
Università degli Studi di Napoli “Federico II”

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

TESI DI LAUREA IN INGEGNERIA AEROSPAZIALE

CLASSE DELLE LAUREE MAGISTRALI IN INGEGNERIA

AEROSPAZIALE E ASTRONAUTICA

(LM 20)

LiDAR-based Global Registration Algorithms for

Pose Acquisition of Non-cooperative Spacecraft

Relatori:
Prof. Michele Grassi
Prof. Roberto Opromolla

Correlatori:

Dr. Alessia Nocerino

Dr. Margherita Piccinin

Dr. Ulrich Hillenbrand

Candidato:
Clemente Tecchia

Matr. M53001593

ANNO ACCADEMICO 2023 – 2024

2

3

Table of Contents

Table of Contents .. 3

Abstract ... 6

List of Figures ... 7

List of Tables ... 10

Acronyms ... 11

1. Introduction .. 13

1.1. The Pose Estimation Problem .. 16

1.2. LiDAR Sensors .. 17

1.2.1. Scanning LiDARs ... 19

1.2.2. Detector Array LiDARs .. 20

1.2.3. Spatial Light Modulators ... 21

2. State of the Art .. 22

2.1. Feature-Based Methods ... 24

2.1.1. Local-Feature-Based Methods .. 25

2.1.1.1. Local Feature Extraction/Description ... 25

2.1.1.2. Point Cloud Alignment ... 32

2.1.2. Global-Feature-Based Methods... 37

2.1.2.1. Global Feature Extraction/Description ... 38

2.1.2.2. Recognition ... 47

2.1.3. Literature Analysis Conclusion ... 52

3. Methodologies ... 56

3.1. Reference Geometry .. 57

3.2. Feature Extraction Analysis ... 58

3.2.1. Normal Estimation Analysis ... 58

4

3.2.2. FPFH Analysis .. 63

3.2.2.1. FPFH Distance Histogram .. 63

3.2.2.2. Persistence Analysis ... 65

3.2.2.3. Geometric Primitives Recognition ... 67

3.3. Hash Tables .. 75

3.3.1. Training Hash Tables .. 77

3.3.1.1. Point Cloud Classifier ... 77

3.3.1.2. Hash Table Construction for CS Scans in Label-Based RANSAC 79

3.3.1.3. Hash Table Construction for CS Scans in PA-Based RANSAC 81

3.3.1.4. Hash Table Construction for CS Scans in PPF-Based RANSAC 81

3.3.1.5. Hash Table Construction for FS Scans ... 84

3.3.2. Model Hash Tables.. 84

3.4. Overview of the Offline Phase of the Algorithms ... 85

3.4.1. Label-Based RANSAC ... 85

3.4.2. PA-Based RANSAC ... 86

3.4.3. PPF-Based RANSAC .. 87

3.5. Initial Pose Determination ... 87

3.5.1. Label-Based RANSAC ... 87

3.5.2. PA-Based RANSAC ... 88

3.5.3. PPF-Based RANSAC .. 89

3.5.4. Hash Table Lookup ... 90

3.5.4.1. Alignment Algorithms .. 91

3.5.4.2. Alignment Evaluation ... 94

3.6. Post-Processing .. 96

3.6.1. Iterative Closest Point ... 97

3.6.2. Ambiguity Reduction Process ... 98

5

4. Open3D Global Registration Algorithms ... 102

4.1. FPFH-Based RANSAC .. 102

4.2. Fast Global Registration .. 104

5. Experiments .. 105

5.1. Evaluation Metrics ... 105

5.2. Performance Analysis .. 106

5.2.1. Comparison of the Main Algorithms .. 106

5.2.1.1. Tuning Parameters .. 107

5.2.1.2. Comparison Results .. 110

5.2.2. Comparison of Algorithm Variants ... 113

5.2.2.1. Training Hash Table vs Model Hash Table .. 113

5.2.2.2. Nearest Neighbor vs Binary Matching ... 114

5.2.3. Performance of Open3D Algorithms without and with Downsampling 116

5.3. Autonomous Failure Detection .. 117

6. Conclusions and Future Works ... 121

References.. 124

Acknowledgements ... 131

Ringraziamenti ... 134

6

Abstract

This thesis work, developed in collaboration with the German Aerospace Center (DLR), is

placed in the context of spacecraft pose determination, i.e., the problem of calculating the set

of parameters that describe the relative position and attitude of an active satellite with respect

to another space object, which is widely encountered in space missions such as On-Orbit

Servicing (OOS) and Active Debris Removal (ADR), where algorithmic and technological

solutions are essential to ensure the efficient execution of autonomous maneuvers of a chaser

in close-proximity with respect to a designated target.

