers. In particular, unlike the classic 

RANSAC algorithm, the SAC-IA reduces some unreasonable iterations by judging the 

qualification of current sampled correspondences according to a distance constrain. However, 

its efficiency and accuracy are limited in complex cluttered environment. 

Fast Global Registration 

Existing approaches are generally based on iterative methods that aim to search for 

correspondences between two point clouds, thanks to which the alignment/recognition process 

is then carried out. Much of the computational cost is wasted to compare the point cloud with 

candidates that are subsequently discarded, and in particular these methods are based on a first 

step of global estimation of the pose (first acquisition) and on a subsequent step of local 

refinement [11]. 

The Fast Global Registration (FGR) algorithm overcomes the limitations of these approaches, 

proving to be as precise as well-initialized local refinement algorithms and faster than them. 

This approach, presented by Zhou et al. in [34], unlike most existing methods, does not involve 

iterative sampling, model fitting, or local refinement. It does not require initialization and can 

align noisy partially overlapping surfaces. 

Given two point sets, 𝑷 and 𝑸, the key idea is to establish correspondences between them, after 

which an optimization process of an objective follows based on these correspondences. 

Importantly, during the optimization process, these matches are not recalculated.  

In [34], the set of correspondences 𝑲 = (𝒑, 𝒒) between 𝑷 and 𝑸 is computed using the FPFH 

descriptor given the great speed with which this feature can be calculated and the accuracy it 
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guarantees. Specifically, three main steps are performed that aim at determining the set K based 

on the similarity between FPFH, through the Nearest Neighbor retrieval, and on the 

"compatibility" between tuples of correspondences, through the comparison of the lengths of 

segments obtained from pairs of points identified on the two point clouds. 

Once the set of correspondences 𝑲 is obtained, the objective is to minimize the distances 

between corresponding points, taking care not to consider spurious correspondences, thus 

optimizing the pose 𝑻. Figure 2.9 shows an example with 2D point sets. 

 

Figure 2.9 - Illustration with 2D point sets. In blue: genuine correspondences; in red: 

spurious correspondences [34] 

To accomplish this task, an objective function 𝐸 to be minimized is first defined, which contains 

in the formula a robust penalty 𝜌, the value of which must be chosen very carefully as it 

influences the fraction of matches to be excluded in the optimization process. This formula is 

shown in Equation 2.3. 

 
𝐸(𝑻) = ∑ 𝜌(‖𝒑 − 𝑻𝒒‖)

(𝒑,𝒒)∈𝑲

 

 

(2.3) 

As a robust penalty, a scaled Geman-McClure estimator is chosen, whose formula is shown in 

Equation 2.4 and where the parameter 𝜇 controls the range within which residuals have a 

significant effect on the objective. 

 𝜌(𝑥) =
𝜇𝑥2

𝜇 + 𝑥2
 (2.4) 
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After a reformulation of the objective function, using the Black-Rangarajan duality between 

robust estimation and line processes [35], and of the matrix 𝑻 by rewriting it as a vector 𝝃 

containing the 3 rotational and 3 translational parameters, an iterative cycle is implemented 

which, through the Gauss-Newton method, recalculates 𝝃 (and therefore 𝑻) from time to time 

until convergence, i.e. until the minimum of the objective function is reached, or until 𝜇 falls 

below a certain threshold. 

Given this operating principle of the FGR, this algorithm is very fast. In particular, since the 

correspondences are not recomputed during the optimization process, unlike SAC-IA, FGR is 

expected to be faster than the other algorithm. On the other hand, FGR has limited robustness 

to outliers, also due to the fact that the factor of robustness to outliers and spurious 

correspondences is strongly dependent on the estimator selected for the objective function. 

Furthermore, the FGR performances are evaluated under the assumption that the two surfaces 

to be aligned are partially overlapped.  

Database Search: Geometric Hashing 

The alignment of the point clouds, as well as through appropriate algorithms, some of which 

are illustrated above, can also be carried out thanks to the search and matching of the features 

of the model point cloud previously stored in a database. This in particular is the case of the 

GH, PAH and CTA algorithms, which, as already seen in the first step (paragraph 2.1.1.1), store 

data in a hash table, constructed in order to carry out a rapid search for correspondence and 

consequently align the point clouds. 

In the case of GH, once the construction of the hash table containing the information relating 

to the object model is completed, in the online recognition phase the features are extracted from 

the range image acquired by the sensor and transformed into the reference system defined by a 

base, and are matched with the features stored in the database. The new coordinates of the points 

expressed in the new reference system enter the hash table and each base of the model 

previously stored in the hash table is given a vote. The model basis that scored the largest 

number of votes corresponds to the chosen image basis. Then, once the basis in the hash table 

is identified, the rigid transformation between the reference systems of the model and the image 

can be determined, thus obtaining the pose. In Figure 2.10 a scheme of the GH recognition 

phase is shown. 
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Figure 2.10 - Geometric Hashing recognition step. The diagram represents the continuation 

of Figure 2.4 [31] 

Database Search: Polygonal Aspect Hashing 

Instead, in the case of PAH, once the Offline Processing phase in which the hash table is 

constructed is finished, the Runtime Localization phase follows, i.e. the polygon matching 

process in which the reference database created in the offline phase and the sparse 3D point 

cloud obtained from the sensor are used, determining the position vector 𝑻 and the rotation 

matrix 𝑹 of the target model w.r.t. the sensor focal point. This step can be summarized as 

follows: 

• Selection of a polygon of 𝑁 points from the input point cloud; 

• Reduction of the set of possible poses to those where the polygon input scan points line 

up with their corresponding model surface points within a specified tolerance, thanks to 

the hash table; 

• From each matched polygon pairs, the corresponding relative pose (𝑻,𝑹) can be 

computed; 

• Evaluation of the quality of the alignment between input point cloud and polygonal 

model, transforming the points of the point cloud into the model reference frame using 

(𝑻,𝑹). The solution is the pose candidate that exhibits the best alignment. 
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Database Search: Congruent Tetrahedron Align 

Finally, in the case of the CTA method, once the tetrahedron is defined in the scanning point 

cloud and the hash table containing the information from the model point cloud is built, the 

process of searching for the congruent tetrahedron in the model point cloud is carried out. The 

output of this search are the four vertices of the tetrahedron in question. Once these vertices and 

therefore the tetrahedron is found, the pose can be estimated. In general, more than one 

corresponding tetrahedron can be found in the hash table, but only one is correct. In order to 

deal with this case and choose the correct one, the ICP algorithm is used to refine the registration 

result. The accuracy measurement of the algorithm is the ICP convergence score, computed by 

Equation 2.5: 

 𝑓𝑐𝑜𝑛𝑣 =
1

𝑛
∑‖𝒎𝑖 − (𝑹𝒔𝑖 + 𝒕)‖2

𝑛

𝑖=1

 (2.5) 

where 𝒔𝑖 and 𝒎𝑖 are the vertices of the tetrahedra built respectively on the scanning and on the 

model point cloud, while 𝑹 and 𝒕 are the rotation matrix and the translation vector that define 

the transformation between the two point clouds. The transformation corresponding to the 

smallest ICP convergence score is the output of the CTA algorithm and the input of the pose 

tracking. 

2.1.2. Global-Feature-Based Methods 

As done for the local-feature-based methods, also for the global-feature-based ones a 

preliminary comment is made on the pipeline adopted by them and shown in Figure 2.11. 

 

Figure 2.11 - Global-feature-based methods pipeline 

The basic idea is to extract features - again not in all cases - from a series of point cloud models 

with different poses and store them in a database; subsequently, in the recognition phase, each 
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feature of this database is compared with the feature extracted from the point cloud acquired by 

the LiDAR, and the quality of this comparison is evaluated through an appropriate metric. The 

feature that exhibits the best comparison provides the pose parameters. 

2.1.2.1. Global Feature Extraction/Description 

This paragraph illustrates the feature database construction procedure adopted by some global-

feature-based methods. 

Online 3 DOF Template Matching 

A series of methods that have caught on, especially in the space field, use the entire point cloud 

as a global feature and are the Template Matching (TM) techniques. The basic idea of this 

method is to compare the point cloud acquired by the sensor with a series of templates generated 

using a model point cloud in different poses, and evaluate the quality of matching through a 

correlation function. The pose is obtained from the template that presents the best match. 

However, strictly speaking, this method would require the generation of templates in the entire 

6 DOF pose space, obtaining a huge number of templates and, consequently, taking up a lot of 

on-board memory and making the computational cost very high. To make this principle 

applicable to space applications, several ideas have been developed to reduce the necessary 

number of templates to generate and thus accelerate the subsequent recognition phase. 

An example is given by Online 3 DOF TM, proposed by Opromolla et al. in [25], in which the 

position of the centroid of the acquired point cloud is exploited to estimate the relative position 

vector of the target with respect to the sensor. This greatly simplifies the problem; in fact, the 

online creation of the templates is carried out by restraining the pose search space to a 3 DOF 

database consisting only of the attitude parameters. 

It is important to underline that, in this Template Matching algorithm, as well as in the other 

Online TM techniques that follow, the feature extraction/description step is not completely 

separated from the recognition step, as the entire database is not created before the recognition 

phase but, as the templates are generated, the recognition phase is also carried out (in which the 

quality of the matching between the i-th template and the acquired point cloud is evaluated). 
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Despite the significant improvement compared to the traditional Template Matching technique, 

given the greatly reduced number of templates to generate, it is still highly time consuming. 

Online Fast 3 DOF Template Matching 

A variant called Online Fast 3 DOF TM, presented by Opromolla et al. in [10], includes a 

strategy to speed up the recognition step; therefore, it is covered in paragraph 2.1.2.2. 

PCA-based Online Template Matching 

Another idea, applied in the PCA-based online TM, developed by Opromolla et al. in [28], is 

to exploit, together with the position of the centroid of the point cloud, also the Principal 

Component Analysis (PCA) [36] to estimate the target main axis 𝒆𝑀. The main axis 𝒆𝑀 is 

identified by the eigenvector associated with the maximum eigenvalue of the covariance matrix 

of the measured point cloud. It is important to underline that PCA can only be effectively 

adopted for elongated targets. Although there is this limitation of applicability, this feature fits 

perfectly into the space scenario as many spacecrafts and debris have this shape. The 

determination of the main axis of the target easily allows the calculation of 2 of the 3 Euler 

angles (roll, 𝛼 and pitch, 𝛽), effectively limiting the application of the TM to a single DOF 

database built online. This clearly allows a strong reduction in the number of templates to be 

generated, and consequently in the amount of data to be stored on board, significantly lowering 

the computational cost compared to other TM techniques. The unknown Euler angle (yaw, 𝛾) 

represents the rotation around the target main axis. 

2 DOF Template Matching 

Finally, the last variant of the Template Matching techniques that is illustrated is the 2 DOF 

TM, proposed by Guo et al. in [27]. The key idea of this method is linked to the definition of 

an attitude sphere where to represent the relative attitudes between LiDAR Coordinate System 

(LCS) and Target Coordinate System (TCS).This sphere is centered at the origin of TCS, and 

LCS is located on the sphere surface with Z axis (the line of sight of the LiDAR system) 

pointing to the center. 

The first step of this method is an offline phase and starts from building the silhouette image 

template dataset offline, where silhouette image means the projection of the 3D point cloud on 
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the X-Y plane of the LCS. In addition, this method also exploits the centroid of point cloud data 

for the estimation of the spacecraft position, restricting the sampling within 3-DOF attitude 

domain, as already seen in the variants reported above. The assumption made with the attitude 

sphere is very important because, when the silhouette image is generated, rotating the LiDAR 

system around the line of sight, would not change the shape of the generated silhouette but only 

alters its orientations. This means that the 𝛾 angle can be unwrapped out of the attitude angles, 

since it can be calculated as the rotation between the scene silhouette image and the template 

image. Specifically, one silhouette image represents all attitudes that have the same (𝛼,𝛽) but 

different 𝛾. 

The silhouette generation pipeline is shown in Figure 2.12. 

 

Figure 2.12 - Pipeline of silhouette image generation [27] 

Once the point cloud is projected, the Delaunay triangulation algorithm is applied. This step is 

crucial since it ensures robustness of the shape against point sparseness, thus making the 

silhouette image resilient to translation. Then, edges longer than a certain threshold are 

eliminated and the silhouette binary image is formed, in order to store the silhouette shape for 

matching. An Image Coordinate System (ICS) is defined, where the X axis and the Y axis are 

set to be aligned with the X axis and Y axis of LCS. Subsequently, each silhouette image is 

rotated to a status where its two principal directions are aligned with the X axis and Y axis of 

ICS and finally a second-time silhouette imaging process follows. For binary image generation, 

the pixel length must be appropriately selected: a small length will result in a feature with higher 

descriptiveness, but it will also be easier to suffer from noise perturbations. 
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The last two steps of the silhouette generation pipeline are fundamental to allow the subsequent 

estimation of 𝛾. So, the template dataset is constructed in a two Euler-angle domain (𝛼,𝛽), i.e., 

the azimuth angle and elevation angle in the attitude sphere. Unlike the other template matching 

techniques already seen, in this case the template is built offline, thus saving online processing 

time. 

Viewpoint Feature Histogram 

Taking up the concept of descriptors, further ones were developed from PFH and FPFH, first 

adding information representative of the entire point cloud, obtaining the so-called Viewpoint 

Feature Histogram (VFH).  

The idea of developing the VFH (Rusu et al., [37]) arose from the characteristic of PFH and 

FPFH of being invariant to an object’s scale and its pose. This invariance characteristic is useful 

if features must be extracted which, regardless of how two objects are oriented, allow their 

recognition and subsequent alignment using specific algorithms, but clearly alone are not 

sufficient for pose estimation. The goal was to create a descriptor that could be run in real time 

to simultaneously recognize an object and calculate its pose. VFH addresses the pose invariance 

of PFH/FPFH by considering the camera viewpoint as a fourth feature, which is concatenated 

to the three features of the FPFH. This fourth feature is the distribution of angles between the 

viewpoint direction (i.e. the position of the centroid of the point cloud) and each points’ normal.  

The most distinctive difference between PFH/FPFH and VFH is the number of histograms 

generated per point cloud: indeed, PFH/FPFH created a descriptor for each point in the point 

cloud, while VFH creates only one descriptor per scene point cloud. Thanks to the addition of 

this information, VFH may now be used to identify objects in 3D space, being more robust than 

PFH/FPFH in describing an object, and estimate their relative poses, however stopping at 5 

DOF, being invariant to camera roll. Furthermore, other major flaws to VFH are its sensitivity 

to noise and occlusions, and scale invariance. Indeed, although the height of the VFH histogram 

implicitly conveys information about the scale of the object, as it is a function of the total 

number of points in the distance image, in the PCL implementation the histogram is normalized 

by the total number of points in the scene, which causes all histograms to have the same height 

range of [0-1]. This inconsistency provides insight into the difficulty these histograms have in 

conveying information about an object’s scale. 
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Clustered Viewpoint Feature Histogram 

Subsequently, the principle adopted by VFH on the entire point cloud was extended to clusters 

of point clouds, thus obtaining the Clustered Viewpoint Feature Histogram (CVFH). 

The CFVH (Aldoma et al., [23]) addresses the deficiencies present in VFH being able to 

distinguish identical objects but of different scales (the CVFH histogram is not normalized by 

the total number of points in the scene, so the scale of the object is implicitly characterized by 

the histogram) and considering the effects of partial occlusions. CVFH remedies the roll 

invariance of VFH by concatenating a Camera Roll Histogram (CRH) onto the descriptor. 

The basic idea is to identify smooth and continuous clusters 𝑪𝑖 on the surface 𝑺 to be described 

and use only the points in 𝑪𝑖 to build a coordinate system while still using all points in 𝑺 to 

describe its geometry. The cluster is smooth if the dot product of the normals of two neighboring 

points is larger than a threshold 𝑡𝑛, and it is continuous if two neighboring points are separated 

by less than Euclidean distance threshold 𝑡𝑑. Then, a point 𝒑𝑘 of normal 𝒏𝑘 is added to the 

cluster 𝑪𝑖 if the constraint shown in Equation 2.6 is fulfilled: 

 ∃𝒑𝑗 ∈ 𝑪𝑖: ‖𝒑ℎ − 𝒑𝑗‖ < 𝑡𝑑 ⋀ 𝒏ℎ ⋅ 𝒏𝑗 > 𝑡𝑛 (2.6) 

Depending on the structure of 𝑺, it might be composed of several 𝑪𝑖 from which a different 

coordinate system is obtained and therefore a different CVFH histogram, each one describing 

the same surface but encoding it differently. So, the main difference between CVFH and VFH 

is that, instead of one histogram for the entire scene, there is now a CVFH histogram descriptor 

for each cluster in the scene. Each 𝑪𝑖 is paired with a (𝒄𝑖, 𝒏𝑖), respectively representing the 

centroid and the average of the normals of 𝑪𝑖. Each pair (𝒄𝑖, 𝒏𝑖) is then deployed as one of the 

axis of a point-wise reference frame from which three angular distributions (each made out of 

45 bins) of the normal 𝒏𝑗 can be computed (similar to the first three VFH features) and finally 

added in the corresponding histogram bin.  

CVFH includes as well a fourth and fifth component (45 and 128 bins respectively) into the 

histogram, the fourth being based on the L1-distribution obtained from 𝒄𝑖 and each 𝒑𝑗 ∈ 𝑺 and 

the fifth resulting from yet another angular distribution obtained from each 𝒏𝑗 and the central 

view direction (similar to the fifth VFH feature). The total size of a CVFH histogram is 308.  
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CVFH has been shown to deliver good results in the context of 3D recognition; however, it has 

the important drawback that, for pose estimation, it needs the addition of the CRH, which results 

in extra calculations and a larger overall feature histogram. 

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram 

Finally, starting from the CVFH, the Oriented Unique Repeatable Clustered Viewpoint Feature 

Histogram (OUR-CVFH) was developed. 