Specifically, the work carried out addresses the problem of pose acquisition of a known non-

cooperative spacecraft, based on the use of target 3D point cloud scans produced by a LiDAR

sensor, proposing a suite of feature-based algorithmic solutions, developed in Python

environment, that leverage point-normal structures as local features (Fast Point Feature

Histograms, FPFH) or as non-local primitives (Point Pair Features, PPF). Additionally, they

exploit a Random-Sample-Consensus-based (RANSAC-based) strategy to perform the initial

pose estimation and Hash Tables (HT) for fast and efficient matching.

The performance of the proposed architecture is tested using a dataset of synthetic point clouds

obtained using a LiDAR data simulator developed by DLR and considering as target the Client

Satellite of the DLR On-Orbit Servicing Simulator for Capture (OOS-SIM). The achieved

performance is compared against standard approaches in 3D registration, namely FPFH-based

RANSAC and Fast Global Registration (FGR), implemented in the Python Open3D Library.

The obtained results demonstrate that these algorithms are promising alternatives to standard

approaches, showing comparable accuracy, but with a slight disadvantage in computational

time.

Finally, a description of an autonomous failure detection strategy is provided, which can be

applied to increase robustness of the proposed pose estimation architectures.

7

List of Figures

Figure 1.1 - Reconstructed number of catalogued objects in Earth’s orbit [1] 13

Figure 1.2 - Close-proximity scenario example [2] .. 14

Figure 1.3 - Different concepts of on-orbit servicing missions: (a) ETS-VII of JAXA, (b)

orbital express of DARPA, (c) TECSAS of DLR/CSA/RKA and (d) DEOS of DLR [2] 15

Figure 1.4 - Taxonomy of LiDARs [4] .. 18

Figure 1.5 - Basic triangulation geometry [8] .. 19

Figure 1.6 - Simplified representation of a scanning LiDAR [9] ... 20

Figure 1.7 - Simplified representation of a detector array LiDAR [9] 21

Figure 2.1 - Logical scheme of the pose determination process [10] 22

Figure 2.2 - Classification of point cloud registration methods. Highlighted in blue is the

method class of interest .. 23

Figure 2.3 - Local-feature-based methods pipeline .. 25

Figure 2.4 - Geometric Hashing pre-processing step [31] ... 26

Figure 2.5 - Local features exploited by PAH architecture [18] .. 27

Figure 2.6 - CTA pipeline [19] ... 28

Figure 2.7 - The influence region diagram for a Point Feature Histogram. In red: query point.

In blue: k – neighbors [21] ... 30

Figure 2.8 - The influence region diagram for a Fast Point Feature Histogram [22] 31

Figure 2.9 - Illustration with 2D point sets. In blue: genuine correspondences; in red: spurious

correspondences [34] .. 34

Figure 2.10 - Geometric Hashing recognition step. The diagram represents the continuation of

Figure 2.4 [31] .. 36

Figure 2.11 - Global-feature-based methods pipeline .. 37

Figure 2.12 - Pipeline of silhouette image generation [27] .. 40

Figure 2.13 - Left: point cloud of a wine glass (black) with associated cluster 𝑪𝑖 (green) and

the SGURF reference frame. Right: the resulting OUR-CVFH histogram [24] 44

Figure 2.14 - Basis Point Set encoding for point clouds [17] .. 45

Figure 2.15 - Flow diagram of the Online TM algorithm [10] ... 48

Figure 3.1 - CAD model of the OOS-SIM Client Satellite and TRF representation 57

8

Figure 3.2 - Graphical visualization of normal correction using sensor viewpoint [49] 59

Figure 3.3 - Mean error plots for Scan 1 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 ... 60

Figure 3.4 - Scan 1 colored point cloud.. 61

Figure 3.5 - Mean error plots for Scan 2 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 ... 61

Figure 3.6 - Mean error plots for Scan 3 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛 ... 61

Figure 3.7 - Normal estimation time performance for Scan 1 and Scan 2 62

Figure 3.8 - FPFH distance histograms for Scan 1 ... 64

Figure 3.9 - Persistent points for model point cloud (left), Scan 1 (central) and Scan 2 (right)

 .. 66

Figure 3.10 - Persistent FPFH distance histograms for Scan 1 and Scan 2 66

Figure 3.11 - Segmented point cloud ... 68

Figure 3.12 - Comparison mean FPFH toroid and edges ... 69

Figure 3.13 - Comparison mean FPFH sphere and handles ... 69

Figure 3.14 - Comparison mean FPFH cylinder and planes... 69

Figure 3.15 - Example of cylinder-points detection and terminology used 71

Figure 3.16 - Precision-Recall curves for cylinder geometry: cases 1 and 2 72

Figure 3.17 - Precision-Recall curves for edges geometry: cases 1 and 2 73

Figure 3.18 - Precision-Recall curves for handles geometry: cases 1 and 2 73

Figure 3.19 - Precision-Recall curves comparison between the geometries analyzed 74