The OUR-CVFH descriptor (Aldoma et al., [24]) solves this main problem of the CVFH, 

introducing the concept of Semi-Global Unique Reference Frame (SGURF) which better 

integrates the information previously provided by the CRH, defining multiple repeatable 

coordinate systems on 𝑺. There are five components in total to the OUR-CVFH, of which the 

concatenation creates a single descriptor. To generate the OUR-CVFH the following steps are 

performed: 

• First, points whose curvature is higher than a certain 𝑡𝑐 threshold are removed from the 

surface 𝑺, yielding 𝑺𝑓; 

• 𝑺𝑓 is now separated into smooth and continuous clusters 𝑪𝑘, similarly to what CVFH 

does. Each cluster is initiated with an arbitrary point in 𝑺𝑓 that has not yet been assigned 

to any cluster; 

• Differently to CVFH, the points 𝒑𝑘 ∈ 𝑪𝑖 are filtered once more by the angle between 

𝒏𝑘 and 𝒏𝑖 (the average normal of the points in 𝑪𝑖); 

• Each 𝑪𝑖 is associated with a pair (𝒄𝑖, 𝒏𝑖) representing its centroid and average normal. 

For a specific 𝑪𝑖, the associated SGURF is found and placed at its centroid. 

So far, for a specific surface 𝑺, 𝑁 triplets (𝒄𝑖, 𝒏𝑖, 𝑅𝐹𝑖), where 𝑅𝐹 stands for Reference Frame, 

have been computed. The five components of the OUR-CVFH are defined as follows: 

• First, 𝒄𝑖 and 𝒏𝑖 are used to compute the first three components of CVFH and the 

viewpoint component (the fifth component), as presented in [23]. The viewpoint 

component is however encoded using 64 bins instead of the original 128; 

• The fourth component of CVFH is removed and instead the surface 𝑺 is spatially 

described by means of the computed 𝑅𝐹𝑖. To perform this, 𝑺 is transformed from the 
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original coordinate system of 𝑺 (the camera’s reference frame) into the local 𝑅𝐹𝑖. After 

the transformation, the points in 𝑺 are divided into the 8 octants defined by the signed 

axes (𝑥−, 𝑦−, 𝑧−) . . . (𝑥+, 𝑦−, 𝑧−) . . . (𝑥+, 𝑦+, 𝑧+). In order to account for perturbations 

due to noise or missing parts, interpolation is performed between octants by associating 

to each point 𝒑𝑘 eight weights, one for each octant. The weights are computed by 

placing three 1D Gaussian functions over each of the axes centered at the 𝑅𝐹𝑖 origin 

with a standard deviation of 𝜎. Because this interpolation scheme describes the 

likelihood that a particular point lies in a particular octant, this Gaussian weighting 

describes the likelihood that measurement noise could cause a point to appear in a 

different octant. Therefore, the spatial distribution information of points, appropriately 

weighted, grouped into octants is stored in 8 histograms. 

The total size of the descriptor is 45 · 3 + 8 · 13 + 64 =  303 bins. In Figure 2.13, an example 

of OUR-CVFH histogram is shown. 

 

Figure 2.13 - Left: point cloud of a wine glass (black) with associated cluster 𝑪𝑖 (green) and 

the SGURF reference frame. Right: the resulting OUR-CVFH histogram [24] 

The first step of the global recognition pipeline using the OUR-CVFH descriptor is a training 

session, in which a database of features is generated. The recognition step is briefly analyzed 

in paragraph 2.1.2.2. Training is performed by either using an actual 3D sensor to take range 

images of a real object at various ranges and attitudes or using a 3D sensor simulator and a 3D 

mesh model. For space applications the latter option is usually preferable. 
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The OUR-CVFH descriptor has several advantages, such as the robustness to many types of 

occlusions, the speed in performing the pose estimate and the accuracy that this method can 

achieve with sufficient training, without then having to resort to a refinement phase with the 

ICP. On the other hand, this method generally requires high quality 3D models and evenly 

distributed high resolution 3D data; its recognition capabilities tends to decrease rapidly as the 

distance from the camera of the object to be recognized increases; finally, training at multiple 

ranges presents its own complication since, similarly to the CVFH, the only information on the 

scale of the object is that implicitly provided by the height of the OUR-CVFH histograms. 

Indeed, in [24], Aldoma et al. consider training from multiple viewpoints but only at a single 

constant range. 

This architecture has been implemented in recent research for spacecraft navigation, producing 

favorable results [38, 39]. 

Basis Point Set 

Finally, an interesting and efficient point cloud coding technique is briefly illustrated, the Basis 

Point Set (BPS), proposed by Prokudin et al. in [17]. The point cloud is encoded as a fixed-

length feature vector 𝑿 = {𝑥1, . . . , 𝑥𝑛}, computed as the minimal distances to a fixed set of 

points 𝑩 = {𝒃1, . . . , 𝒃𝑘}𝑇. A graphical representation of this technique is shown in Figure 2.14. 

 

Figure 2.14 - Basis Point Set encoding for point clouds [17] 
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Therefore, every point cloud is reduced to a relatively small fixed-length vector, whose length 

can be adjusted to meet computational constraints for specific applications and represents a 

trade-off between fidelity of the encoding and computational efficiency. Compared to other 

encodings of point clouds, the proposed representation also has an advantage in being more 

efficient with the number of values needed to preserve high frequency information of surfaces. 

Finally, this type of coding allows the BPS method to easily deal with the problem of varying 

the cardinality of point clouds. 

The feature estimation process is divided into three main phases: 

• Normalization. The encoding algorithm takes in input a set of point clouds 𝑿𝑖. Every 

point cloud can have a different number of points. In this first step, all point clouds are 

normalized to a fit unit ball; 

• BPS Construction. To obtain the Basis Point Set vector, 𝑘 points are randomly selected 

from a ball of a given radius 𝑟, as shown in Equation 2.7: 

 𝑩 = [𝒃1, … , 𝒃𝑘]𝑇 , 𝒃𝑗 ∈ 𝑹𝑑 , ‖𝒃𝑗‖ ≤ 𝑟 (2.7) 

where 𝑑 =  3 for the case of 3D point clouds. This set is arbitrary but fixed for all point 

clouds in the dataset; 𝑟 and 𝑘 are hyper-parameters of the method, and the latter can be 

used to determine the trade-off between computational complexity and the fidelity of 

the representation; 

• Feature Computation. Finally, for each point cloud in the dataset, the feature vector is 

constructed by calculating the minimum distance from every basis point to the nearest 

point in the point cloud under consideration (Equation 2.8) or by storing not only the 

distance information, but the entire delta vector from each basis point to the nearest 

point in the original point cloud (Equation 2.9): 

 

 
𝑥𝑖

𝐵 = [ min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃1, 𝒙𝑖𝑗), … , min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃𝑘, 𝒙𝑖𝑗)] 𝑇 , 𝑥𝑖
𝐵 ∈ 𝑹𝑘 

(2.8) 

 
𝑿𝑖

𝐵 = {(arg min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃𝑞 , 𝒙𝑖𝑗) − 𝒃𝑞)} ∈ 𝑹𝑘×𝑑   
(2.9) 
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In [17] the BPS is introduced as a method for estimating global point cloud features that can be 

used as input for learning algorithms; therefore, since a recognition phase has not been treated 

using classical methods, this part will not be present in this literature analysis. 

2.1.2.2. Recognition 

This paragraph illustrates the matching process between the features stored in the database and 

the features of the measured point cloud. 

Online 3 DOF Template Matching 

As already mentioned in paragraph 2.1.2.1, in Template Matching techniques, once the database 

is built (or, after the generation of each individual template, in the case of Online TM 

approaches), a phase follows in which the point cloud templates and the point cloud acquired 

by the sensor are compared and, through a correlation function, the quality of this comparison 

is evaluated.  

In the case of Online 3 DOF TM, after template generation, the centroid overlapping and 

correlation function evaluation phases follow, which allow the best correlation and therefore 

the pose of the target to be identified. The correlation parameter selected in [25] is the mean 

square distance of corresponding points between the template itself and the acquired point 

cloud. The best correlation is the one that minimizes the correlation function shown in Equation 

2.10: 

 𝑪(𝑞, 𝑻) =
1

𝑁𝑝
∑|𝑷𝑆𝐸𝑁𝑆𝑂𝑅

𝑖 − 𝑷𝑇𝐸𝑀𝑃𝐿𝐴𝑇𝐸
𝑖 (𝑞, 𝑻)|

2

𝑁𝑝

𝑖=1

 (2.10) 

where 𝑻 is the relative position vector, 𝑞 is the unit quaternion describing the relative attitude, 

𝑁𝑝 is the dimension of the LiDAR point cloud, 𝑷𝑆𝐸𝑁𝑆𝑂𝑅
𝑖  is the i-th point of the LiDAR point 

cloud and 𝑷𝑇𝐸𝑀𝑃𝐿𝐴𝑇𝐸
𝑖  is the i-th point of the template point cloud. 

A diagram of the overall Online 3 DOF TM architecture is shown in Figure 2.15. 
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Figure 2.15 - Flow diagram of the Online TM algorithm [10] 

However, in the presence of self-occlusion or truncated point cloud conditions, it becomes 

difficult to guarantee adequate results; therefore, to counter these problems, Nocerino et al. in 

[26] have proposed improvements to the 3 DOF TM architecture, as well as in the PCA-based 

variant. Specifically, a centroid correction phase is performed once the best correlated template 

is found, since the centroid may exhibit a notable displacement from the true center of the target, 

especially along the sensor boresight direction, due to the fact that the measured point cloud 

exclusively captures the visible portion of the target surface within the sensor’s Field of View 

(FOV). The position estimation is updated using Equation 2.11: 

 𝑻𝑛𝑒𝑤 = 𝑻 − 𝜹 (2.11) 

where 𝜹 is the difference between the centroids of the acquired datasets and of the best 

correlated template. 
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Online Fast 3 DOF Template Matching 

As anticipated in paragraph 2.1.2.1, the Online 3 DOF TM Recognition phase is strongly 

optimized in the Online Fast 3 DOF TM variant, operating a further reduction in the number of 

templates in a step preceding the matching between the point cloud template and the point cloud 

acquired by the sensor. More precisely, before moving on to the matching of the point clouds, 

various templates are already discarded through the estimation of the error in the average 

distance between the points of the point cloud and the sensor boresight axis, calculated for both 

point clouds (sensor and template); if this error exceeds a certain threshold (determined through 

numerical simulations), then the template is discarded. 

In the related paper it is observed that, although the Online Fast TM presents less accurate 

results than the classic 3 DOF TM, this procedure leads to a significant reduction in the 

computational cost, and the advantage of this new method lies in the fact that, by choosing a 

small enough step angle with which to sample the Euler angles and build the templates, the 

difference in accuracy with the classical method is negligible, despite a significant reduction in 

the computational cost. Instead, as the angular step increases, it can be seen that the difference 

in accuracy increases, and therefore, despite the higher computational cost, the classical method 

becomes preferable. 

PCA-based Online Template Matching 

Similarly, also for the PCA-based Online TM a correlation function is used to measure the 

quality of the matching between the templates in order to find, from the best match, the 

unknown value of 𝛾. The correlation function is defined as the mean squared distance of 

corresponding template/sensor points, as shown in Equation 2.12: 

 𝑪(𝛾) =
1

𝑁𝑝
∑|(𝑷𝑖 − 𝑷𝐶) − (𝑷𝑇

𝑖 (𝛾) − 𝑷𝐶𝑇(𝛾))|
2

𝑁𝑝

𝑖=1

 (2.12) 

 

where 𝑷𝑇
𝑖 (𝛾) and 𝑷𝐶𝑇(𝛾) represent the i-th point and the centroid of the template point cloud 

associated with each value of 𝛾. The substantial difference compared to the 3 DOF variants is 

the problem of the ambiguity of the pose solution due to the use of PCA. Indeed, from this 

procedure, 2 pose solutions are obtained, as the PCA allows only the direction of the main axis 
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to be found, but not its direction, thus obtaining 2 solutions of 𝛼 and 𝛽, and consequently having 

to run the TM part 2 times, obtaining 2 values of 𝛾. This ambiguity is solved by the acquisition-

to-tracking transition step, which consists in applying the ICP algorithm twice, exploiting the 

Nearest Neighbor (NN) and the Normal Shooting (NS) approaches [40]. 

As in the 3 DOF variant, improvements have also been made in this variant [26]: in addition to 

the correction of the centroid, already seen for the 3 DOF architecture, a similar approach can 

be adopted to also correct the estimate of the main axis of the target in the PCA-based TM case. 

To carry out this correction, the PCA is applied not only to the point cloud acquired by the 

target, obtaining a main axis that is not very precise due to the partial visibility of the point 

cloud, but, following the superposition of the centroids, it is also applied to each template, in 

order to find, in addition to the main axis of the template, the angle between the two main axes, 

so as to be able to apply a rotation to each template. Once the best template is found, the 

corresponding rotation matrix is applied to the main axis direction of the acquired dataset to 

update its estimate. 

2 DOF Template Matching 

Instead, in the 2 DOF TM, once the template database is built, a silhouette image is constructed 

using the point cloud acquired by the LiDAR, after which the binary image matching process 

follows. To measure the quality of the matching between binary images, the Jaccard coefficient 

is chosen, which is defined in Equation 2.13: 

 𝑆 =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
 (2.13) 

where 𝑨 and 𝑩 are two binary image vectors. All binary images, stored as vectors, are organized 

into a matrix 𝑭𝑀 = (𝒇1
𝑇 , 𝒇2

𝑇 , . . . , 𝒇𝑚
𝑇 )𝑇 where 𝑚 is the number of templates. At this point, given 

a query scene image 𝒇𝑠, through simple multiplications between matrices, it is possible to 

calculate, for each comparison between the templates 𝒇𝑖 and 𝒇𝑠, the Jaccard coefficient and 

select as the nearest template the one corresponding to the highest coefficient. Finally, once the 

nearest template 𝒇𝑚 is found, the pose estimation can theoretically be carried out, having found 

the pair of Euler angles (𝛼𝑚, 𝛽𝑚) through the template and being able to calculate 𝛾 as the 

rotation between the scene silhouette image and the template image. However, for symmetric 
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targets, there are cases of ambiguity in pose estimation; there may be more than two different 

attitudes that will result in the same template feature. This problem is addressed by adopting a 

principal-direction-based strategy, exploiting small asymmetrical parts of the target, and 

finally the ICP algorithm is used to refine the pose. 

The results shown in [27] demonstrate that 2 DOF TM outperforms CTA, 1 DOF TM and Fast 

3 DOF TM in success rate and time consumption but, on the other hand, its main limitation is 

that the target is assumed to be completely in the LIDAR FOV. 

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram 

Very similarly to the methodology adopted by the TM algorithms in the Recognition phase, the 

actual pose estimation phase using the OUR-CVFH histogram is also based on a matching 

process between the descriptors extracted from the measured scene set and those extracted from 

the training set created in the first step. The matching process is briefly described below: 

• Every descriptor belonging to the measured scene set is matched with every descriptor 

belonging to the training set using a distance metric. From this process, 𝑁 candidates 

are found that produce the smallest distance metric; 

• For each of the 𝑁 best matches, ICP refines the pose by aligning the model points with 

the scene points. This process returns 𝑁 separate 6 DOF relative pose estimates; 

• Finally, the best candidate is selected. This step gives preference to matching clusters 

of similar size by considering the number of inliers and outliers of the point clouds. 

With the point clouds in the same reference frame, a point in the model cloud is 

considered an inlier if the distance to a point in the scene cloud is within a threshold 

distance 𝑡𝑖, otherwise it is an outlier. Then, a cost metric is calculated, which is defined 

in Equation 2.14: 

 𝐽 = #𝑖𝑛𝑙𝑖𝑒𝑟𝑠 − 𝜆 #𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (2.14) 

where 𝜆 is used to weight the outlier count. The best candidate is determined as the one 

maximizing 𝐽. 
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2.1.3. Literature Analysis Conclusion 

This Subsection contains a final summary of the performance of the analyzed methods, also in 

this case carried out by separately considering the feature extraction/description logical block 

(Table 2.1) and the alignment/recognition block (Table 2.2). Table 2.1 is built with the aim of 

summarizing: (1) The type of feature (local or global); (2) Whether feature extraction is 

required; (3) Pros and cons of the methodology adopted; (4) If it is applied in the space field. 

Feature Type Extr. Pros Cons Space 

Geometric 

Primitives 

(GH) 

Local Yes 
Pose and scale invariant 

features 

Evenly distributed high 

resolution 3D data required 
No 

Polygons 

(PAH) 
Local No 

A polygon with large 

surface area will provide 

fewer polygon matches. 

More polygons can 

increase robustness to 

outliers and occlusions 

More polygons increase the 

computational cost. It is 

essential to find a good 

compromise 

Yes 

Tetrahedrons 

(CTA) 
Local No 

The greater the volume, the 

greater the robustness and 

reliability of the method 

The number of buckets 

must not be very large 

because, although the 

correspondence search 

becomes more accurate, the 

computational cost 

increases 

Yes 

PFH Local Yes 

Invariance to position, 

orientation and point cloud 

density; the histograms 

cope well with noisy 

datasets 

High computational cost, 

not suitable for real-time 

applications 

No 

FPFH Local Yes 

Much lower computational 

cost, compared to PFH, 

while maintaining the same 

advantages and 

discriminative power 

Obviously, some 

information is lost, 

compared to PFH 

No 
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Point Cloud 

Template 

(TM) 

Global No 

The point cloud is sparse, 

reducing the amount of 

data to be processed in the 

recognition phase 

Due to the symmetries, 

errors in the pose may arise 

due to ambiguity 

Yes 

Point Cloud 

w/main axis 

(PCA TM) 

Global No 

Addition of the direction 

information along which 

more points are 

concentrated 

The orientation of the 

principal axis is not 

established 

Yes 

Silhouette 

image (2 

DOF TM) 

Global No 

Silhouette robustness 

against point sparseness, 

resilience to translation. It 

is stored as a binary image, 

resulting in simplification 

of matching 

The pixel length must be 

appropriately selected: a 

small length will result in a 

feature with higher 

descriptiveness, but it will 

also be easier to suffer 

from noise perturbations 

Yes 

VFH Global Yes 

VFH more robust than PFH 

/ FPFH in describing an 

object 

Sensitivity to noise and 

occlusions; scale 

invariance; invariance to 

camera roll. Only allows 5 

DOF pose estimation 

No 

CVFH Global Yes 

Ability to distinguish 

identical objects of 

different scales and 

considering the effects of 

partial occlusions 

Requires CRH to resolve 

roll invariance (larger 

overall feature histogram); 

scale sensitivity 

No 

OUR-CVFH Global Yes 
Robustness to many types 

of occlusions 
Scale sensitivity Yes 

BPS Global No 

Point cloud reduced to a 

relatively small fixed 

length vector. Fast 

encoding process while 

still maintaining accuracy 

in surface description 

Too many points, although 

they increase the 

information content, also 

increase the computational 

cost, and vice versa if too 

few are chosen 

No 

Table 2.1 - Feature Extraction/Description pros and cons 
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Note how the invariance property is considered a pro for local features, while a con for global 

ones, precisely due to the difference in the methodology adopted to exploit them. 

Table 2.2, similarly, is constructed to summarize: (1) Pros and cons of the applied methodology; 

(2) If this method is applied in the space field. 

Method Pros Cons Space 

GH 

Ability to handle partially occluded 

objects. Efficient online recognition, 

since most of the computational work 

is done during the offline step 

A transformation which is 

based on correspondences of 

two base pairs may be 

sensitive to noise 

No 

PAH 

Efficient with very sparse point clouds; 

the input point cloud is not expected to 

be organized in any specific pattern 

The point cloud should cover 

as much of the target as 

possible 

Yes 

CTA 
Efficient with very sparse point clouds. 

Accurate and robust to noise 

Ambiguity resolved through 

ICP algorithm. The model 

point cloud should be 

resampled as uniform as 

possible 

Yes 

SAC-IA Robustness to noise and outliers 

Limited efficiency and 

accuracy in complex cluttered 

environment. Higher 

computational cost than FGR 

No 

FGR 

It does not involve iterative sampling, 

model fitting, or local refinement, 

correspondences are not recomputed. 

Hence, it is very fast. It is accurate and 

robust to noise 

Limited robustness to outliers, 

highly dependent on the choice 

of estimator for the objective 

function. Tested on partially 

overlapping surfaces 

No 

Online 3 DOF 

TM 

No offline preprocessing stage 

required. Efficient with sparse point 

clouds. Reduced computational cost 

and amount of on-board stored data 

w.r.t. traditional 6 DOF TM. Improved 

centroid estimation, counteracting self-

occlusion problems 

Compared to subsequent TM 

variants, it is still highly time 

consuming 

Yes 
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Online Fast 3 

DOF TM 

Reduced computational cost w.r.t. 3 

DOF TM, coupled with a negligible 

loss of success rate when the attitude 

search space is adequately sampled or 

the point cloud is dense enough. 

Improved centroid estimation, 

counteracting self-occlusion problems 

By increasing the angular step 

too much, the trade-off 

between computational cost 

and accuracy is no longer 

convenient 

Yes 

PCA-based 

Online TM 

Significantly reduced computational 

cost thanks to PCA. Improved centroid 

estimation and principal axis 

estimation, counter acting self-

occlusion problems 

It is an effective method only 

if applied to elongated targets. 

PCA produces ambiguities to 

be resolved in the acquisition-

to-tracking transition step 

Yes 

2 DOF TM 

Ability to work with sparse point 

clouds. Experimental results 

demonstrate that it outperforms CTA, 

1 DOF TM and Fast 3 DoF TM in 

success rate and time consumption 

For symmetric targets there are 

cases of ambiguity in pose 

estimation, ICP required to 

refine the pose. The target 

must remain completely in the 

LiDAR’s view 

Yes 

OUR-CVFH 

It is fast in performing the pose 

estimate and can achieve high 

accuracy with sufficient training, 

without then having to resort to a 

refinement phase with the ICP 

It generally requires high 

quality 3D models and evenly 

distributed high resolution 3D 

data; its recognition 

capabilities tend to decrease as 

the distance increases 

Yes 

Table 2.2 - Alignment/Recognition pros and cons 
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3. Methodologies 

The literature analysis has revealed advantages and disadvantages of some of the classic 

methods of feature extraction/description and alignment/recognition of point clouds.  

For this thesis work, great attention is paid to point-normal structures and Hash Tables, given 

the interesting strengths emerged from Chapter 2. In particular, point-normal structures are 

handled both as local and non-local features: in the first case using FPFHs; in the second case, 

by matching pairs of points with their relative normals, called Point-Pair-Features (PPF) [41, 

42, 43], which will be referred to as surflet pairs. In this Chapter, all the analyses carried out 

are presented, which converge in the development of three feature-based algorithms: 

• A Label-based RANSAC method, which collects offline FPFH statistics for elementary 

geometrical elements of the target satellite, and then finds online the target points with 

similar FPFH statistics; 

• A Persistence-Analysis-based (PA-based) RANSAC method, which uses the so-called 

Persistence Analysis to identify the points with the most distinctive FPFHs in the point 

clouds; 

• A PPF-based RANSAC method, which only exploits the information contained in pairs 

of points with their local normal vectors to identify correspondences.  

Specifically, after having defined the reference geometry used for the analyses (Section 3.1) 

and after several preliminary analyses conducted on the estimation of the normals and the FPFH 

(Subsection 3.2.1 and paragraph 3.2.2.1), the studies carried out on the FPFH extraction 

techniques used for the above-mentioned algorithms are presented, focused on Persistence 

Analysis (paragraph 3.2.2.2) and on the segmentation of the point cloud in geometric primitives 

(paragraph 3.2.2.3), key principles of the PA-based RANSAC and Label-based RANSAC 

methods respectively, while for the PPF-based RANSAC method no feature extraction 

technique is used. In addition, the analyses conducted on the construction of the Hash Tables 

are presented (Section 3.3). Finally, the offline phase (Section 3.4) and online phase (Section 

3.5) of the above-mentioned algorithms are outlined, to obtain the initial pose guess which is 

subsequently refined through post-processing (Section 3.6). 



 

 

57 

 

 

3.1. Reference Geometry 

The global registration algorithms presented in this thesis work have been developed using as 

reference geometry the DLR Client Satellite of the OOS-SIM (On-Orbit Servicing Simulator 

for Capture), the German Aerospace Center Robotics and Mechatronics (DLR-RM) laboratory 

facility for realistic simulation of on-orbit servicing scenarios [44]. Furthermore, for a clear 

description of the implemented operations, it is worth defining the TRF of the reference 

geometry. The frontal and lateral views of the CAD model of this target and the TRF are shown 

in Figure 3.1. 

 

Figure 3.1 - CAD model of the OOS-SIM Client Satellite and TRF representation 

As can be observed from Figure 3.1, the considered satellite geometry has a 6-fold symmetry 

of the structure, broken only by minor elements, with respect to the maximum inertia axis. This 

(approximate) symmetry adds complexity to the pose estimation problem. Regarding the TRF, 

instead, it can be observed that the 𝑥-axis is the roll axis, while the 𝑦 and 𝑧 axes lie on the upper 

face of the main body. 

Starting from the CAD of the reference geometry, a dataset of 1000 synthetic point clouds has 

been generated by simulating two Velodyne™ VLP-16 scanning LiDARs, rotated by 90° with 

respect to each other. Random samples are drawn with a pointing constraint according to which 
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the target is in the Field Of View (FOV) of both sensors, by varying the relative position 

(between 1 m and 2 m distance) and the relative attitude of the target. The attitude, in particular, 

is generated in such a way as to uniformly cover SO(3) [45]. 

The resulting point clouds appear to be partial, sparse and non-uniform, but are unaffected by 

data artifacts such as noise and outliers. 

3.2. Feature Extraction Analysis 

This Section describes all the analyses carried out for efficient feature extraction. Since the 

FPFHs are closely related to how the local normals are estimated, a preliminary analysis on the 

estimation of point normals is first shown. 

3.2.1. Normal Estimation Analysis  

All the analyses are performed in Python environment; specifically, the Open3D library is used, 

an open-source library that allows the visualization and processing of 3D data, including the 

estimation of normals and FPFH [46]. The function used by Open3D for estimating normals 

computes them for each point of the point cloud. Given a query point, the function finds the 

neighborhood of that point and computes the principal axis using covariance analysis. In 

particular, such neighborhood is defined through two tuning parameters provided as input, 𝑟 

and 𝑚𝑎𝑥𝑛𝑛, i.e., the radius of a sphere, centered in the query point, that includes the 

neighborhood points and the maximum number of Nearest Neighbors (NN) to be collected, 

respectively. The analysis presented in this Section focuses on the determination of optimal 

values of these parameters. 

The procedure adopted for normal estimation analysis is the following: given as input a model 

point cloud, generated from the satellite CAD model, and the LiDAR scans with the ground 

truth of the poses, knowing the pose the alignment between the two point clouds is performed; 

then, for each point of the LiDAR point cloud, the NN is identified in the model point cloud by 

exploiting a KDTree structure. A KDTree is a data structure for storing a finite set of points 

from a k-dimensional space [47, 48]. 
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At this point, for each pair of correspondences, the relative normals are compared and the 

angular error is estimated; finally, the mean, median and standard deviation of the error vector 

are computed. Additionally, the normal estimation is improved by exploiting the sensor 

viewpoint directions, i.e. the rays from the sensor viewpoint to each data point of the LiDAR 

point cloud, as a reference for an outward direction at each point (although of course mostly 

not orthogonal to the surface). In practice, the viewpoint correction is implemented through 

Equation 3.1: 

 cos−1 (𝒏𝐿(𝑖) ∙
−𝒑𝐿(𝑖)

‖𝒑𝐿(𝑖)‖
) >

𝜋

2
 (3.1) 

where 𝒏𝐿(𝑖) and 𝒑𝐿(𝑖) represent respectively the normal vector and the position (x, y, z 

coordinates) of the i-th point of the LiDAR point cloud w.r.t. the sensor origin; in Equation 3.1, 

𝒑𝐿(𝑖) is considered with the opposite direction. Graphically, 𝒏𝐿(𝑖) and − 𝒑𝐿(𝑖) represent 

respectively the red and the black arrow shown in Figure 3.2. 

 

Figure 3.2 - Graphical visualization of normal correction using sensor viewpoint [49] 

From Figure 3.2, the meaning of Equation 3.1 can be easily understood: in fact, if the angle 

between 𝒏𝐿(𝑖) and −𝒑𝐿(𝑖) is less than 90°, as in the figure, then the normal is well oriented, 

because it exits the surface and is directed towards the origin of the sensor; if, instead, the angle 

is greater than 90°, it means that the normal is entering the surface and therefore must be 

reversed.  
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Given the very high number of point clouds in the dataset, the normal estimation analysis has 

been performed on only three scans by analyzing, varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛, the mean and median 

of the angular error vector. Figure 3.3 shows the trends of the mean error as 𝑟 varies, for fixed 

𝑚𝑎𝑥𝑛𝑛, and vice versa, for a LiDAR scan of the dataset, named Scan 1. 

 

Figure 3.3 - Mean error plots for Scan 1 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 

From the plots shown in Figure 3.3 it can be observed that the mean error always remains very 

low in the analyzed ranges of 𝑟 (from 0.01 to 0.3 𝑚) and 𝑚𝑎𝑥𝑛𝑛 (from 3 to 100), remaining 

between 3° and 6°. From the plot on the left, first of all it can first observed that, given a fixed 

𝑚𝑎𝑥𝑛𝑛, at a certain point a neighborhood radius 𝑟 is reached, beyond which the situation no 

longer changes, since evidently the same neighborhood of points is always taken. Similarly, 

given a fixed 𝑟, once a certain value of 𝑚𝑎𝑥𝑛𝑛 is reached, the error becomes constant, and this 

is clearly more evident for small radii. Regarding the median of the error vector, instead, it 

remains much lower than the mean (order of magnitude of 10−5), indicating that many normals 

are well estimated, but with some outliers that raise the mean of the error. Finally, while from 

the left plot the situation seems to be better for the case 𝑚𝑎𝑥𝑛𝑛 = 5, from the right plot, instead, 

it can be seen that, by increasing 𝑚𝑎𝑥𝑛𝑛 beyond 30 (approximately), the situation becomes 

more favorable for bigger 𝑟. 

These results, however, are related to a rather particular case of point cloud, since it represents 

a scan with many planar points, as can be seen from the colored point cloud, produced 

considering, as an example, 𝑟 = 0.07 𝑚 and 𝑚𝑎𝑥𝑛𝑛 = 5, shown in Figure 3.4. From the figure 

it can be seen that the highest angular errors come from the high curvature areas.  



 

 

61 

 

 

 

Figure 3.4 - Scan 1 colored point cloud 

Regarding instead the subsequent scans (indicated as Scan 2 and Scan 3), the plots shown in 

Figure 3.5 and Figure 3.6 show trends that are quite different from those observed for Scan 1. 

 

Figure 3.5 - Mean error plots for Scan 2 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 

 

Figure 3.6 - Mean error plots for Scan 3 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 
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From these latest results, in fact, it can be seen that the mean error is much larger than in the 

first case. Once again, from the plots on the left, for a fixed 𝑚𝑎𝑥𝑛𝑛, it can be observed that, 

from a certain 𝑟 onwards, the error becomes constant, while from the plots on the right it is 

evident that, this time, as 𝑚𝑎𝑥𝑛𝑛 increases (𝑟 fixed), following an improvement in the error 

there is a worsening, except for the case 𝑟 = 0.01 𝑚 where, again, the error becomes constant. 

It can clearly be deduced that the increase in error is based on the fact that, unlike the first scan 

analyzed, there is now a greater number of non-planar points where the normal is not well 

estimated.  

Finally, the computational time for normal estimation has been measured. Tests have been 

performed for fixed 𝑟 values while varying 𝑚𝑎𝑥𝑛𝑛, on the scans indicated in this discussion as 

Scan 1 and Scan 2. The computational time plots are shown in Figure 3.7.  

 

Figure 3.7 - Normal estimation time performance for Scan 1 and Scan 2 

From the plots in Figure 3.7 it can be observed that the computational time increases slightly 

as 𝑚𝑎𝑥𝑛𝑛 increases. Furthermore, the reason why the computational time in the case of Scan 1 

is much larger than that obtained for Scan 2 is simply related to the number of points of the 

point cloud, higher in the first case. 

Following the analyses performed and the plots obtained, the optimal values of search radius 𝑟 

and maximum number of NN 𝑚𝑎𝑥𝑛𝑛 to be used for the estimation of the normals have been 

identified. The selected values are shown in Table 3.1 and will serve as a reference for normal 

estimation during the development of the algorithms. 
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Parameters Optimal range identified Final value 

𝒓 [𝒎] 0.05 ÷ 0.1 0.07 

𝒎𝒂𝒙𝒏𝒏 40 ÷ 50 40 

Table 3.1 - Parameters selection for normal estimation 

3.2.2. FPFH Analysis 

The analyses conducted on the estimation of normals are fundamental for the estimation of 

FPFH; in fact, given a query point, this descriptor is computed by exploiting the coordinates 

and normals of the points belonging to the neighborhood of the query point itself. In this 

Subsection, all the analyses that have been carried out on the FPFHs are explained.  

The function used by Open3D for FPFH estimation [46] allows, given a point cloud as input, 

to compute a FPFH for each point of the point cloud. The descriptor is computed as a 33-

dimensional vector. Therefore, the output of this function is a 33𝑥𝑁 matrix, where N is the 

number of points of the point cloud. As for the estimation of normals, also this function requires 

the initialization of 𝑟 and 𝑚𝑎𝑥𝑛𝑛 parameters. 

3.2.2.1. FPFH Distance Histogram 

All the analyses on the FPFHs have been conducted on the point cloud dataset already 

introduced in Section 3.1; in particular, the first tests are focused on understanding whether the 

FPFHs are actually able to discriminate a specific region of the satellite. 

As input, the LiDAR point clouds with the ground truth of the poses and the model point cloud 

with the ground truth of the normals are used. Using this information, the normals of the LiDAR 

point cloud and the FPFHs of both point clouds are determined; then, for each FPFH of the 

LiDAR point cloud, the NN in the model point cloud is determined, thus creating 

correspondence pairs; then, the alignment is performed using the ground truth of the pose and, 

for each correspondence pair, the Euclidean distance between them is computed, thus obtaining 

a distance vector represented with a histogram. 



 

 

64 

 

 

Figure 3.8 shows, as an example, the histograms obtained for Scan 1 using the previously 

obtained 𝑟 and 𝑚𝑎𝑥𝑛𝑛 parameters (i.e., 𝑟 = 0.07 𝑚 and 𝑚𝑎𝑥𝑛𝑛 = 40) for normal estimation 

while, for FPFH estimation, 𝑟 = 0.01 𝑚 (left) and 0.2 𝑚 (right) are used, while 𝑚𝑎𝑥𝑛𝑛 in both 

cases is set to 100. 

 

Figure 3.8 - FPFH distance histograms for Scan 1 

The histograms shown in Figure 3.8 therefore group the correspondence pairs, obtained through 

the NN retrieval in the FPFH space, into distance bins representing the Euclidean distances 

between the pairs of points downstream of the alignment between the model and the measured 

point cloud. The ideal case would therefore be that in which all the pairs of points are placed in 

the first bin (zero distance), indicating that the FPFHs have allowed a perfect recognition of the 

points; but the situation seen in these plots is totally different: the most occupied bins are the 

central ones, almost forming a sort of Gaussian, and this answers the initial question. Given the 

symmetric geometry of the target satellite, there are many similar FPFHs even in different areas 

of the geometry, and therefore the FPFH identified as the most similar (through the NN 

retrieval) can easily be the FPFH of a point far from the one considered. Therefore, it is as if 

the association of the NN were random. 