Figure 3.20 - Working principle of a hash table ... 75

Figure 3.21 - Collision handling ... 76

Figure 3.22 - Two examples of CS scan normal distribution ... 78

Figure 3.23 - Two examples of FS scan normal distribution ... 78

Figure 3.24 - Graphical representation of a surflet and the defined LRF 82

Figure 3.25 - Label-based RANSAC offline block diagram .. 85

Figure 3.26 - PA-based RANSAC offline block diagram .. 86

Figure 3.27 - PPF-based RANSAC offline block diagram .. 87

Figure 3.28 - Label-based RANSAC online block diagram ... 88

Figure 3.29 - PA-based RANSAC online block diagram ... 89

Figure 3.30 - PPF-based RANSAC online block diagram ... 89

Figure 3.31 – HT lookup. This diagram is representative of both the CS and FS case 91

Figure 3.32 – Post-processing .. 97

9

Figure 3.33 - a) Case of correctly estimated pose: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹 → 𝑇𝑅𝐹. b) Case of incorrect

pose that has passed the HT lookup phase: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹 → 𝐹𝑇𝑅𝐹 99

Figure 3.34 - Flips implemented. a) Flip check performed for all scans. b) FS Flip check:

upper plane; c) FS Flip check: lower plane .. 100

Figure 5.1 - Comparison results between the algorithms. The metrics compared are ADD,

ADI (top 4 plots), rotational error and translational error (bottom 4 plots), without post-

processing (left column) and with post-processing (right column) .. 111

Figure 5.2 - Comparison of Label and PA-based RANSAC using training and model HT

approaches, with post-processing. Left: ADD, ADI. Right: rotational and translational errors

 .. 113

Figure 5.3 - Comparison of Label and PA-based RANSAC using NN and BM approaches,

without post-processing. Left: ADD, ADI. Right: rotational and translational errors 115

Figure 5.4 – Comparison of Open3D algorithms with downsampling (downs.) and without

downsampling (no downs.), with post-processing. Left: ADD, ADI. Right: rotational and

translational errors .. 116

Figure 5.5 – AFD results. Highlighted are the ranges of 𝑓𝜏 such that the probability 𝑃𝑇 that

the AFD algorithm tells the truth is maximum ... 119

10

List of Tables

Table 2.1 - Feature Extraction/Description pros and cons ... 53

Table 2.2 - Alignment/Recognition pros and cons ... 55

Table 3.1 - Parameters selection for normal estimation ... 63

Table 3.2 - Normal and FPFH estimation parameters for both LiDAR and model point clouds

 .. 66

Table 3.3 - Precision-Recall analyses: Cases 1 and 2 parameter setting 72

Table 3.4 - Filtering parameters resulting from Precision-Recall analysis 74

Table 3.5 - Sum of variances of normal components of point clouds shown as an example ... 79

Table 3.6 – Flip matrices 𝑻𝐹𝑇𝑅𝐹 → 𝑇𝑅𝐹 defined .. 101

Table 5.1 - Tuning parameters selected for training HTs construction 107

Table 5.2 - HT-based normal, FPFH estimation and feature extraction tuning parameters ... 108

Table 5.3 - FPFH-based RANSAC and FGR normal and FPFH estimation tuning parameters

 .. 108

Table 5.4 – Alignment evaluation tuning parameters adopted ... 109

Table 5.5 - ICP tuning parameters adopted .. 109

Table 5.6 - Time performance .. 112

Table 5.7 – Runtimes of Label-based and PA-based RANSAC, with training and model HTs

 .. 114

Table 5.8 - Parameters selected for 𝑯𝑻𝑣𝑜𝑥𝑒𝑙 .. 114

Table 5.9 – Runtimes of Label-based and PA-based RANSAC, with NN and BM approaches

 .. 115

Table 5.10 – Runtimes of Open3D algorithms, without and with downsampling 117

Table 5.11 – Optimal 𝑓𝜏 values resulting from AFD analysis ... 120

11

Acronyms

ADD = Average Distance of model points for Distinguishable points

ADI = Average Distance of model points for Indistinguishable points

ADR = Active Debris Removal

AFD = Autonomous Failure Detection

BM = Binary Matching

BPS = Basis Point Set

CPD = Coherent Point Drift

CRH = Camera Roll Histogram

CS = Complex Structure

CSA = Canadian Space Agency

CTA = Congruent Tetrahedron Align

CVFH = Clustered Viewpoint Feature Histogram

CW = Continuous Wave

DARPA = Defense Advanced Research Projects Agency

DEOS = Deutsche Orbital Servicing Mission

DLR = Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)