Therefore, to make the use of FPFHs on this geometry more effective, it is essential to reduce 

the number of points to act on; in particular, it is necessary to try to act on the points whose 

FPFH is less common, in order to reduce the risk of confusing it with the FPFH of other points. 

For this reason, Persistence Analysis has been studied in depth, and is discussed in more detail 

in the next paragraph. 
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3.2.2.2. Persistence Analysis 

Persistence Analysis is a technique that consists of identifying, within the set of FPFH 

calculated for each point of the point cloud, the most distinctive ones. This allows to make a 

smaller, more solid set of candidate correspondences. This analysis is divided into two steps: 

1. Search for unique points. The FPFH is computed for every point; then, the mean of the 

FPFHs of all the points in the cloud is computed (𝜇 – histogram); so, the distance 

between the FPFH of each point and the 𝜇 – histogram is calculated. The distribution 

can be approximated by a Gaussian, and the points whose FPFH fall outside the 𝜇 ± 𝛽𝜎 

interval, where 𝜇 and 𝜎 are respectively the mean and standard deviation of the above 

distribution, while 𝛽 is a tuning parameter that controls the width of the interval, are 

called unique. 

2. Search for persistent points. The previous step is repeated considering spheres of 

different radii 𝑟𝑖 for the FPFH computation. The unique points as the radius varies are 

called persistent. 

The set of persistent features is indicated in Equation 3.2: 

 𝑷𝑓 = ⋃ [𝑷𝑓𝑖
∩ 𝑷𝑓𝑖+1

]
𝑛−1

𝑖=1
 (3.2) 

where 𝑷𝑓𝑖
 are the unique features, while 𝑷𝑓 is the set of persistent features given by the 

intersection of those features that are unique in both 𝑟𝑖 and 𝑟𝑖+1. As a distance metric to compute 

the distance between the FPFH of each point and the 𝜇 – histogram, the Kullback-Leibler (KL) 

Divergence is used [20, 21]. 

The inputs are once again the LiDAR and model point clouds. After estimating the normal and 

FPFH for both the point clouds, Persistence Analysis has been carried out, looking for the 

unique and persistent features, after which, considering only the persistent features sets obtained 

from both the point clouds, the same procedure previously illustrated has been repeated for the 

construction of the histogram of distances (therefore, NN retrieval, alignment between the point 

clouds using the ground truth of the poses and computation of the Euclidean distances between 

the correspondences). 
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The results of the analyses carried out considering, as LiDAR point clouds, the scans previously 

indicated as Scan 1 and 2 are reported below. In particular, in Table 3.2, Figure 3.9 and Figure 

3.10 the parameters set and the results obtained are shown respectively. 

Point 

cloud 

Normal estimation parameters FPFH estimation parameters 
𝜷 

𝑟 [𝑚] 𝑚𝑎𝑥𝑛𝑛 𝑟𝑖 [𝑚] 𝑚𝑎𝑥𝑛𝑛 

LiDAR 0.07 40 0.05, 0.07, 0.1 100 1 

Model Ground Truth Normals 0.015, 0.02, 0.025 100 1 

Table 3.2 - Normal and FPFH estimation parameters for both LiDAR and model point clouds 

 

Figure 3.9 - Persistent points for model point cloud (left), Scan 1 (central) and Scan 2 (right) 

 

Figure 3.10 - Persistent FPFH distance histograms for Scan 1 and Scan 2 

From the results it is clear that Persistence Analysis alone is not enough to improve the Distance 

Histograms: indeed, from Figure 3.10 a great confusion continues to be observed in identifying 



 

 

67 

 

 

correspondences between NN FPFHs. However, a very interesting result emerges from Figure 

3.9: by observing the point clouds, in fact, it is clear that Persistence Analysis actually has an 

effect in detecting particular classes of points; the most evident advantage is that it seems to 

exclude quite effectively the points belonging to planar regions, selecting points on the edges, 

the toroid, the handles and the sphere at the top. Therefore, this technique helps to identify a 

reduced set of points that can be exploited to achieve an alignment between the model and the 

LiDAR point cloud, and in fact it is finally adopted in one of the global registration algorithms 

presented in this Thesis work: the PA-based RANSAC method, whose pipeline is shown in 

Sections 3.4 (offline phase) and 3.5 (online phase). 

Downstream of PA, a further FPFH extraction technique has been investigated, which is based 

on the segmentation of the point cloud, dividing it into geometric primitives. This analysis is 

explained in detail in the next paragraph. 

3.2.2.3. Geometric Primitives Recognition 

The key idea of the analysis presented in this paragraph is to develop a feature extraction 

technique aimed at recognizing the FPFHs belonging to a specific geometry of the satellite: in 

other words, the satellite geometry is decomposed into simpler geometries and the FPFH of 

each of these geometries is analyzed. 

To perform this study, the model point cloud is split into geometric primitives (toroid, edges, 

sphere, handles, cylinder, planes) and a ground truth of the mean FPFHs for each geometry is 

built; then, these reference FPFHs are compared with the mean FPFHs of each geometry 

extracted by the LiDAR point cloud dataset.  

A training dataset, defined as the 80% of the 1000 scan input dataset, is used to generate a 

mean FPFH representative of each of the defined geometries. Naturally, the segmentation of 

the training scans is performed through the alignment with the model point cloud, using the 

pose ground truths. These FPFHs are finally compared with the corresponding mean FPFHs 

obtained from the model point cloud, to evaluate the similarity between the histograms. A good 

similarity between the histograms of a specific geometry is a symptom of the fact that, taking a 
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random LiDAR point cloud, the recognition of that geometry through FPFH estimation is 

possible. 

Starting from the satellite CAD model, this is broken down in Blender environment into 

geometric primitives, from which dense point clouds are generated. The segmented point cloud 

of the satellite, with geometry labels, is shown in Figure 3.11. 

 

Figure 3.11 - Segmented point cloud 

Then, for each point of these point clouds, the NN is searched among the points of the model 

point cloud, in order to reconstruct the point clouds of the geometric primitives using the same 

points of the model point cloud. This step is performed to then associate the ground truths of 

the normals of the model point cloud provided as input to the point clouds of the geometries. 

Once the ground truths of the normals are assigned to the point clouds, the mean FPFH for each 

of these geometries is computed. 

Regarding the training dataset, instead, each scan is segmented using the point clouds of the 

geometries previously generated and the pose ground truths and, for each geometry, an FPFH 

averaged over all the training scans is computed. Figure 3.12, Figure 3.13 and Figure 3.14 show 

the histograms comparing model point cloud and training dataset. 
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Figure 3.12 - Comparison mean FPFH toroid and edges 

 

Figure 3.13 - Comparison mean FPFH sphere and handles 

 

Figure 3.14 - Comparison mean FPFH cylinder and planes 

From the results shown it is clear that the mean FPFHs obtained from the training dataset do 

not reproduce very well the trend of the corresponding mean FPFHs obtained from the model 
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point cloud, as expected, given the irregular distribution of points in the LiDAR point clouds. 

However, for some geometries there are interesting similarities: excluding planes, which do not 

represent the best geometry to exploit for the alignment of the point clouds, edges and cylinder 

resulted the most interesting geometries to rely on for the pose estimation algorithm. 

After identifying the most promising geometries, the corresponding FPFH-based signatures 

averaged over the training dataset have been taken as a reference to perform an optimization 

analysis on the extraction of the FPFH from random LiDAR point clouds, selecting a priori the 

geometry of interest and trying to extract from the point cloud the FPFHs corresponding to that 

geometry. This analysis has been carried out considering three geometries: in addition to the 

cylinder and the edges, i.e., the most interesting geometries from the latest analyses shown, the 

handles have also been included. Therefore, starting from the FPFH-based signatures of these 

geometries, 100 LiDAR point clouds have been randomly selected and a specific FPFH 

extraction procedure has been performed, which is explained below.  

This procedure consists of 2 phases: 

1. k-NN retrieval. The FPFHs calculated for each point of the measured point cloud are 

organized according to a KDTree structure. For each class, the 𝑘𝐹𝑃𝐹𝐻 NNs to the 

corresponding FPFH-based signature are found. While this approach would result in 

2𝑘𝐹𝑃𝐹𝐻 points composing the set of candidates 𝑲, an additional filter is applied to keep 

only the points with distance from the FPFH-based signature of that class smaller than 

a threshold (𝑑𝐹𝑃𝐹𝐻). 

2. Reciprocity Test. All the candidate points from the previous steps are compared to the 

FPFH-based signatures of all the geometry classes identified for the target satellite, to 

check that the minimum FPFH-based distance is relative to the identified class. This 

check avoids selecting candidate points from different geometrical elements, especially 

in cases in which points belonging to the identified class are not in the sensor field of 

view. 

In the previous explanation of the FPFH extraction procedure, some parameters have been 

mentioned that are currently unknown, which are the number 𝑘𝐹𝑃𝐹𝐻 of NNs and the distance 

threshold 𝑑𝐹𝑃𝐹𝐻 in the FPFH space: the best values of these parameters are obtained 
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experimentally through an optimization analysis based on the construction of the Precision-

Recall curves. 

An example is presented below to understand the purpose of this analysis. If the procedure 

explained above is used to extract for example the points belonging to the cylinder class, the 

cases shown in Figure 3.15 may occur: 

1. True Positives 𝑇𝑃. The extracted points actually belong to the cylinder class; 

2. True Negatives 𝑇𝑁. The non-extracted points actually do not belong to the cylinder class; 

3. False Positives 𝐹𝑃. The extracted points do not belong to the cylinder class; 

4. False Negatives 𝐹𝑁. The non-extracted points belong to the cylinder class. 

 

Figure 3.15 - Example of cylinder-points detection and terminology used 

The Precision and Recall parameters are based on these definitions. In information retrieval, 

precision is a measure of result relevancy, while recall is a measure of how many truly relevant 

results are returned. They are defined as shown in Equations 3.3 and 3.4. 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.3) 

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4) 

Therefore, 𝑃 indicates a measure of the number of candidates extracted correctly compared to 

the total number of candidates extracted, while 𝑅 is a measure of the number of candidates 
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extracted correctly compared to the actual number of points of interest. So, for each scan a 

Precision and Recall value are obtained for each geometry. These parameters are averaged over 

100 random training scans; furthermore, these parameters have been computed in one case by 

varying 𝑑𝐹𝑃𝐹𝐻, with no constraint on 𝑘𝐹𝑃𝐹𝐻, while in another case by varying 𝑘𝐹𝑃𝐹𝐻, with no 

constraint on 𝑑𝐹𝑃𝐹𝐻. The settings of these parameters for the two cases are reported in Table 

3.3. 

Precision-Recall parameters Case 1 Case 2 

N° scans 100 100 

𝒅𝑭𝑷𝑭𝑯 [30, 35, 40, …, 400] No Constraint 

𝒌𝑭𝑷𝑭𝑯 No Constraint [10, 15, 20, …, 400] 

Table 3.3 - Precision-Recall analyses: Cases 1 and 2 parameter setting 

What is expected is that, by relaxing the distance constraint, increasing the threshold, or 

increasing the number 𝑘𝐹𝑃𝐹𝐻 of NNs to be identified, the Recall increases, as it increases the 

percentage of extracted points that actually belong to the geometry of interest; at the same time, 

however, a decrease in Precision may occur because, being less restrictive in the selection of 

candidates, in addition to increasing the number of correctly extracted points, it also increases 

the number of incorrectly extracted points, not actually belonging to that geometry. Therefore, 

the goal of this analysis is to find the optimal parameters of 𝑘𝐹𝑃𝐹𝐻 and 𝑑𝐹𝑃𝐹𝐻 so that a good 

compromise between Precision and Recall is found. The Precision-Recall curves for cylinder, 

edges, and handles are shown in Figure 3.16, Figure 3.17 and Figure 3.18. 

 

Figure 3.16 - Precision-Recall curves for cylinder geometry: cases 1 and 2 
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Figure 3.17 - Precision-Recall curves for edges geometry: cases 1 and 2 

 

Figure 3.18 - Precision-Recall curves for handles geometry: cases 1 and 2 

From these plots some very important results can be drawn. First of all, the observations made 

upstream of the analyses have been verified: in fact, by increasing 𝑑𝐹𝑃𝐹𝐻 (Case 1) or 𝑘𝐹𝑃𝐹𝐻 

(Case 2), an increase in Recall at the expense of Precision is observed, especially for the edges; 

furthermore, the values of Recall and Precision for cylinder and edges are much more promising 

than those obtained for the handles, where in particular a rather strange trend can be seen: 

starting from very few detected points, by relaxing the constraints on the identification of the 

candidates, in addition to increasing the Recall, Precision also increases, even if by very little. 

The comparison plots between the Precision-Recall curves of the different geometries analyzed 

are better shown in Figure 3.19. 
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Figure 3.19 - Precision-Recall curves comparison between the geometries analyzed 

From Figure 3.19 it is very clear that, unfortunately, handles are not such good geometries to 

rely on, unlike cylinders and edges.  

Therefore, from the Precision and Recall analyses, optimal values of 𝑑𝐹𝑃𝐹𝐻 and 𝑘𝐹𝑃𝐹𝐻 emerged 

to be used to effectively filter the FPFHs belonging to the geometry of interest. These values 

are shown in Table 3.4, reporting only the cases of cylinder and edges, given the relatively less 

satisfactory results of the handles. 

Filtering parameters Cylinder Edges 

𝒅𝑭𝑷𝑭𝑯 55 50 

𝒌𝑭𝑷𝑭𝑯 190 180 

Table 3.4 - Filtering parameters resulting from Precision-Recall analysis 

The use of FPFH-based signatures representative of the above-mentioned geometries is the 

underlying principle of another of the global registration algorithms presented in this Thesis 

work: the Label-based RANSAC method, whose pipeline is shown in Sections 3.4 (offline 

phase) and 3.5 (online phase). The procedure illustrated in this Subsection has been 

implemented in this global registration algorithm for the extraction of the points belonging to 

the cylinder and edges classes from the point cloud acquired online, using the tuning parameter 

values resulting from this study. 
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3.3. Hash Tables 

The underlying principle of the global registration algorithms presented in this thesis work is 

the following: the pose is estimated through the alignment between two sets of points, a set 

expressed in the SRF and a set expressed in the TRF. The set of SRF points is extracted from 

the point cloud measured online, while the set of corresponding TRF points is searched within 

Hash Tables appropriately built offline. Hash Tables are data structures built for the purpose of 

storing data in a way that makes their retrieval quick and efficient. 

A hash table stores a certain number of values by matching them with keys that contain 

information about the related value. Specifically, given a key, it is transformed, through an 

appropriate hash function, into an integer, called hash index or hash code, which identifies the 

cell of the hash table, called bucket, in which the associated value will be stored. A simplified 

diagram describing the working principle of a hash table is shown in Figure 3.20. 

 

Figure 3.20 - Working principle of a hash table 

A hash function converts the data to be indexed into an integer between 0 and 𝑚 − 1; therefore, 

the hash table is organized into 𝑚 buckets, each of which is identified by a specific hash code. 

The choice of the hash function strongly affects the construction of a hash table: an ideal hash 

function should be an injective function, i.e., a function that transforms different keys into 

different hash codes; however, being an ideal case, the adopted hash functions do not satisfy 

this property and, therefore, cases occur in which different keys are transformed into the same 
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hash code, thus generating collisions. There are several techniques to manage collisions; the 

most used are: 

• Open addressing, in which, in case of collisions, the first empty bucket is searched to 

store the value; 

• Separate chaining, in which, in case of collisions, the value is inserted into that same 

bucket, creating a linked list.  

In the case of interest, hash tables are built by storing triplets/pairs of points in buckets localized 

by specific hash codes depending on the geometric properties they exhibit. In particular, a 

similar approach to separate chaining is used to handle collisions, since in each bucket lists 

containing sets of points are stored: since the geometric information of the sets of points to be 

stored is exploited to generate the corresponding keys, the sets stored in the same bucket are 

characterized by similar geometric properties, and this will be an advantage for determining 

online the correspondences for alignment. A simplified scheme is shown in Figure 3.21. 

 

Figure 3.21 - Collision handling 

The following subsections describe in detail the hash table construction methodologies used in 

the algorithms, showing the different variants tested. 
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3.3.1. Training Hash Tables 

This subsection describes the construction methods of the Hash Tables (HTs) used in the final 

algorithms. These HTs, as the name suggests, are built by exploiting the scans of a training 

dataset rather than the complete model point cloud (variant presented in Subsection 3.3.2) since, 

by taking the sets of points to be stored - triplets or surflets, depending on the method considered 

- from LiDAR scans, all the stored sets are possible sets, i.e., observable by the sensor; instead, 

by randomly taking point triplets from a complete point cloud, there is the possibility that many 

stored point sets are not realizable. The following paragraphs describe the various training HTs 

implemented, built after a preliminary classification of the training scans, as explained in 

paragraph 3.3.1.1. The values of the HT construction tuning parameters, defined in the next 

paragraphs, are shown in paragraph 5.2.1.1. 

3.3.1.1. Point Cloud Classifier 

In Subsection 3.2.2, two main techniques for extracting FPFHs based on particular properties 

have been analyzed, in particular Persistence Analysis, which is based on the selection of the 

FPFHs furthest from the mean FPFH of the point cloud, the underlying principle of the PA-

based RANSAC method, and Point Cloud Segmentation, with the aim of determining FPFH-

based signatures for the identification of points belonging to a certain geometry, the underlying 

principle of the Label-based RANSAC method. As already mentioned at the beginning of 

Chapter 3, a third algorithm has been developed during this thesis work, which is based on the 

search for surflets with similar properties, named PPF-based RANSAC method. However, the 

adopted features and extraction techniques may present problems depending on the acquired 

scan: for example, if the acquired LiDAR point cloud is a scan that is made up of a single plane, 

the selection of the points belonging to the cylinder clearly fails, since that part is not visible in 

the scan, while the selection of the points belonging to the edges could easily fail, since the 

extraction algorithm does not recognize "sharp" areas given by the intersection of two planes. 

Therefore, the technique adopted by the Label-based RANSAC method is not at all suitable for 

this type of scan, as well as the Persistence Analysis, since the FPFH of the points of the 

considered scan will all be very similar. For the same reason, the search for surflets is not 

efficient in this case either. Therefore, in these algorithms a classification of the point clouds of 

the training dataset is first carried out by a Point Cloud Classifier block, distinguishing between 
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Complex Structure (CS) and Flat Structure (FS) scans. Specifically, while for CS scans, point 

and local normal information can be used to describe the shape of the target surface, FS scans 

do not experience local normal variations; therefore, specific HTs are created to separately 

handle these two types of scans efficiently. Clearly, in a similar way, the point cloud classifier 

shall be applied to the measured point cloud in the online phase to decide which HT must be 

used for pose estimation. The distinction between a CS scan and an FS scan is performed by 

evaluating the variance of the set of normal unit vectors computed over the entire point cloud. 

A low variance indicates aligned directions of the local normal unit vectors, therefore a 

geometrically simple point cloud. Specifically, the parameter used to distinguish between these 

scans is the sum of the variances of the normal components 𝜏𝜎𝑁
, which is compared to a 

threshold value 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
: if 𝜏𝜎𝑁

< 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
, the point cloud is classified as an FS scan, otherwise 

as a CS scan. As an example, two cases of CS scan and FS scan are shown in Figure 3.22 and 

Figure 3.23, respectively. 

 

Figure 3.22 - Two examples of CS scan normal distribution 

 

Figure 3.23 - Two examples of FS scan normal distribution 
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The point clouds shown in Figure 3.22 are CS scans, since cylinder and/or edges can be detected 

and, in general, the local geometry of the point clouds is quite varied (different FPFHs). The 

same cannot be said for the point clouds shown in Figure 3.23: the left scan is mostly made up 

of planar points, and edges are hard to detect, since there are no intersections between two 

planes; in the right scan the problem is much more evident, since only one plane is visible, the 

cylinder is not present at all, and the related FPFHs are expected to be all similar. The most 

important information to distinguish these two classes of point clouds is contained in the 

normals, whose variance is clearly lower in the case of the FS scans, since most of the normals 

are aligned with each other; therefore, as a parameter to distinguish the scans, the sum of the 

variances of the components of the normals calculated at each point of the scans is chosen: if 

this value falls below a certain threshold 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
, selected after experimental tests, the scan is 

classified as a FS scan, otherwise it is classified as a CS scan. Table 3.5 shows, as an example, 

the values of these parameters for the point clouds shown in Figure 3.22 and Figure 3.23. 

𝝉𝝈𝑵
 threshold Left point cloud Right point cloud 

CS scan (Figure 3.22) 0.39 0.51 

FS scan (Figure 3.23) 0.04 0.004 

Table 3.5 - Sum of variances of normal components of point clouds shown as an example 

As already mentioned, given the need for a classification between the point clouds, in order to 

adopt a certain solution depending on whether the scan considered is CS or FS, specific HTs 

have been created for both cases; in particular, as shown in the next paragraphs, a HT for CS 

scans 𝑯𝑻𝑪𝑺 has been built for each of the three methods mentioned above (Label-based, PA-

based and PPF-based RANSAC), using sets of points (triplets or surflet pairs) extracted from 

the CS scans of the training dataset, and a HT for FS scans 𝑯𝑻𝑭𝑺 common to all three 

algorithms, built using instead triplets of points extracted from the FS scans. 

3.3.1.2. Hash Table Construction for CS Scans in Label-Based RANSAC 

The 𝑯𝑻𝑪𝑺 used for the Label-based RANSAC method is a two-level HT that associates two 

hash codes to the stored point triplets, which are the cylinder and edge points, precisely 

extracted from the CS scans of the training dataset and converted to TRF using the knowledge 
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of the ground truth pose parameters. These hash codes are defined by the corresponding hash 

keys as follows: 

1.  The first hash code is a triplet of integer numbers, whose value is set using as key, 𝒈𝑘𝑒𝑦,  

the label of points; specifically, the values 0 and 1 respectively correspond to edge and 

cylinder points (e.g., 𝒈𝑘𝑒𝑦 = [𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑒𝑑𝑔𝑒] →  𝒈ℎ𝑎𝑠ℎ = [1, 1, 0]). 

2. The second hash code is a triplet of integer numbers, 𝒅ℎ𝑎𝑠ℎ. The values of 𝒅ℎ𝑎𝑠ℎ are 

obtained using as keys the inter-point distances of the considered point triplet, 𝒅𝑘𝑒𝑦. 

Specifically, the hash function converting the key into the corresponding code is shown 

in Equation 3.5, where 𝑚 is the number of buckets composing the HT and 𝐷 is the 

maximum distance between pairs of points (i.e. the target satellite maximum dimension) 

and, finally, the floor function returns the largest integer less than or equal to the 

argument, so as to have a triplet of integers as hash code. 

 𝒅ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚 ∗ 𝒅𝑘𝑒𝑦(𝑖)

𝐷
) , 𝑖 = 1,2,3 (3.5) 

The value assigned to 𝑚 strongly affects the number of triplets stored in a single bucket, since 

it determines the resolution with which point distances are sampled. Therefore, it plays a very 

important role in the online pose estimation process: a high 𝑚 results in a finer classification of 

point triplets, given the high sampling resolution of the inter-point distances, thus getting a low 

number of triplets in a single bucket, but with a good chance that these are good matches for 

alignment, and vice versa in the case of low 𝑚. Therefore, choosing an appropriate 𝑚 is crucial 

to have a good balance between computational efficiency and accuracy. 

Once the candidate points to be stored have been obtained, the following procedure for filling 

the HT is adopted, which consists in a sequence of operations performed for a predetermined 

number of cycles (𝑛𝑐𝑦𝑐𝑙𝑒𝑠). At each cycle, a triplet of points is randomly extracted and the three 

inter-point distances are computed: if these three distances are all larger than a threshold (𝑑𝑡ℎ𝑟𝑒), 

i.e., the condition in Equation 3.6 is met, the triplet is kept, otherwise it is discarded. Indeed, 

this approach is essential to avoid storing triplets of points that are excessively close to each 

other, which could make the subsequent pose determination inefficient. 
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 𝒅(𝑖) > 𝑑𝑡ℎ𝑟𝑒 , 𝑖 = 1,2,3 (3.6) 

For all the randomly generated triplets that pass this check, the tuple of points is stored in the 

HT, in terms of the two above-defined hash codes, three times in order to account for any 

possible order of points in the triplet. This operation is used to avoid the case in which, after 

extracting the triplet in the online phase, its correspondent is not found because it is saved in 

the HT considering a different order. 

3.3.1.3. Hash Table Construction for CS Scans in PA-Based RANSAC 

The 𝑯𝑻𝑪𝑺 used for the PA-based RANSAC method has a single level that associates a hash 

code to each of the stored point triplets. The key used is the triplet of distances between point 

pairs of the triplet, exactly as for the second level of the Label-based RANSAC 𝑯𝑻𝑪𝑺, and the 

hash function used is again given by Equation 3.5. 

As in the previous case, the CS scans of the training dataset, expressed in TRF, are first 

extracted. Then, Persistence Analysis is applied to the resulting dataset to find the set of 

persistent points to be used for HT construction. The tuning parameters adopted to apply the 

Persistence Analysis are the same as those shown in Table 3.2 for the LiDAR point cloud case. 

The procedure for filling the HT is very similar to the one used for the Label-based RANSAC 

method, with the only difference that now the point triplets are associated with one single hash 

code 𝒅ℎ𝑎𝑠ℎ. 

3.3.1.4. Hash Table Construction for CS Scans in PPF-Based RANSAC 

Before describing the 𝑯𝑻𝑪𝑺 construction procedure for PPF-based RANSAC method, it is 

necessary to introduce an additional reference system, used to obtain the hash keys to be 

associated with the surflets, called Local Reference Frame (LRF). The unit vectors 

corresponding to the LRF axes are defined as in Equation 3.7: 

 𝒖̂ =
𝒏1

‖𝒏1‖
, 𝒗̂ =

𝒏1 × 𝒏2

‖𝒏1 × 𝒏2‖
, 𝒘̂ = 𝒖̂ × 𝒗̂ (3.7) 
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where 𝒏1 and 𝒏2 represent the normals in the first and second point of the surflet, respectively. 

The LRF is assumed to be centered at the first point of the surflet. Instead, the SRF is arbitrarily 

chosen. A simplified representation of the surflet and the defined LRF are shown in Figure 3.24. 

 

Figure 3.24 - Graphical representation of a surflet and the defined LRF 

The 𝑯𝑻𝑪𝑺 built for the PPF-based RANSAC method has a single level that associates a hash 

code to each of the stored surflets. So, unlike the two 𝑯𝑻𝑪𝑺 built for Label-based RANSAC 

and PA-based RANSAC algorithms, this one does not rely on point triples, but on surflets 

associated with a 4D key containing three distance information and one angular information: 

1. The three distance informations are the three coordinates of the relative position vector 

between 𝒑1 and 𝒑2, expressed in LRF (𝒅𝐿𝑅𝐹); 

2. The angular information is the angle 𝛼 between the two normals. 

Since the relative distance vector in SRF and the rotation matrix from SRF to LRF are known, 

the relative distance vector is simply transformed into the LRF. The formulas shown in 

Equation 3.8 and Equation 3.9 are used: 

 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹 = [𝒖̂ 𝒗̂ 𝒘̂]𝑇 (3.8) 

 𝒅𝐿𝑅𝐹 = 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹 𝒅𝑆𝑅𝐹  (3.9) 

Once the key 𝒔𝑘𝑒𝑦 = [𝒅𝐿𝑅𝐹; 𝛼] is defined, the 4D hash code is generated using the hash function 

reported in Equation 3.10 and Equation 3.11: 
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  𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚∗𝒅𝐿𝑅𝐹(𝑖)

𝐷
) ,  𝑖 = 1, 2, 3 (3.10) 

 
 𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (

𝑚𝑎∗𝛼

𝐴
) ,  𝑖 = 4 (3.11) 

where 𝑚 is the number of buckets for the coordinates, 𝐷 is the maximum distance between 

point pairs and 𝒅𝐿𝑅𝐹 is the tuple of the three coordinates previously defined, while 𝑚𝑎 is the 

number of buckets for the angles, 𝛼 is the angle between the respective normals and 𝐴 is the 

upper bound of the allowed angles. Surflets are generated from the CS scans of the training 

dataset, expressed in TRF. To build this 𝑯𝑻𝑪𝑺, the following sequence of operations is 

performed for 𝑛𝑐𝑦𝑐𝑙𝑒𝑠: one of these scans is randomly selected and a surflet is randomly taken. 

At this point, a condition is imposed on the angle 𝛼 between the surflet normals, which must 

not be close to either 0° or 180°. The main reason behind this condition is the fact that, in the 

extreme cases where 𝛼 was 0° or 180°, the normals would be aligned, and an LRF defined as 

above could not be constructed: in fact, the unit vector 𝑣 is computed as the cross product 

between the two normals of the surflet, which would be zero if the normals were parallel; 

moreover, this generally represents an unfavourable condition for recognition: an 𝛼 around 90° 

would be preferable, for example, indicating that the two points in the surflet belong to two 

orthogonal planes and not to the same plane. In paragraph 5.2.1.1, the boundaries 𝛼𝑚𝑖𝑛 and 

𝛼𝑚𝑎𝑥 within which the angle is to be contained are defined. If the angle condition is not 

satisfied, the cycle starts again; if it is satisfied, another condition is set on the Euclidean 

distance 𝑑 between the two points of the surflet, as shown in Equation 3.12: 

 𝑑 > 𝑑𝑡ℎ𝑟𝑒  (3.12) 

If this condition is also satisfied, the three coordinates of the distance vector 𝒅𝐿𝑅𝐹 are defined. 

Once the key 𝒔𝑘𝑒𝑦 is obtained, the hash code 𝒔ℎ𝑎𝑠ℎ is generated through Equation 3.10 and 

Equation 3.11 and, finally, the surflet is stored in the bucket localized by the computed hash 

code, two times in order to account for the order of points and normals in the surflet. 

It is very important to note that, for the PPF-based RANSAC case, no feature extraction 

technique is performed, unlike what has been seen for the Label-based RANSAC algorithm and 

for the PA-based RANSAC one. 
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3.3.1.5. Hash Table Construction for FS Scans 

As already mentioned, in addition to the 𝑯𝑻𝑪𝑺, built for each of the presented methods, a further 

HT has been built, 𝑯𝑻𝑭𝑺, common to all three methods, using exclusively the FS scans of the 

training dataset. It is built with the following procedure. All the FS scans are expressed in TRF 

using the corresponding ground truth pose and merged into a single set. Therefore, the same 

approach described for the generation of Label-based and PA-based RANSAC 𝑯𝑻𝑪𝑺 is 

adopted, thus storing triplets of points. The only difference is that a triplet is only identified by 

the second hash code defined according to Equation 3.5. Given the aforementioned problems 

in handling surflets with parallel normals, mentioned in paragraph 3.3.1.4, even for the PPF-

based RANSAC method the FS scan case is managed using point triplets rather than surflet 

pairs. 

3.3.2. Model Hash Tables 

In addition to the 𝑯𝑻𝑪𝑺 training HTs, further variants have been developed that, instead of using 

training scans, use the complete model point cloud. Such HTs have been generated only for the 

Label-based and PA-based RANSAC methods and they also store triplets according to the same 

procedure, the same keys and the same hash functions, with the only following difference: 

1. For the Label-based RANSAC method, triplets are randomly selected from the set of 

points belonging to the cylinder and the edges of the entire model point cloud; 

2. For the PA-based RANSAC method, instead, in paragraph 3.2.2.2. it has been shown 

that Persistence Analysis tends to extract points belonging to the most particular 

geometries, such as the toroid, the handles, the edges, excluding planar points quite 

effectively. Therefore, triplets are randomly extracted from the point cloud model, 

excluding planes. 

Simulations have been performed using both 𝑯𝑻𝑪𝑺 construction approaches (training and 

model HTs) for Label and PA-based RANSAC algorithms. In paragraph 5.2.2.1, a comparison 

between the two HT construction methodologies is reported. Again, information about tuning 

parameters is given in paragraph 5.2.1.1. 
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An alternative to fixing the number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 for the construction of the training and 

model HTs could have been to fix the number of sets of points (triplets/surflets) to be stored 

and repeat the cycle until the preset number is reached, in such a way as to have HTs whose 

size is not linked to the randomness with which the triplets/surflets are taken, since not all of 

them are stored, as seen in the previous sections, but only those that exceed the set distance 

thresholds. 

3.4. Overview of the Offline Phase of the Algorithms 

In this Section, an overview of the Offline phase of the developed algorithms is shown. For pre-

processing operations, the inputs used are the model point cloud, the training dataset, defined 

as the 80% of the 1000 scans dataset, as mentioned in paragraph 3.2.2.3, and, in the case of 

Label-based RANSAC, the target primitives point clouds. 

3.4.1. Label-Based RANSAC 

Figure 3.25 shows a block diagram detailing the offline pre-processing phase of the Label-based 

RANSAC method. 

 

Figure 3.25 - Label-based RANSAC offline block diagram 

From the figure it can be observed that: 
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1. Given as input the point clouds of the geometric primitives (target primitives point 

clouds), obtained, as explained in paragraph 3.2.2.3, by subdividing the satellite CAD 

model in Blender environment and generating dense point clouds from them, these enter 

a Labelling block, whose outputs are both the FPFH-based signatures, i.e. the 6 FPFH, 

each representing a geometry, averaged over the entire training dataset, and the "exact" 

cylinder and edge points from the scans of the training dataset, to build the 𝑯𝑻𝑪𝑺; 

2. Given as input the training dataset, this is used to build 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.2) and 

𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5); 

3. Given as input the model point cloud, it is downsampled, with a voxel size of 0.025 𝑚, 

and is used for the construction of a KDTree of the point cloud, which will be 

fundamental in the online phase for the evaluation of the alignment quality. 

Downsampling is applied because it allows a reduction of the computational time in 

performing such operation. Of course, for this operation, also the point cloud measured 

online is downsampled with the same voxel size. 

3.4.2. PA-Based RANSAC 

Figure 3.26 shows a block diagram detailing the offline pre-processing phase of the PA-based 

RANSAC method. 

 

Figure 3.26 - PA-based RANSAC offline block diagram 

From the figure it can be observed that the offline phase for the PA-based RANSAC method is 

simpler than the Label-based RANSAC one, being the outputs only 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.3), 

𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5) and the KDTree of the model point cloud.  
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3.4.3. PPF-Based RANSAC 

Figure 3.27 shows a block diagram detailing the offline pre-processing phase of the PPF-based 

RANSAC method.  

 

Figure 3.27 - PPF-based RANSAC offline block diagram 

From the figure it can be observed that the PPF-based RANSAC method offline phase is the 

simplest among the proposed HT-based algorithms, since it does not require any feature 

extraction steps; the outputs are 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.4), 𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5) and the 

KDTree of the model point cloud. 

3.5. Initial Pose Determination 

In this Section, the initial pose guess determination phase for Label-based, PA-based and PPF-

based RANSAC methods is described in detail, exploiting the HTs built offline and the 

analyzed feature extraction techniques (in the cases of the Label-based and PA-based RANSAC 

methods). 

3.5.1. Label-Based RANSAC 

Figure 3.28 shows the Label-based RANSAC online block diagram. Once the point cloud is 

measured online, it is classified as a CS or FS scan using the same approach adopted in the 

offline phase (paragraph 3.3.1.1). 
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Figure 3.28 - Label-based RANSAC online block diagram 

While all the points belonging to an FS scan are part of the set of candidates (𝑲) sent in input 

to the HT lookup block, an additional processing step is required to obtain 𝑲 from a CS scan, 

being only the subset of cylinder and edge points. To identify the points corresponding to these 

classes, their FPFHs must be compared with the FPFH-based signature obtained for each class. 