DOF = Degree(s) Of Freedom

EO = Electro-Optical

ETS-VII = Experimental Test Satellite VII

FGR = Fast Global Registration

FOV = Field Of View

FPFH = Fast Point Feature Histograms

FS = Flat Structure

FTRF = Flipped Target Reference Frame

GH = Geometric Hashing

HT = Hash Table

ICP = Iterative Closest Point

ICS = Image Coordinate System

JAXA = Japan Aerospace Exploration Agency

12

KD = k-Dimensional

KL = Kullback-Leibler

LaDAR = Laser Detection and Ranging

LCS = LiDAR Coordinate System

LEO = Low Earth Orbit

LiDAR = Light Detection and Ranging

NDT = Normal Distributions Transform

NN = Nearest Neighbor

OOS = On-Orbit Servicing

OOS-SIM = On-Orbit Servicing Simulator for Capture

OUR-CVFH = Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

PA = Persistence Analysis

PAH = Polygonal Aspect Hashing

PCA = Principal Component Analysis

PFH = Point Feature Histograms

RANSAC = Random Sample Consensus

RKA = Russian Space Agency

RMSE = Root Mean Square Error

SAC-IA = Sample Consensus Initial Alignment

SGURF = Semi-Global Unique Reference Frame

SLM = Spatial Light Modulator

SPFH = Simplified Point Feature Histogram

SR = Success Rate

SRF = Sensor Reference Frame

SVD = Singular Value Decomposition

TCS = Target Coordinate System

TECSAS = Technology Satellites for Demonstration and Verification of Space Systems

TM = Template Matching

TOF = Time Of Flight

TRF = Target Reference Frame

VFH = Viewpoint Feature Histogram

13

1. Introduction

The rapid expansion of space activities has resulted in a significant increase in the number of

operational and defunct satellites, as well as orbital debris, in Earth's orbit. This growing

population of space objects presents both opportunities and challenges. On one hand, the

increase in operational satellites supports a wide range of applications, from communication

and navigation to Earth observation. On the other hand, the accumulation of defunct satellites

and debris poses risks to space missions, heightening the likelihood of collisions and the

potential for a cascade effect known as the Kessler Syndrome. Figure 1.1 illustrates the

reconstructed growth rate of catalogued objects in Earth’s orbit [1].

Figure 1.1 - Reconstructed number of catalogued objects in Earth’s orbit [1]

This proliferation of space objects has led to an ever-increasing interest in developing strategies

to manage both operational and non-operational assets in orbit. These strategies encompass On-

Orbit Servicing (OOS) [2], which focuses on satellite maintenance and lifespan extension, and

Active Debris Removal (ADR) [3], which targets the removal of defunct objects. Central to

these scenarios is the implementation of autonomous maneuvers of an active satellite, called

chaser, in close-proximity to a designated target.

14

Figure 1.2 shows an OOS scenario in which the chaser, equipped with a robotic arm, approaches

the target for maintenance operations.

Figure 1.2 - Close-proximity scenario example [2]

Figure 1.3, instead, illustrates some real-world OOS mission concepts, which are briefly

described below: (a) the Experimental Test Satellite VII (ETS-VII) of the Japan Aerospace

Exploration Agency (JAXA), considered the first robotic OOS demonstration mission. This

mission included robotic servicing tasks such as orbital replacement unit exchange, capture and

berthing of a target satellite; (b) the Orbital Express mission of the Defense Advanced Research

Projects Agency (DARPA), a demonstration mission in which autonomous rendezvous and

docking, as well as in-orbit refueling operations, were performed. Additionally, during the

mission, a robotic arm autonomously transferred a supplemental battery and backup computer

to the target spacecraft; (c) the Technology Satellites for Demonstration and Verification of

Space Systems (TECSAS) mission, developed by the German Aerospace Center (DLR), the

Canadian Space Agency (CSA), and the Russian Space Agency (RKA). This mission included

rendezvous, close approach, flying-around inspection, formation flight, capture and

manipulation of the target satellite; (d) the Deutsche Orbital Servicing Mission (DEOS) of the

DLR, which aimed to develop and evaluate procedures and techniques for rendezvous, capture,

and deorbiting of a noncooperative spacecraft from its operational orbit.

15

Figure 1.3 - Different concepts of on-orbit servicing missions: (a) ETS-VII of JAXA, (b)

orbital express of DARPA, (c) TECSAS of DLR/CSA/RKA and (d) DEOS of DLR [2]

To properly perform these tasks, accurate knowledge of the relative position and attitude

between the two space objects is essential: this problem is called spacecraft pose estimation.

The problem of pose estimation of space targets is approached differently depending on:

• The type of target (cooperative or uncooperative). A target is cooperative if it is

designed to provide information that simplifies the estimation of its pose with respect

to the chaser. Examples are targets equipped with a dedicated communication link or

with easily recognizable markers - typical in both Formation Flying (FF) and OOS

applications. More challenging, however, is the estimation of the pose of uncooperative

targets, which are not able to communicate with the chaser and are not equipped with

markers. A further distinction can be made between uncooperative targets whose

geometry is known (case that can occur in OOS and ADR scenarios) and targets of

partially or totally unknown shape (case of some ADR missions as well as asteroid

exploration scenarios, for example) [4];

16

• The type of Electro-Optical (EO) sensor mounted on the chaser. EO sensors represent

the best option to ensure pose determination in close-proximity; many research efforts

are currently dedicated to the design and development of vision-based pose estimation

techniques relying on either monocular or stereo cameras [5, 6], in light of the relatively

small size, weight, and low power consumption of passive imaging sensors.

Nevertheless, active Light Detection and Ranging (LiDAR) systems are preferred as

main relative navigation sensors, as demonstrated by the recent success of the Mission

Extension Vehicle missions [7], given their advantages in terms of operative range,

direct depth observability and robustness against unfavorable illumination conditions.

Given the relevance of this topic, it has been and still is the object of study by various

universities and research centers, which over the years have developed ad-hoc techniques and

algorithms for solving this problem in the various conditions previously mentioned.

In this context, this thesis work is placed, which focuses on the problem of LiDAR-based pose

acquisition of non-cooperative spacecraft of known geometry. Specifically, this work presents

novel feature-based pose estimation algorithms, whose performance is compared with well-

known strategies in 3D registration.

In the next sections, the points briefly mentioned in this introduction are explored further,

specifically concerning the problem of pose estimation and the characteristics of a LiDAR

sensor.

1.1. The Pose Estimation Problem

The pose represents the set of parameters that characterize the translation and rotation between

two reference systems. Therefore, given a Sensor Reference Frame (SRF), centered in the

chaser, and a Target Reference Frame (TRF), centered in the target, the pose allows to define

the transformation that aligns the two reference systems.

The SRF to TRF pose matrix is defined as a 4𝑥4 matrix that includes a 3𝑥3 rotation matrix 𝑹

and a translation vector 𝒕, where 𝑹 aligns the TRF to the SRF while 𝒕 represents the position of

17

the TRF origin with respect to the SRF origin, expressed in SRF. The pose matrix is defined by

the Equation 1.1:

𝑻 = [

𝑹 𝒕
0 1

]

(1.1)

The determination of this transformation matrix is of great importance in the field of robotics

in general, and is in fact widely studied to promote the implementation of close-proximity

operations between a service satellite and a target, with ever-increasing precision, as already

stated in the introduction to Chapter 1.

Pose estimation is performed thanks to the extraction of information from the observed scene,

by a sensor, and the comparison of this information with a model. Clearly, the problem is

approached differently depending on the sensor used. In Section 1.2, the characteristics of the

EO Sensors investigated in this thesis work, i.e. LiDARs, are briefly described.

1.2. LiDAR Sensors

A LiDAR (Light Detection And Ranging), also called LaDAR (Laser Detection and Ranging)

is an active 3D EO sensor. A sensor is called 3D when it is able to produce a three dimensional

representation of the observed scene, while it is called active when the source of the detected

radiation is internal to the system. The main components of a LiDAR are: (1) the laser source,

from which the radiation is emitted; (2) the optics, which is fundamental for determining the

minimum range from which the sensor is able to measure the distance from objects observed;

(3) the detector, which captures the radiation as it comes back.

LiDAR sensors use light (typically a laser) to illuminate the target and measure the time it takes

for the emitted signal to return to the sensor. Since the light must travel from the source to the

target, and back to the detector, the range 𝑅 to the observed point may be computed as shown

in Equation 1.2:

 𝑅 =
𝑐𝑡

2
 (1.2)

18

where 𝑅 is the distance from the sensor to the point on the target, 𝑐 is the speed of light and 𝑡

is the laser Time-Of-Flight (TOF). Hence, this sensor is able to provide multiple 3D vectors

within its field of view. The set of these 3D position vectors can be interpreted as a point cloud.

The above is just one example of how a LiDAR can extract information from the observed

scene; in fact, those that use the principle just described are called TOF-based LiDARs.

There are a multitude of types of LiDAR, which can be classified according to: (1) The

characteristics of the emitted laser beam; (2) The measurement principle; (3) The technological

solution. A schematic of the above is shown in Figure 1.4.

Figure 1.4 - Taxonomy of LiDARs [4]

As can be seen from Figure 1.4, regarding the laser source, LiDARs can be classified into Pulsed

and Continuous Wave (CW) systems.

Pulsed LiDARs emit energy in discrete intervals (pulses), are less expensive than CW LiDARs

and are typically used when long operating ranges are desired. They measure distance by

measuring the time delay between transmitted and received laser pulses. These systems

represent the already mentioned TOF-based LiDARs.

On the other hand, CW LiDARs emit energy continuously and are mainly classified according

to the modulation type Amplitude-Modulated (AM) or Frequency-Modulated (FM). They

19

measure distance by measuring the phase difference between the emitted signal and the

reflected echo.