This comparison is done through the double step of k-NN retrieval and Reciprocity Test 

described in the analysis of paragraph 3.2.2.3, with the tuning parameters 𝑘 and 𝑑 exactly equal 

to the optimal ones resulting from the Precision-Recall curves (Table 3.4). Once the set 𝑲 is 

obtained, it enters the HT lookup block, explained in Subsection 3.5.4, whose output is the 

initial pose guess of the pose. 

3.5.2. PA-Based RANSAC 

Figure 3.29 shows the PA-based RANSAC online block diagram. From the figure it can be seen 

that the online phase for the PA-based RANSAC method is very similar to the Label-based 

RANSAC one; the only difference is that, in case the measured point cloud is classified as CS 

scan, PA is applied to extract the set 𝑲 to be used for the HT lookup step (Subsection 3.5.4). 
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The tuning parameters adopted to apply the PA are the same as those shown in Table 3.2 for 

the LiDAR point cloud case. 

 

Figure 3.29 - PA-based RANSAC online block diagram 

3.5.3. PPF-Based RANSAC 

Figure 3.30 shows the PPF-based RANSAC online block diagram. 

 

Figure 3.30 - PPF-based RANSAC online block diagram 
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From the figure it can be seen that, consistently with the offline phase, if the point cloud is 

classified as a CS scan, there is no candidate extraction phase, but the entire point cloud 

constitutes the set 𝑲 that enters the HT lookup phase (Subsection 3.5.4). 

3.5.4. Hash Table Lookup 

This Subsection analyses in more detail what happens in the HT lookup block encountered in 

Figure 3.28, Figure 3.29, Figure 3.30.  

Once the set 𝑲 of SRF candidate points is obtained from the measured point cloud, an iterative 

procedure is started to search for correspondences between measured and model points thus 

being able to get a pose solution aligning the two point clouds. Specifically, at each iteration, a 

random triplet/surflet of points (depending on the method considered) is extracted and, after a 

check on the imposed filtering conditions, i.e. the condition on distances in the case of the Label 

and PA-based RANSAC methods, 𝒅(𝑖) > 0.025 𝑚, 𝑖 = 1,2,3, or the conditions on both 

distances and angle between normals in the case of the PPF-based RANSAC one, 𝑑 > 𝑑𝑡ℎ𝑟𝑒 

and 𝛼𝑚𝑖𝑛 < 𝛼 < 𝛼𝑚𝑎𝑥, the hash codes described in Section 3.3.1 are computed and used to 

access the corresponding HT bucket. In general, each bucket may contain N different triplets of 

points in TRF, where each triplet represents a candidate correct association to the triplet of 

candidate points from the measured point cloud. For each of the 𝑁 potential associations, a pose 

guess is computed using the most appropriate alignment algorithm depending on the method 

considered (paragraph 3.5.4.1). Then, the quality of this pose guess is computed by evaluating 

the percentage of inliers 𝑖𝑛% downstream of the alignment. Two alignment quality assessment 

approaches have been investigated, presented in paragraph 3.5.4.2. The iterative procedure 

stops as soon as a threshold representing the minimum desired percentage of inliers (𝑖𝑛%,𝑡ℎ𝑟𝑒) 

is reached. If it is not reached, the other 𝑁 potential associations are tested and, if it is still not 

reached, the cycle restarts with the random selection of a triplet/surflet from 𝑲.  

Figure 3.31 shows a block diagram describing the HT lookup phase for the presented methods. 
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Figure 3.31 – HT lookup. This diagram is representative of both the CS and FS case 

3.5.4.1. Alignment Algorithms 

The alignment algorithms used in this thesis work are essentially two, depending on whether it 

uses point triplets or surflets to determine the pose. In particular, the implemented algorithms 

are rigid registration algorithms, therefore they do not take into account variations in scale for 

example. 

Triplets Alignment 

The alignment algorithm implemented for the Label-based and PA-based RANSAC methods 

exploits point triplets to compute the pose matrix from SRF to TRF. The rigid registration 

problem between two sets of points can be formalized as follows. 

Given two sets of 3D points: 

• A set of points expressed in the SRF {𝒑𝑖}, 𝑖 = 1,2, … , 𝑛 

• A set of points expressed in the TRF {𝒒𝑖}, 𝑖 = 1,2, … , 𝑛 

The goal is to find a rotation matrix 𝑹 and a translation vector 𝒕 such that the problem in 

Equation 3.13 is solved: 
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 𝒒𝒊 ≈ 𝑹𝒑𝒊 + 𝒕 (3.13) 

This is a least-squares problem, in fact R and t must be such as to minimize the quadratic error 

between the transformed points of the model point cloud and those of the LiDAR point cloud, 

as reported in Equation 3.14: 

 Σ2(𝑹, 𝒕) = ∑‖𝒒𝑖 − (𝑹𝒑𝑖 + 𝒕)‖2

𝑛

𝑖=1

 (3.14) 

The algorithm used for the alignment of the triplets of points makes use of the Singular Value 

Decomposition (SVD) [50]. The steps followed are given below. 

First, the centroids of both sets of points are computed, as shown in Equation 3.15.  

 𝒑 =
1

𝑛
∑ 𝒑𝑖

𝑛

𝑖=1

, 𝒒 =
1

𝑛
∑ 𝒒𝑖

𝑛

𝑖=1

 (3.15) 

Then, the centroids of the related sets are subtracted from each point, thus obtaining two new 

sets of points centered with respect to their centroids, as reported in Equation 3.16. 

 𝒑𝑖
′ = 𝒑𝑖 − 𝒑, 𝒒𝑖

′ = 𝒒𝑖 − 𝒒 (3.16) 

In this way, rotation and translation are decoupled. In fact, the original least-squares problem 

is now reduced to rotation only, and can be formulated as reported in Equation 3.17.  

 Σ2(𝑹) = ∑‖𝒒𝑖
′ − 𝑹𝒑𝑖

′‖2

𝑛

𝑖=1

 (3.17) 

Therefore, the problem is broken into two parts: 

1. Find R to minimize Σ2 in Equation 3.17, a step that will be performed through the SVD; 

2. Find 𝒕 through Equation 3.18: 

 𝒕 = 𝒒 − 𝑹𝒑 (3.18) 

Once the two new sets of points have been calculated, the covariance matrix is constructed by 

using Equation 3.19: 
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 𝑯 = ∑ 𝒑𝑖
′𝒒𝑖

′𝑇

𝑛

𝑖=1

 (3.19) 

On the obtained matrix, the SVD is performed, decomposing 𝑯 into three matrices through 

Equation 3.20: 

 𝑯 = 𝑼𝑺𝑽𝑻 (3.20) 

Finally, the optimal rotation matrix 𝑹 that aligns the two sets of points is given by Equation 

3.21: 

 𝑹 = 𝑽𝑼𝑻 (3.21) 

However, it is necessary to verify that the determinant of 𝑹 is positive, specifically, that 

𝑑𝑒𝑡(𝑹)  =  1. If 𝑑𝑒𝑡(𝑹)  <  0, it means that the operation includes a reflection, which is 

corrected by changing the sign of the last column of the matrix 𝑽. 

Once the rotation matrix 𝑹 has been calculated, the translation vector 𝒕 is easily calculated using 

Equation 3.18. For this problem to have a solution, it is sufficient that the sets of points consist 

of three non-collinear points. 

Surflets Alignment 

The alignment algorithm used for the PPF-based RANSAC method is different to the one 

adopted by Label-based and PA-based RANSAC methods, since it aligns surflets rather than 

triplets. Specifically, the surflet expressed in SRF and the corresponding one expressed in TRF 

are aligned using an ad-hoc algorithm that separately solves the rotation and translation 

problems. 

First, it computes the rotation quaternion 𝒓 from SRF to TRF as a product of two quaternions 

𝒓𝟏 and 𝒓𝟐, as shown in Equation 3.22: 

 𝒓 = 𝒓𝟏 ⊗ 𝒓𝟐 (3.22) 

The two quaternions represent the following rotations: 
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1. The first quaternion 𝒓𝟏 aligns the difference vectors of points, aiming to rigidly rotate 

one surflet on the other without considering the information on the normals; 

2. The second quaternion 𝒓𝟐 aligns the projections of the normals on a plane orthogonal to 

the difference vector. 

After computing the rotation quaternion, the translation vector 𝒕 is computed through the 

difference between the centroid of the surflet 𝒒, expressed in TRF, and the centroid of the surflet 

𝒑, expressed in SRF and rotated through the computed quaternion 𝒓, as shown in Equation 3.23: 

 𝒕 = 𝒒 − 𝒓𝒑𝒓∗ (3.23) 

where 𝒓∗ is the conjugate of 𝒓.  

The basis of this procedure is the assumption that, in the case where the points are not too close, 

the direction of the point difference vector is more reliable than the direction of the estimated 

normals; therefore, the difference vectors are perfectly aligned, while the normals contribute 

equally to an average rotation angle about the axis that is given by the aligned difference 

vectors. 

3.5.4.2. Alignment Evaluation  

The quality of the pose hypotheses determined through the alignment algorithm is evaluated in 

RANSAC style by counting the inliers. To make this search faster, without necessarily having 

to check all the possible combinations of point triplets, a percentage of inliers to be reached is 

set as a stop condition. Two main approaches have been developed for assessing alignment 

quality: the Nearest Neighbor approach and the Binary Matching with 3D voxel grid. 

Nearest Neighbor approach 

The Nearest Neighbor (NN) approach is based on finding, for each point of the measured point 

cloud transformed in TRF based on the pose guess, the NN between the points of the model 

point cloud, and calculating the Euclidean distance between the pairs of correspondences. If the 

distance value is lower than a certain threshold 𝑑𝑖𝑛,𝑡ℎ𝑟𝑒, the point of the measured point cloud 

would be counted as an inlier. These inliers are searched leveraging the KDTree of the model 
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point cloud to efficiently find the NNs between the two point clouds. In this way, the percentage 

of inliers 𝑖𝑛% can be computed as shown in Equation 3.24: 

 𝑖𝑛% =
#𝑖𝑛𝑙𝑖𝑒𝑟𝑠

#𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100 (3.24) 

In order to limit the computational time of this step, both the model and the measured point 

cloud are downsampled with the same voxel size 𝑣𝑠𝑖𝑧𝑒. As already mentioned at the beginning 

of Section 3.5.4, if this percentage reaches a predetermined value 𝑖𝑛%,𝑡ℎ𝑟𝑒, then the alignment 

is considered good and therefore the HT lookup cycle stops. Specifically, two thresholds of 

inlier percentages are defined in this discussion, indicated as 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐶𝑆 and 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐹𝑆 

depending on whether the scan considered is respectively a CS or a FS scan. The values of these 

tuning parameters are shown in paragraph 5.2.1.1. 

Binary Matching with 3D Voxel Grid 

The Binary Matching (BM) approach, instead, is based on the counting of inliers found by 

checking whether the points of the transformed measured point cloud fall within the voxels of 

a grid representing the model point cloud. More precisely, the model point cloud is replaced by 

a 3D grid of voxels, built offline and encoded through a HT, called in this discussion 𝑯𝑻𝑣𝑜𝑥𝑒𝑙; 

𝑯𝑻𝑣𝑜𝑥𝑒𝑙 basically represents a 3D dictionary in which, for each bucket (corresponding to the 

single voxel) that contains at least one point of the model point cloud, the digit “1” is stored.  

The hash code associated with the bucket containing the information "1" is obtained using as a 

key the triplet of coordinates of the generic point of the model point cloud, using the hash 

function shown in Equation 3.25: 

 𝒗ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚 ∗ 𝒅(𝑖)

𝐷
) , 𝑖 = 1,2,3 (3.25) 

The hash function used is the same one already seen for the construction of the HTs explained 

in Section 3.3, where 𝑚 represents the number of buckets, 𝒅 represents the coordinate vector 

of the generic point of the model point cloud, while 𝐷 has been left unchanged with respect to 

the definition given in Section 3.3. 
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Clearly, if the number of buckets 𝑚 chosen is small, and therefore the voxels of the grid are 

large enough to contain more than one point, if a second point is associated with a bucket 

already containing the information "1", no operation is performed and the next point is 

considered. 

The higher the number of buckets 𝑚, the denser the voxel grid (i.e., the smaller the size of each 

individual voxel), and this would therefore be equivalent to requiring a greater precision in the 

alignment to obtain a high percentage of inliers, at the expense of increased computational time. 

Given these premises, the evaluation of the alignment quality using this approach is described 

below: in the online phase, for each point of the transformed measured point cloud, the 

corresponding hash code is computed, through the hash function in Equation 3.25, and it is 

checked whether the corresponding bucket contains the value "1" or not; if so, the inlier counter 

is increased by 1. Then, in the same way as the NN approach, it is possible to calculate the 

percentage of inliers 𝑖𝑛% by dividing the total inliers obtained by the number of points of the 

downsampled measured point cloud (Equation 3.24) and, if 𝑖𝑛% > 𝑖𝑛%,𝑡ℎ𝑟𝑒, the alignment is 

considered good and the HT lookup cycle stops.  

Simulations have been performed using both the alignment evaluation approaches (NN and 

BM) for Label and PA-based RANSAC algorithms. In paragraph 5.2.2.2, a comparison between 

the two variants is reported, but limited to the estimation of the initial pose guess, since the 

evaluation of the flip checks has only been implemented using the NN approach. 

3.6. Post-Processing 

This Section describes the refinement procedure of the initial pose guess, through an application 

of ICP and a series of checks aimed at correcting any incorrect poses that have passed the HT 

lookup phase. A diagram of the pose refinement procedure is shown in Figure 3.32. 
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Figure 3.32 – Post-processing 

3.6.1. Iterative Closest Point  

Once the pose between measured and model point clouds has been determined, it is refined 

through the Iterative Closest Point (ICP). There are two types of ICP algorithms implemented 

in Open3D:  

1. Point to Point (P2P) ICP. It aims to minimize the Euclidean distance between 

corresponding points in the measured and model point clouds; it establishes 

correspondences based on the closest point pairs; 

2. Point to Plane (P2L) ICP. It minimizes the distance between points and planes in the 

model point cloud; it establishes correspondences between points in the measured cloud 

and the nearest planes in the model cloud. 

For the algorithms presented in this work, the P2L ICP is implemented. 

Given as input to the function the transformation matrix resulting from the HT-based algorithm, 

in this phase, through the ICP steps, the transformation matrix is recursively calculated for a 

predetermined maximum number of iterations or until convergence is reached, thus updating 

the pose from time to time. Equation 3.26 shows the pose update from iteration i to iteration 

i+1 via ICP: 

 𝑻𝑖+1 = 𝑻𝐼𝐶𝑃
𝑖,𝑖+1 𝑻𝑖 (3.26) 

After updating the pose matrix, the Root Mean Square Error, RMSE (used to impose a stop 

condition in case of convergence) and the cost function (which will be used to develop an 
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Autonomous Failure Detection algorithm, explained in Section 5.3) are evaluated. In particular, 

the cost function is calculated through Equation 3.27: 

 
𝐶(𝑻) = ∑ (𝒏𝒒

𝑇 ⋅ (𝑻𝒑 − 𝒒))
𝟐

(𝒑,𝒒)∈𝑲

 
(3.27) 

where: 

• 𝒑 represents the point of the correspondence pair (𝒑, 𝒒) belonging to the measured point 

cloud. 

• 𝒒 represents the point of the correspondence pair (𝒑, 𝒒) belonging to the model point 

cloud. 

• 𝑻 represents the SRF to TRF transformation matrix. Therefore, 𝑻𝒑 represents the 

transformed point of the measured point cloud, which must align to the corresponding 

point in the model point cloud 𝒒. 

• 𝒏𝒒 represents the normal at the point 𝒒. 

• 𝑲 represents the set of correspondences that comes out of the current ICP iteration. 

The difference with respect to the RMSE is simply that, in the definition of the RMSE, the sum 

of the squared differences is divided by 𝑁 and put under root. As mentioned above, the RMSE 

value is used to impose a further condition, shown in Equation 3.28: 

 𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸𝑖−1 < 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 (3.28) 

If this condition is satisfied, i.e., the difference between the RMSE of two consecutive iterations 

is lower than a certain threshold 𝑖𝑐𝑝𝑐𝑜𝑛𝑣,  the algorithm has converged and so it stops before 

reaching the maximum number of iterations imposed. 

3.6.2. Ambiguity Reduction Process  

This Subsection is dedicated to the explanation of additional checks that have been 

implemented downstream of the ICP to strengthen the algorithms developed in the presence of 

incorrect poses that have passed the HT lookup phase: given the geometry of the satellite under 

study, it is possible that the inlier percentage set to exit the HT lookup block is satisfied with 
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an incorrect pose; therefore, it is necessary to implement checks that allow these cases to be 

identified and the correct pose to be estimated. 

A case of incorrect pose that can exceed the threshold of the percentage of inliers is that of a 

satellite flipped, about its large planar surface, w.r.t the correct position. Therefore, the 𝑻𝐼𝐶𝑃 

transformation, that is the pose solution produced by the ICP-based pose refinement step 

expressed as a 4x4 roto-translation matrix from SRF to TRF, could correspond either to the 

desired transformation from SRF to TRF (𝑻𝑆𝑅𝐹→𝑇𝑅𝐹) or to a transformation from SRF to a 

Flipped Target Reference Frame (FTRF). Figure 3.33 shows the aforementioned problem. 

 

Figure 3.33 - a) Case of correctly estimated pose: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹. b) Case of incorrect 

pose that has passed the HT lookup phase: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹→𝐹𝑇𝑅𝐹 

Therefore, two possible pose solutions can be investigated, which are shown in Equation 3.29 

and Equation 3.30: 

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹1
= 𝑻𝐼𝐶𝑃 (3.29) 

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹2
= 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹𝑻𝐼𝐶𝑃 (3.30) 

where 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 is a matrix dependent on the target reference geometry. Given these two 

possible solutions, the percentage of inliers is calculated for both cases, and the matrix 

corresponding to the case with the highest percentage of inliers is selected as the final one. 
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The considered flip cases are shown in Figure 3.34. 

 

Figure 3.34 - Flips implemented. a) Flip check performed for all scans. b) FS Flip check: 

upper plane; c) FS Flip check: lower plane 

Given the Client Satellite geometry, two different types of flip checks are performed: one 

applied to both CS and FS scans  (a), and an additional check for FS scans only (b, c), which is 

performed before (a). The latter flip check type addresses the case in which the corresponding 

planes match, but with opposite normal orientation. Therefore, to detect such a case, a 

comparison is made between the direction of corresponding normal vectors. If the median angle 

between corresponding normals is greater than 90°, it is highly likely that the FS scan is upside 

down, and therefore it is necessary to apply, downstream of 𝑻𝐼𝐶𝑃, a 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 transformation 

to flip the measured point cloud. The choice of the median instead of the mean derives from the 

fact that, in this way, the final angle value is not influenced by outliers. Since the FS scan 

considered (upper or lower plane) is not known a priori, the transformations related to both 

cases (b, c) are applied and the best one in terms of number of inliers is selected. 

Table 3.6 shows rotations and translations composing the transformation matrix 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹, 

where ℎ is the height of the hexagonal main body. In particular, regarding rotation, the above 

mentioned flips are tested for two cases, i.e., the rotation around the pitch axis and around the 

yaw axis, since, depending on the axis around which the rotation is performed, the detection of 

the handles can make the difference in recognizing the correct pose. The best one is selected by 

counting the inliers. 
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 𝜸, 𝜷, 𝜶 rotation sequence [deg] 𝒙, 𝒚, 𝒛 translation [m] 

𝑻𝑭𝑻𝑹𝑭→𝑻𝑹𝑭 

Case (a) 
0, 180, 0 −ℎ, 0, 0 

180, 0, 0 −ℎ, 0, 0 

Case (b) 
0, 180, 0 0, 0, 0 

180, 0, 0 0, 0, 0 

Case (c) 
0, 180, 0 −2ℎ, 0, 0 

180, 0, 0 −2ℎ, 0, 0 

Table 3.6 – Flip matrices 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 defined 

The reason why the flip check is performed downstream of the ICP is simply due to the fact 

that, if the alignment obtained upstream were very rough (therefore, percentage of inliers just 

above the minimum to exit the HT lookup cycle), even if the flip were correct, there would be 

a higher probability of failing to distinguish the correct case from the flipped case by comparing 

the respective percentages of inliers: indeed, even more so in this specific case, the increase in 

the percentage of inliers downstream of the flip is mainly entrusted to the good alignment of 

the points off plane (i.e., those points belonging to the toroid, the cylinder and the sphere); 

therefore, the better the starting alignment, the easier it will be to see this difference in the 

percentage. 
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4. Open3D Global Registration Algorithms 

The global registration algorithms developed during this thesis work have been compared with 

algorithms already implemented in Open3D. These algorithms are FPFH-based RANSAC and 

Fast Global Registration (FGR) [46], briefly described in this Chapter. 

4.1. FPFH-Based RANSAC 

The implementation procedure of the Open3D FPFH-based RANSAC is described below. Both 

the model and the measured point cloud are downsampled with voxel size 𝑣𝑠𝑖𝑧𝑒, normals are 

estimated, and then, for each point of the point clouds, the FPFH is calculated.  

At this point, the RANSAC algorithm is applied: iteratively, 𝑛 points are randomly extracted 

from the model point cloud; then, the set of corresponding points in the measured point cloud 

is identified by searching for the NN in the FPFH space. For a quick search, Open3D provides 

algorithms to filter the good matches: 

1. CorrespondenceCheckerBasedOnDistance. It checks the goodness of a match by 

measuring the distance between the corresponding points in the model and the measured 

point cloud downstream of the alignment. This distance is compared with a threshold 

entered as input; the match is considered valid if the distance between the points is 

below the threshold. The value of this tuning parameter is shown in paragraph 5.2.1.1. 

2. CorrespondenceCheckerBasedOnEdgeLength. It checks the quality of the 

correspondences from another point of view, that is, considering the length of the 

segments obtained from pairs of points on the model and on the measured point cloud. 

Specifically, given two points on the model point cloud and the two corresponding 

points on the measured point cloud, the two segments are constructed and the lengths 

are calculated (‖𝑒𝑑𝑔𝑒𝑚‖ and ‖𝑒𝑑𝑔𝑒𝑡‖, respectively). This condition is satisfied if the 

relations shown in Equation 4.1 are valid: 
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‖𝑒𝑑𝑔𝑒𝑚‖

‖𝑒𝑑𝑔𝑒𝑡‖
> 𝑡ℎ𝑟𝑒,

‖𝑒𝑑𝑔𝑒𝑡‖

‖𝑒𝑑𝑔𝑒𝑚‖
> 𝑡ℎ𝑟𝑒 (4.1) 

where 𝑡ℎ𝑟𝑒 is the threshold set in input (value shown in paragraph 5.2.1.1). In fact, it is 

possible to exploit the similarity between the geometries constructed on both point 

clouds, given the nature of the rigid transformation. 

3. CorrespondenceCheckerBasedOnNormal. It checks the consistency between the 

normals of two corresponding points in the two point clouds. In this case, given two 

corresponding points, one on the model and one on the measured point cloud, the angle 

between the normals is measured and compared with a certain threshold. The 

correspondence is considered valid if the angle between the normals is less than this 

threshold. 

The checks implemented in the classic Open3D FPFH-based RANSAC algorithm to find good 

matches are the first two. 

As highlighted in Chapter 3, a very similar concept has been applied in the development of the 

three global registration algorithms presented in this thesis. Specifically, the iterative sampling 

of correspondences, followed by inlier computation for alignment quality assessment, is a 

typical characteristic of RANSAC-based approaches and is effectively utilized in the HT-based 

methods. 

The matches that satisfy the above conditions are used to compute the transformation. A 

maximum number of iterations and a confidence probability (values shown in paragraph 

5.2.1.1) are set as stopping conditions for the algorithm, where the latter indicates, by definition, 

the desired probability that the RANSAC algorithm provides at least one useful result after 

running. 

More precisely, RANSAC returns a good result if, in at least one iteration, it selects only inliers 

from the dataset, when the 𝑛 points are randomly selected to compute the transformation. Using 

this definition of success probability 𝑝, that is, at least one iteration out of 𝑘, 𝑛 inliers are 

selected, the failure probability is defined as the probability that, in all 𝑘 iterations, a set of 

inliers is never selected, but at least one outlier is always selected among the 𝑛 points. This 

definition is shown in Equation 4.2: 
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 1 − 𝑝 = (1 − 𝑤𝑛)𝑘 (4.2) 

where 𝑤 represents the probability that a single selected point is an inlier, which is nothing but 

the inlier ratio (a number between 0 and 1 that has exactly the same meaning as the percentage 

of inliers previously seen). 

From Equation 4.2, given as input the value of the desired probability, it is possible to calculate 

the number of iterations needed through Equation 4.3: 

 𝑘 =
𝑙𝑜𝑔(1 − 𝑝)

𝑙𝑜𝑔 (1 − 𝑤𝑛)
 (4.3) 

Clearly, if the selected confidence level requires too high a number of iterations, the other stop 

condition, i.e. the maximum number of iterations, stops the algorithm, avoiding large 

computation times.  

The larger these two numbers are, the more accurate the result is, but also the more 

computational time is required for the algorithm to output the solution. 

4.2. Fast Global Registration 

In the Open3D tutorial, FGR is also presented as an algorithm for global registration, in contrast 

to the FPFH-based RANSAC approach. 

Using the same point cloud pre-processing procedure (downsampling, normal estimation, 

FPFH estimation), the FGR implementation follows, as already illustrated in Chapter 2 [34]. 

Again, the FGR algorithm takes as input the two point clouds subjected to downsampling, the 

two sets of FPFH, and a distance threshold for the identification of correspondences.  
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5. Experiments 

This Chapter presents the performance results produced by the developed global registration 

algorithms, which are compared with the Open3D FPFH-based RANSAC and FGR algorithms. 

5.1. Evaluation Metrics 

In this Section, the error metrics for evaluating the performance of the algorithms are defined. 

Given the quasi-symmetric geometry of the satellite under study, specifically around the roll 

axis, for the method evaluation, the symmetric variant of the estimated pose which minimizes 

the error is considered. Let 𝑻 be the pose ground truth and 𝑻̂ be the estimated pose, within the 

set of equivalent poses by symmetry, with the smallest error.  

The Average Distance of model points for Distinguishable (ADD) and for Indistinguishable 

(ADI) points are computed [51, 52], given a complete uniform model point cloud ℳ, which 

are defined in Equation 5.1 and Equation 5.2: 

 𝐴𝐷𝐷 = avg
𝒙∈ℳ

‖ 𝑻𝒙 − 𝑻̂𝒙‖ (5.1) 

 𝐴𝐷𝐼 = avg
𝒙1∈ℳ

 min
𝒙2∈ℳ

‖ 𝑻𝒙1 − 𝑻̂𝒙2‖ (5.2) 

Furthermore, for each testing sample, the translational and rotational errors are computed as 

shown in Equation 5.3 and Equation 5.4: 

 𝑡𝑒𝑟𝑟 = ‖𝒕 − 𝒕̂‖ (5.3) 

 𝜙𝑒𝑟𝑟 = 2 arccos|〈𝒒, 𝒒̂∗〉| (5.4) 

where 𝒕, 𝒒 are the translational and rotational components of 𝑻, while 𝒕̂, 𝒒̂ are the translational 

and rotational components of 𝑻̂. The rotational part is expressed in terms of quaternions: 

specifically, 𝒒 is the true attitude quaternion, 𝒒̂∗ is the conjugate of the estimated attitude 
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quaternion, while |〈𝒒, 𝒒̂∗〉| is the scalar part of the quaternion resulting from the quaternion 

product. 

These error metrics are used to compute the Success Rate (SR), which is defined as the 

percentage of correctly estimated poses, as shown in Equation 5.5: 

 𝑆𝑅 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

# 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 (5.5) 

A pose is considered correctly estimated if 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 are simultaneously 

satisfied.  

Finally, the computational time of the online phase is measured from the acquisition of the 

LiDAR point cloud to post-processing. The simulations are conducted on a machine equipped 

with an Intel(R) Core(TM) i9-14900K CPU @ 3.20 GHz and 64 GB DDR5 RAM. 

5.2. Performance Analysis 

The next Subsections show the results of the developed algorithms. The results are obtained by 

testing the global registration algorithms on a testing dataset composed by the 20% of the entire 

1000-scan dataset used for analyzes. 

In particular, in Subsection 5.2.1, the values of the tuning parameters set and the comparison 

results between the main algorithms, without and with post-processing, are shown; in 

Subsection 5.2.2, some comparisons are shown between different variants of the developed HT-

based algorithms; finally, in Subsection 5.2.3, additional results regarding further analyses 

carried out on the Open3D implementations are presented. 

5.2.1. Comparison of the Main Algorithms 

This Subsection presents the performance comparison results between the main variants of the 

developed HT-based algorithms and the Open3D FPFH-based RANSAC and FGR, 

appropriately modified by integrating to the already existing architecture the classification of 
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point clouds in CS and FS scans and the post-processing block (ICP + flip checks) also used 

for the HT-based algorithms (Subsection 3.6).  

As already seen in Chapter 3, some variants of the HT-based algorithms have been proposed, 

depending on: 

1. The offline 𝑯𝑻𝑪𝑺 construction methodology (model HT or training HT, Section 3.3); 

2. The alignment quality evaluation (NN or BM with the 3D voxel grid, paragraph 3.5.4.2). 

The performances of the Label-based RANSAC, PA-based RANSAC and PPF-based 

RANSAC algorithms shown in this Subsection are those obtained using the training HTs and 

the NN approach for alignment quality evaluation. 

5.2.1.1. Tuning Parameters 

Table 5.1 shows the values of the tuning parameters used for the construction of the HTs and 

defined in Subsection 3.3.1. 

Training 

HTs 
𝒏𝒄𝒚𝒄𝒍𝒆𝒔 

Hash function parameters Filtering parameters 

𝒎 𝑫 [𝒎] 𝒎𝒂 𝑨 [𝒅𝒆𝒈] 𝒅𝒕𝒉𝒓𝒆 [𝒎] 𝜶𝒎𝒊𝒏 [𝒅𝒆𝒈] 𝜶𝒎𝒂𝒙 [𝒅𝒆𝒈] 

Label 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A 

PA 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A 

PPF 𝑯𝑻𝑪𝑺 5e6 100 1.2 40 170 0.025 10 170 

𝑯𝑻𝑭𝑺 1e6 100 1.2 N/A N/A 0.05 N/A N/A 

Table 5.1 - Tuning parameters selected for training HTs construction 

Table 5.2 shows the tuning parameters used for normal, FPFH estimation and online extraction 

of the set of candidates 𝑲. 
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Label-based 

RANSAC 

method 

Normals FPFH 
Cylinder points 

extraction 

Edge points 

extraction 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯 

0.07 40 0.07 100 55 190 50 180 

PA-based 

RANSAC 

method 

Normals FPFH Persistence Analysis parameters 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝜷 𝒓𝒊 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

0.07 40 0.07 100 1 0.05, 0.07, 0.1 100 

PPF-based 

RANSAC 

method 

Normals FPFH 

No feature extraction step 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

0.07 40 N/A N/A 

Table 5.2 - HT-based normal, FPFH estimation and feature extraction tuning parameters 

where 𝑟 and 𝑚𝑎𝑥𝑛𝑛 for normal estimation are defined in Subsection 3.2.1, 𝑑𝐹𝑃𝐹𝐻 and 𝑘𝐹𝑃𝐹𝐻 

are defined in paragraph 3.2.2.3, while 𝛽, 𝑟𝑖 and 𝑚𝑎𝑥𝑛𝑛 for PA are defined in paragraph 3.2.2.2. 

Table 5.3 shows the tuning parameters used for normal and FPFH estimation for FPFH-based 

RANSAC and FGR. 

Method 
Normals FPFH 

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 

FPFH-based RANSAC 0.07 40 0.07 100 

FGR 0.1 40 0.1 100 

Table 5.3 - FPFH-based RANSAC and FGR normal and FPFH estimation tuning parameters 

The reason for the difference between FPFH-based RANSAC and FGR in the choice of 𝑟 for 

the computation of normals and FPFHs lies in the relatively better performance of FGR in the 

case of 𝑟 = 0.1 𝑚, compared to 𝑟 = 0.07 𝑚. 

Regarding point cloud classification, for the HT-based methods 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.1 has been set to 

distinguish CS scans from FS scans while, for FPFH-based RANSAC and FGR algorithms, 

𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.25 has been set since the workflow reported in [46], also reported in Chapter 4, 

involves the implementation of point cloud downsampling before estimating the normal unit 
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vectors, which therefore alters the threshold value to be considered. The value of voxel size set 

for point cloud downsampling is equal to 0.025 𝑚 and the threshold 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.25 is selected 

in such a way as to classify as FS scan and CS scan the exact same samples classified using 

𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.1 on the non-downsampled testing dataset. For completeness of the analyses, 

simulations have also been performed without downsampling of the point clouds (and therefore 

with the same threshold adopted for the HT-based methods), indeed demonstrating the greater 

effectiveness of FPFH-based RANSAC and FGR with downsampling. The results are shown 

in Subsection 5.2.3.  

Table 5.4 and Table 5.5 finally present the tuning parameter values for alignment evaluation 

and ICP, respectively, for the HT-based algorithms, selected through an iterative process to 

determine the optimal ones. 

Method 
Alignment evaluation 

𝒗𝒔𝒊𝒛𝒆 [m] 𝒅𝒊𝒏,𝒕𝒉𝒓𝒆 [m] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑪𝑺 [%] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑭𝑺 [%] 

HT-based 0.025 0.05 80 90 

Table 5.4 – Alignment evaluation tuning parameters adopted 

Method 
ICP 

𝒊𝒄𝒑𝒕𝒉𝒓𝒆 [m] 𝒏𝒊𝒕,𝒎𝒂𝒙 𝒊𝒄𝒑𝒄𝒐𝒏𝒗 [m] 

HT-based 0.05 100 10−6 

Table 5.5 - ICP tuning parameters adopted 

where: 

• 𝑣𝑠𝑖𝑧𝑒 is the voxel size downsampling parameter used to reduce the number of points of 

the model and the measured point cloud; 

• 𝑑𝑖𝑛,𝑡ℎ𝑟𝑒 is the distance threshold that allows the identification of inliers; 

• 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐶𝑆 and 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐹𝑆 represent the percentages of inliers to be satisfied for the pose 

to be considered good, respectively for CS and FS scans; 

• 𝑖𝑐𝑝𝑡ℎ𝑟𝑒 is the distance threshold set for the execution of the ICP; 

• 𝑛𝑖𝑡,𝑚𝑎𝑥 is the maximum number of ICP iterations; 
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• 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 is the convergence threshold, calculated as the difference between the RMSE 

of two consecutive iterations that, if reached, stops the ICP regardless of the number of 

iterations reached. 

Regarding FPFH-based RANSAC, instead, the number of points 𝑛, used to compute the initial 

pose guess, is set equal to 3; the input parameters of the 

CorrespondenceCheckerBasedOnDistance and CorrespondenceCheckerBasedOnEdgeLength 

functions (Section 4.1) are set equal to 0.05 𝑚 and 0.9 respectively and, finally, the 

convergence criteria of the algorithm, which are the maximum number of iterations and the 

confidence probability, are set to 100000 and 0.999, respectively; finally, for FGR, the only 

input parameter required by the Open3D function is the maximum correspondence distance, set 

equal to 0.05 𝑚. For both algorithms, the same values of 𝑖𝑐𝑝𝑡ℎ𝑟𝑒, 𝑛𝑖𝑡,𝑚𝑎𝑥 and 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 are used. 