CW LiDARs can also exploit the triangulation method as measurement principle. Basically, the

same principle is adopted as for a stereo system, positioning the laser source with a certain

offset with respect to the detector and therefore to the relative optics. The laser is projected onto

a surface and the location of the reflected image on an offset detector depends on the range to

the surface at that projected location, hence measurement of the image position indicates range

[8]. In Figure 1.5, the basic triangulation geometry is shown.

Figure 1.5 - Basic triangulation geometry [8]

Regarding the technological solutions, instead, LiDARs can be classified as: (1) Scanning

LiDARs; (2) Detector Array LiDARs; (3) Spatial Light Modulator LiDARs.

1.2.1. Scanning LiDARs

Scanning LiDARs use a narrow laser beam that is swept over the sensor's Field Of View (FOV)

according to a pre-established pattern to obtain range measurements to objects within the scene.

The direction of the laser is changed using lenses, mirrors, or other devices. A simplified

representation is shown in Figure 1.6.

20

Figure 1.6 - Simplified representation of a scanning LiDAR [9]

There are several scanning patterns; Figure 1.6 shows the Raster pattern as an example, but

there are also more complex ones (e.g. Lissajous pattern).

Since they only use one detector (or a very small number of detectors), these sensors are

relatively easy to calibrate; in addition, scanning LiDARs can point the narrow laser beam very

precisely and create very high-resolution point clouds. On the other hand, these devices contain

moving parts that can potentially be a source of hardware failure; furthermore, these sensors

are expensive, sensitive to motion blur and it is necessary to wait a certain amount of time for

the entire scene of interest to be scanned.

1.2.2. Detector Array LiDARs

Detector Array LiDARs (or scannerless LiDARs) illuminate the entire scene with a single broad

laser beam and use a detector array to detect the echoes backscattered in the pixel direction [4].

A simplified representation is shown in Figure 1.7.

21

Figure 1.7 - Simplified representation of a detector array LiDAR [9]

Unlike scanning LiDARs, Detector Array LiDARs have no moving parts, are less susceptible

to motion blur, and are cheaper. On the other hand, having multiple detectors makes them more

difficult to calibrate and does not reach the accuracy of scanning LiDARs.

1.2.3. Spatial Light Modulators

Finally, Spatial Light Modulators (SLMs) illuminate the observed scene with a light pattern and

detect the reflected signal through compressed sensing algorithms capable of reconstructing the

scene observed from the time history of the reflected signal.

SLMs have the advantage of having no moving parts and a single detector. On the other hand,

they require assumptions about the geometry of the observed scene; furthermore, they are still

a developing technology [9].

22

2. State of the Art

In the literature there are different methods to face the challenge presented in Chapter 1; these

pose acquisition methods from 3D point clouds fall into the broader field of Point Cloud

Registration. To accurately follow the evolution of the relative pose of an object, two main steps

are carried out:

• Pose Initialization. An initial estimate of the pose of the spacecraft is made, using the

first set of data acquired by the sensor, without knowing any a priori information on its

position and attitude. Pose initialization methods are also called global methods and are

typically used to provide input information to pose tracking methods;

• Pose Tracking. An update of the pose parameters is carried out, using as input the pose

information obtained thanks to global methods, in order to obtain a more accurate

estimate at the output. Pose tracking methods are also called local methods.

A diagram of the pose determination process is shown in Figure 2.1.

Figure 2.1 - Logical scheme of the pose determination process [10]

Point cloud registration methods are very varied and it is not trivial to find a way to effectively

classify the types of existing methods. In Figure 2.2 a very simple diagram is shown which

highlights the class of methods explored in depth in this work; in particular, the focus is on

global methods.

23

Figure 2.2 - Classification of point cloud registration methods. Highlighted in blue is the

method class of interest

From Figure 2.2 it can be observed that a first major distinction is done between classical

methods and learning-based methods. The substantial difference between these two classes of

methods lies in the fact that the classical methods are generally based on developing an iterative

optimization algorithm to estimate the rigid or, in general, non-rigid transformation, while the

learning-based methods use machine learning and deep learning techniques to learn the

transformation based on the geometric features of the point clouds. The learned descriptors may

contain more detailed features than geometric characteristics or other classic descriptors [11,

12]. In this Chapter, only classical methods are covered.

In general, point cloud registration methods can be classified into coarse and fine approaches

or, as shown in the diagram, global and local methods. The methods that are mainly used as

global methods are the feature-based methods. These techniques are designed to extract

distinctive and robust local geometrical characteristics and exploit them as correspondences to

estimate a transformation between two point clouds. These extracted characteristics, called

features, can be subdivided into local features and global features. Local ones are extracted

from specific regions of interest of the point cloud, while global ones are generated by encoding

the overall geometric properties of the entire point cloud.