5.2.1.2. Comparison Results 

Figure 5.1 shows the performance comparison between the five methods above mentioned both 

without and with the post-processing steps included into the algorithmic pipeline. The top 4 

plots show the percentage of samples of the testing dataset whose ADD/ADI, normalized with 

respect to the maximum size of the satellite, considered equal to 1.2 𝑚, falls below a certain 

threshold. The bottom 4 plots show the performance of the algorithms in terms of rotational and 

translational error 𝜙𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟, in ADD/ADI style, thus showing the percentage of samples of 

the testing dataset whose rotational/translational error falls below a certain angle/distance. The 

larger the area under the curve, the better the performance. For all the 8 plots the [min., max.] 

limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the samples of the testing 

dataset are reached with the worst RANSAC-based method. 

From the shown plots, first, it can be noted that FGR provides a poor accuracy compared to all 

the other techniques, proving inadequate for the type of problem studied. The reason for this 

difference may be the greater generality of the problem addressed, compared to the conditions 

tested in [34], in which the performance of FGR was evaluated on partially overlapping 

surfaces. 
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Figure 5.1 - Comparison results between the algorithms. The metrics compared are ADD, 

ADI (top 4 plots), rotational error and translational error (bottom 4 plots), without post-

processing (left column) and with post-processing (right column) 
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As for the RANSAC-based algorithms, the plots in the left column show a slight overall 

superiority of FPFH-based RANSAC. Furthermore, in the ADD plot, a jump in the percentage 

of samples when the ADD threshold gets slightly higher than 0.5 can be observed; this is caused 

by the flipped poses whose samples are included when this threshold on ADD is exceeded. This 

behavior is also visible in the plots of the translational and rotational errors without post-

processing; in particular, in the one of the rotational errors it is observed right before 180°, 

confirming the previous observation. On the other hand, the plots in the right column clearly 

show the significant improvement in the accuracy of the results due to the post-processing: 

indeed, assuming that for 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 the pose is correctly estimated, the 

simulations performed resulted in a SR of 98%, 98.5%, 98.5% and 98.5%, for FPFH-based 

RANSAC, Label-based RANSAC, PA-based RANSAC and PPF-based RANSAC, 

respectively, thus proving that the developed HT-based methods represent promising 

alternatives. It is worth highlighting that the addition of flip checks in the post-processing block 

contributed to the performance improvement of the FPFH-based RANSAC method: in fact, 

through simulations with and without flip checks, a difference in SR of 4.5% has been observed, 

therefore 93.5% in the case without flips and, as already mentioned, 98% in the case with flips, 

at the expense of an increase in the mean computational time of 0.067 𝑠. Finally, the 

computational times for both cases without and with post-processing are reported in Table 5.6. 

Method 

Computational time  

without post-processing [s] 

Computational time  

with post-processing [s] 

Mean Median Mean Median 

FPFH-based RANSAC 0.0965 0.0950 0.2511 0.2060 

Label-based RANSAC 0.3062 0.2136 0.4610 0.3309 

PA-based RANSAC 0.4441 0.3693 0.5331 0.4357 

PPF-based RANSAC 0.1098 0.1084 0.2420 0.1776 

FGR 0.0237 0.0230 0.2295 0.1670 

Table 5.6 - Time performance 

From Table 5.6, it can be observed that the Label-based and PA-based RANSAC algorithms 

are less performant than FPFH-based RANSAC and PPF-based RANSAC, which instead have 

comparable computational times. It is important to underline that the presented HT-based 
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implementations are not optimized, unlike FPFH-based RANSAC, whose implementation 

comes from the Open3D library. Therefore, this comparison is to be considered as preliminary. 

5.2.2. Comparison of Algorithm Variants 

In this Subsection, a series of comparisons between variants of the developed algorithms, 

anticipated in Chapter 3, are shown. These variants present different approaches for offline HT 

construction methodology (paragraph 5.2.2.1) and alignment quality assessment (paragraph 

5.2.2.2) and are tested on Label-based and PA-based RANSAC methods. 

5.2.2.1. Training Hash Table vs Model Hash Table 

This paragraph shows the comparison analysis between training and model HTs approaches. 

The tuning parameters for constructing the model HTs are the same as in Table 5.1, considering 

only the 𝑯𝑻𝑪𝑺 for Label and PA-based while, to manage the FS scans, the training HT is used. 

 

Figure 5.2 - Comparison of Label and PA-based RANSAC using training and model HT 

approaches, with post-processing. Left: ADD, ADI. Right: rotational and translational errors 
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Figure 5.2 shows the comparison between the two approaches for Label-based RANSAC and 

PA-based RANSAC algorithms. T indicates the approach that uses the training 𝑯𝑻𝑪𝑺, while M 

indicates the approach that uses the model 𝑯𝑻𝑪𝑺. Both these variants are compared using the 

NN approach for alignment quality assessment. The performances of the two variants are only 

compared with post-processing. The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such 

that 95% of the samples of the testing dataset are reached with the worst method, instead of 

96%, so that the curves can be distinguished a little more clearly. From plots shown in Figure 

5.2, it can be observed that the two variants are very comparable in the case of the PA-based 

RANSAC method, but with a clear advantage for the training HT variant in the case of the 

Label-based RANSAC one. The simulations performed resulted in a SR of 98.5%, 98.5%, 

98.5% and 96.5%, for Label-based RANSAC (T), Label-based RANSAC (M), PA-based 

RANSAC (T) and PA-based RANSAC (M), respectively. Runtimes are shown in Table 5.7. 

Method 
Computational Time with Post-Processing [s] 

Mean Median 

Label-based RANSAC 
T 0.4610 0.3309 

M 0.4393 0.3451 

PA-based RANSAC 
T 0.5331 0.4357 

M 0.7705 0.6275 

Table 5.7 – Runtimes of Label-based and PA-based RANSAC, with training and model HTs 

Table 5.7 shows comparable computational times, except for the PA-based RANSAC method 

with the model HT, which is slower. 

5.2.2.2. Nearest Neighbor vs Binary Matching 

In this paragraph, the comparison analysis between NN and BM approaches is shown. Table 

5.8 shows the values of the parameters used to build 𝑯𝑻𝑣𝑜𝑥𝑒𝑙, defined in paragraph 3.5.4.2. 

𝑯𝑻 𝒎 𝑫 [𝒎] 

𝑯𝑻𝒗𝒐𝒙𝒆𝒍 12 1.2 

Table 5.8 - Parameters selected for 𝑯𝑻𝑣𝑜𝑥𝑒𝑙 
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Figure 5.3 - Comparison of Label and PA-based RANSAC using NN and BM approaches, 

without post-processing. Left: ADD, ADI. Right: rotational and translational errors 

Figure 5.3 compares the two approaches for Label-based and PA-based RANSAC algorithms. 

NN refers to the Nearest Neighbors, while BM refers to Binary Matching. Both these variants 

are compared using the training HTs. The performance of the two variants is compared without 

post-processing, as flip check evaluation in post-processing has only been implemented using 

the NN approach. The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the 

samples of the testing dataset are reached with the worst method. 

Method 
Computational Time without Post-Processing [s] 

Mean Median 

Label-based RANSAC 
NN 0.3062 0.2136 

BM 0.2474 0.1914 

PA-based RANSAC 
NN 0.4441 0.3693 

BM 0.3688 0.3363 

Table 5.9 – Runtimes of Label-based and PA-based RANSAC, with NN and BM approaches 
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Runtimes are shown in Table 5.9. From Figure 5.3 and Table 5.9 it can be observed that the 

BM approach for alignment quality evaluation represents a very promising alternative, 

especially for the lower computational time. It could be interesting to investigate the integration 

of a post-processing phase where the quality of flip checks is evaluated using such an approach 

instead of the NN-based one. 

5.2.3. Performance of Open3D Algorithms without and with Downsampling 

As already mentioned in paragraph 5.2.1.1, further simulations have been performed with 

FPFH-based RANSAC and FGR without downsampling, in order to compare their 

performances with the downsampled case. In Figure 5.4 the plots of ADD, ADI, rotational and 

translational error with post-processing are shown. 

 

Figure 5.4 – Comparison of Open3D algorithms with downsampling (downs.) and without 

downsampling (no downs.), with post-processing. Left: ADD, ADI. Right: rotational and 

translational errors 
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The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the samples of the 

testing dataset are reached with the worst method. Runtimes are shown in Table 5.10. 

Method 
Computational Time with Post-Processing [s] 

Mean Median 

FPFH-based RANSAC 
Downs. 0.2511 0.2060 

No downs. 1.3757 1.0095 

FGR 
Downs. 0.2295 0.1670 

No downs. 2.4265 1.7824 

Table 5.10 – Runtimes of Open3D algorithms, without and with downsampling 

From Figure 5.4 and Table 5.10, it is possible to observe the evident superiority, in terms of 

accuracy and computational time, of the Open3D algorithms with preliminary downsampling 

applied to the measured and model point clouds. 

5.3. Autonomous Failure Detection 

The last analysis carried out during this work is the development of an Autonomous Failure 

Detection (AFD) algorithm which, using: 

 

1. The rotational and translational errors 𝜙𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟, through which the SR is defined; 

2. The convergence value of the ICP cost function 𝑓𝑒𝑛𝑑, i.e. the minimum sum of squared 

distances to closest planes; 

 

is able to autonomously declare the success or failure in the pose estimation. This is possible 

through the computation of the optimal value of a reference variable 𝑓𝜏, which is compared with 

𝑓𝑒𝑛𝑑; in fact, if the inequality shown in Equation 5.6 is verified: 

 𝑓𝑒𝑛𝑑 < 𝑓𝜏 (5.6) 

the algorithm declares the success in the pose estimation, otherwise it declares the failure. 
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To determine the optimal value of 𝑓𝜏, a statistical approach is used that makes use of 

probabilities calculated from the experimental results obtained. 

First of all, it is necessary to define the success probability 𝑃𝑠 and failure probability 𝑃𝐹 of the 

algorithm which, starting from the results obtained, are defined as shown in Equation 5.7 and 

Equation 5.8: 

 𝑃𝑆 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑒𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑒𝑠
 (5.7) 

 𝑃𝐹 =
# 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑒𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑒𝑠
 (5.8) 

So, considering the following events: 

• A: the AFD algorithm declares a success, i.e., 𝑓𝑒𝑛𝑑 < 𝑓𝜏; 

• B: the pose is successfully computed, i.e., (𝜙𝑒𝑟𝑟 < 5°)  ∩ (𝑡𝑒𝑟𝑟 < 0.05 𝑚). 

four conditional probabilities are defined: 

• 𝑃𝑆𝑆 as the probability that the AFD algorithm declares a success given the success in 

pose estimation, which is computed through Equation 5.9: 

 𝑃𝑆𝑆 = 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (5.9) 

• 𝑃𝑆𝐹  as the probability that the AFD algorithm declares a success given the failure in 

pose estimation, which is computed through Equation 5.10: 

 𝑃𝑆𝐹 = 𝑃(𝐴|𝐵̅) =
𝑃(𝐴 ∩ 𝐵̅)

𝑃(𝐵̅)
 (5.10) 

• 𝑃𝐹𝑆 as the probability that the AFD algorithm declares a failure given the success in 

pose estimation, which is computed through Equation 5.11: 

 𝑃𝐹𝑆 = 𝑃(𝐴̅|𝐵) =
𝑃(𝐴̅ ∩ 𝐵)

𝑃(𝐵)
 (5.11) 
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• 𝑃𝐹𝐹  as the probability that the AFD algorithm declares a failure given the failure in pose 

estimation, which is computed through Equation 5.12: 

 𝑃𝐹𝐹 = 𝑃(𝐴̅|𝐵̅) =
𝑃(𝐴̅ ∩ 𝐵̅)

𝑃(𝐵̅)
 (5.12) 

Given this premise, the AFD algorithm is based on calculating these conditional probabilities 

on a vector of 𝑓𝜏: it is varied from a very small value, such that every pose is declared a failure, 

to a very large value, such that every pose will be declared a success. In this way it is possible 

to study the behaviour of the four conditional probabilities just defined as a function of 𝑓𝜏, so 

as to be able to select the value that optimally distinguishes successes from failures. 

 

Figure 5.5 – AFD results. Highlighted are the ranges of 𝑓𝜏 such that the probability 𝑃𝑇 that 

the AFD algorithm tells the truth is maximum 
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Figure 5.5 shows the AFD results for the main variants of FPFH-based RANSAC, Label-based, 

PA-based and PPF-based RANSAC, respectively (Subsection 5.2.1). The potential values of 𝑓𝜏 

to be selected can be deduced identifying at which 𝑓𝜏 there is the maximum probability 𝑃𝑇 that 

the AFD algorithm is telling the truth. This probability is computed as shown in Equation 5.13: 

 𝑃𝑇 = 𝑃𝑆𝑆 𝑃(𝐵) + 𝑃𝐹𝐹 𝑃(𝐵̅) = 𝑃((𝐴 ∩ 𝐵) ∪ (𝐴̅ ∩ 𝐵̅)) (5.13) 

The stepped behavior in the 𝑃𝑆𝐹  and 𝑃𝐹𝐹  plots is due to the low number of failures in the testing 

dataset: indeed, on a set of 200 scans, 98.5% of SR corresponds to 3 failures, and this explains 

the corresponding number of steps in the related plots. Because of this, it is not possible to 

identify an exact optimal value of 𝑓𝜏, but it is possible to indicate a range of optimal values that 

can be selected. These ranges for the four plots are shown in Table 5.11. 

Method 
Optimal 𝒇𝝉 values 

Min [𝒎𝟐] Max [𝒎𝟐] 

FPFH-based RANSAC 0.038 0.14 

Label-based RANSAC 0.019 0.039 

PA-based RANSAC 0.043 0.061 

PPF-based RANSAC 0.043 0.096 

Table 5.11 – Optimal 𝑓𝜏 values resulting from AFD analysis  
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6. Conclusions and Future Works 

In this thesis work, three feature-based algorithmic solutions for LiDAR-based pose acquisition 

of known non-cooperative spacecraft have been presented, which exploit point-normal 

structures as local features (FPFH) or as non-local primitives (PPF) and a RANSAC-based 

approach to find point correspondences between a model and a data point cloud, supported by 

the use of Hash Tables appropriately built offline for the rapid online retrieval of potential good 

point correspondences.  

 

After a brief introduction on the space scenarios relevant to this challenge and an overview of 

the LiDAR sensors central to this discussion, a literature review has been presented, focusing 

on the current state-of-the-art in classical global registration methods (i.e. non-learning-based) 

to evaluate their advantages and disadvantages and identify the most promising techniques to 

focus further research on. Then, several analyses have been performed, in Python environment, 

focused on the effective extraction of FPFHs, exploiting the segmentation of the reference 

geometry in geometric primitives and the Persistence Analysis, key principles of the Label-

based RANSAC and PA-based RANSAC methods, respectively, and on the construction of 

Hash Tables, used for Label-based, PA-based and PPF-based RANSAC. These analyses 

supported the development of the above mentioned pose estimation algorithms, refined through 

Iterative Closest Point (ICP) and additional checks to correct “ambiguous” poses. The 

performances of the developed algorithms have then been compared with well-known feature-

based approaches implemented in the Python Open3D Library: FPFH-based RANSAC and Fast 

Global Registration (FGR). Performance assessment has been carried out using a dataset of 

synthetic point clouds. Finally, an autonomous failure detection strategy has been described to 

enhance the robustness of the proposed architectures. 

From the obtained results, reported in Chapter 5, the following conclusions can be drawn. All 

the developed variants are promising methods for solving the task in the context of orbital 

servicing missions. A slight advantage in accuracy and speed has been observed for FPFH-

based RANSAC. The speed measurements, however, are just preliminary as not all methods 

currently have an optimized implementation. 
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Regarding FGR, instead, which approaches pose estimation as a global optimization without 

relying on strict point correspondences, has proven to be significantly inferior and unsuitable 

for the task. 

Moreover, significant accuracy improvements have been demonstrated by postprocessing the 

results of global pose estimation using ICP-based refinement and checking for flip errors caused 

by pose ambiguities in the LiDAR data under certain conditions.  

As for the variants of the developed algorithms, in Label-based and PA-based RANSAC a 

higher overall efficiency in building hash tables using scans of the training dataset instead of 

the whole model point cloud has been found, and for this reason this variant has not been 

implemented also in PPF-based RANSAC, while the alignment evaluation approach using the 

3D voxel grid turned out to be a very promising alternative to the approach that computes inliers 

via nearest neighbor retrieval, and that is worth to be further investigated, implementing it also 

in PPF-based RANSAC. 

It is important to note that, although all three developed HT-based methods can be generalized 

to satellites with different geometries, the current Label-based RANSAC method relies 

exclusively on the geometric primitives present in the DLR Client Satellite, i.e. toroids, edges, 

spheres, handles, cylinders and planes, using FPFH-based signatures of these geometries, 

computed using the training dataset. A potential and promising generalization of the Label-

based RANSAC method could involve an algorithm capable of creating and identifying clusters 

of regions characterized by similar FPFHs. This approach would represent a more functional 

and advantageous extension of the current method, as it eliminates the need for initial pre-

processing to compute averaged FPFHs for recognition. More importantly, this would enable 

the method to be rapidly extended to targets with arbitrary geometries, significantly enhancing 

its versatility. 

Building on this concept, future research should aim to consolidate and extend the results 

obtained, incorporating improvements in data realism or testing on real, noisy LiDAR data, 

accounting for varying sensor characteristics, and including additional satellite models. 
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properly thanked you for the moral support you gave me during my stay in Germany, I deeply 
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me, with many calls, during every moment of the day, during breaks from work, during my free 

moments and even during home activities! As simple and trivial as it may seem to you, I assure 

you that for me it was not at all, because it helped me immensely to spend that period without 

significantly missing home. 

I dedicate these last lines to you. Simply Thank you. Thank you mom and dad, Thank you 

Francesca, for being my point of reference, for being part of my soul. 
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