Then, there are the local methods, which have the aim of refining the pose given as input by the

global methods and making it as precise as possible. The most popular and widely used

technique is the Iterative Closest Point (ICP), an algorithm which, given as input the two point

clouds to be aligned and the initial guess, iteratively determines the correspondences between

24

them, attributes weights to them and performs outlier removal to handle noisy conditions and

updates the transformation until convergence, set by a cost function to be minimized or by the

maximum number of iterations. Numerous variants of this algorithm have been subsequently

proposed to counteract the limitations affecting the general algorithm and improve its

performance.

One of the main limitations of the ICP is that its performance strongly depends on the initial

guess, i.e. how much it differs from the true pose of the target: in other words, the ICP is not

very robust if the initial pose is poor. Some local methods overcome this limitation,

demonstrating robustness even with poor initialization, and are classified as robustified local

methods [13]. Common examples are probabilistic methods that represent data through specific

probability density functions, i.e. Coherent Point Drift (CPD) [14] and Normal Distributions

Transform (NDT) [15].

In the following paragraphs, some state-of-the-art feature-based methods are analyzed in detail,

describing them by individually analyzing the logical blocks that constitute their pipelines, and

finally highlighting their advantages and disadvantages.

Of the methods that are analyzed, only some have actually been used for space applications,

while other algorithms have been initially developed more generally for object recognition

purposes.

2.1. Feature-Based Methods

A feature is an individual and measurable property of an observed phenomenon. This is a

discriminating characteristic with a high information content, which can be codified and

converted into numerical form. In the case of interest, features can be used to extract

information about the geometry of the point cloud under study, and they are a very useful tool

for facilitating and speeding up classification processes, pattern recognition and so on. These

features can be geometric primitives (such as points or lines) [16, 17], polygons [18],

tetrahedrons [19], point-normal structures [20, 21, 22, 23, 24] or even the point cloud itself [10,

25, 26, 27, 28].

25

As anticipated, features can be grouped into two large categories: local and global ones: local

features contain information about the local geometry of the point cloud, while global features

are representative of the entire point cloud. This difference in approach has advantages and

disadvantages. Local features are less discriminating than global ones, but they are more robust

in occlusion and cluttered environment. On the other hand, global features are efficient in

computation time and memory consumption. However, global-feature-based methods are

affected generally by occlusion and clutter. In the next Subsections, both these classes are

analyzed in more detail.

2.1.1. Local-Feature-Based Methods

In this Subsection, local-feature-based methods are illustrated, starting with a look at the

pipeline these methods employ, shown in Figure 2.3. The objective, given two point clouds, i.e.

the point cloud acquired by the LiDAR and a model point cloud, obtained for example from the

known 3D CAD model of the target, is to align one to the other. Therefore, given the point

clouds as input, the basic idea is to exploit the local features detected from both point clouds to

generate sets of correspondences, which will be used for alignment.

Figure 2.3 - Local-feature-based methods pipeline

Note that the first step is not just called Feature Extraction as some of the methods that are

presented are point-based approaches that work directly with the raw dataset and do not require

computationally expensive feature extraction steps [18, 19].

2.1.1.1. Local Feature Extraction/Description

The first step of a local-feature-based method is the extraction - not in all cases - and storage of

the features. This paragraph illustrates the types of features and the methodologies adopted by

some local feature methods to exploit them.

26

Geometric Hashing

Lamdan and Wolfson [16] proposed an indexing-based approach that exploits geometric

primitives for model-based object recognition in occluded scenes and is Geometric Hashing

(GH). These local features are encoded and stored in a database; the idea is to use it for storing

pieces of information of known geometric objects in order to allow fast recognition of an

unknown query object [29].

In a pre-processing step, 𝑛 model’s point features are extracted, with respect to a world

coordinate system [30]. Then, using these points, a base is defined, made up of 2 points in the

case of 2D objects, or 3 points in the case of 3D data (as in the case of interest) and a reference

system is defined using this base, within which the coordinates of these point features are

determined. Finally, this model information is stored in a large memory, a hash table. The

contents of the hash table are independent of the scene and can thus be computed offline, not

affecting the recognition time.

Figure 2.4 shows a summary diagram of the Geometric Hashing pre-processing phase. Note

that this diagram refers to 2D objects, in the case of 3D data the hash table will also be three-

dimensional, using the 3-point bases as indices.

Figure 2.4 - Geometric Hashing pre-processing step [31]

27

Polygonal Aspect Hashing

In the wake of Geometric Hashing, a method for object localization was subsequently

developed by Ruel et al. [18], specifically for point cloud processing: it is the Polygonal Aspect

Hashing (PAH) and is a point-based method that works directly on the raw dataset and therefore

is not based on computationally expensive extraction steps of features, an aspect that constitutes

a great improvement compared to its predecessor. This method exploits one or more polygons

selected from the input scan data as local features, as shown in Figure 2.5. The number of

polygons selected for the subsequent matching phase constitutes a trade-off between

computational cost and greater robustness to outliers.

Figure 2.5 - Local features exploited by PAH architecture [18]

The first step of this method - offline processing - consists in generating a reference database

(hash table) using a polygonal model of the object to localize, which has the aim of speeding

up the polygon matching process. Let 𝑀 be a polygonal model of the object to localize and 𝑆 a

sparse set of 3D points located on the model surface. The offline processing first generates the

set of all segments that can be created on 𝑀 from point pairs of 𝑆. The set of segments is then

arranged in a hash table that efficiently stores length and connectivity information to allow

direct segment lookup.

28

The first step of the algorithm is used to reduce the 6 dimensions pose search space. The search

space is reduced by keeping (in the next step) the set of poses that have at least some

overlapping surfaces between the input point cloud and the polygonal model 𝑀.

Congruent Tetrahedron Align

Another point-based approach, improved from PAH, is the Congruent Tetrahedron Align

(CTA) algorithm, developed by Yin et al. and described in [19]. This method, instead of

extracting features, finds the congruent tetrahedrons that are built on the scanning point cloud

and on the model point cloud and, through the alignment of these tetrahedrons, performs the

estimation of the pose. The scanning point cloud is the one acquired by the sensor while the

model point cloud can be obtained from the 3D CAD model, which is known. When the

scanning point cloud is obtained, a 3D convex hull will be constructed, through specific

algorithms, to simplify it. Then, a tetrahedron with the largest volume is found in the vertices

of the convex hull and, thanks to a hash table, the tetrahedron congruent to the latter is detected,

making it possible to calculate the transformation between them. The algorithm pipeline is

shown in Figure 2.6.

Figure 2.6 - CTA pipeline [19]

Based on the necessary and sufficient condition for two tetrahedrons to be congruent (according

to which, if six sides of a tetrahedron are equal to the corresponding six sides of another

tetrahedron, then the tetrahedrons are regarded as being congruent), the key idea of the CTA

29

algorithm is the search for the six corresponding sides. In order to find the correspondences in

the next step more efficiently, in the first step of this method a Two Level Index Hash Table is

built to store the information, which includes not only the point pair length of model point cloud

but also the location topology information. To construct the hash table, a linear hash function

is used to classify the various distance measures into a certain number of buckets.

Point Feature Histograms

A local feature that has been much studied in recent years is the Point Feature Histograms

(PFH), introduced by Wahl et al. in [20] and then further developed by Rusu et al. in [21]. PFH

is the first of a series of histogram descriptors, some of which are analyzed in Subsection 2.1.2,

being global features. The PFH descriptor exploits the use of local and pose-invariant features

and focuses on the use, for each point 𝒑𝑖 of the point cloud, of the point 𝒑𝑖 (query point) and a

group of points close to it (𝑘– neighborhood). The estimation of these features is based on the

use of geometric relationships between the 𝑘-neighbors closest to 𝒑𝑖 involving:

• The 3D coordinates of these points 𝑥, 𝑦, 𝑧;

• The normals to the surface at each point 𝒏𝑥, 𝒏𝑦, 𝒏𝑧.

For each pair of points 𝒑𝑗 and 𝒑𝑘 in the 𝑘-neighborhood of 𝒑𝑖 and their estimated normals 𝒏𝑗

and 𝒏𝑘, a source point 𝒑𝑠 and target point 𝒑𝑡 are selected and then a Darboux Reference Frame

with the origin in the source point is defined as: 𝒖 = 𝒏𝑠, 𝒗 = (𝒑𝑡 − 𝒑𝑠) × 𝒖 and 𝒘 = 𝒖 × 𝒗.

Four features are estimated, which are shown in Equation 2.1:

 {

𝑓1 = 𝒗 ⋅ 𝒏𝑡

𝑓2 = ‖𝒑𝑡 − 𝒑𝑠‖
𝑓3 = 𝒖 ⋅ (𝒑𝑡 − 𝒑𝑠)/𝑓2

𝑓4 = atan(𝒘 ⋅ 𝒏𝑡, 𝒖 ⋅ 𝒏𝑡)

(2.1)

These features are then classified in the so-called bins, depending on the values they assume.

In Figure 2.7 the diagram of the region of influence of a PFH is shown.

30

Figure 2.7 - The influence region diagram for a Point Feature Histogram. In red: query

point. In blue: k – neighbors [21]

In this way, a multidimensional vector is obtained as output that encodes the local geometry of

the point cloud, in the vicinity of the query point. The size of the vector depends on the number

of features inserted (in this case four) and on the number of distinguishable cases depending on

the value assumed by the single feature.

Therefore, for each point of the point cloud its PFH is estimated. Clearly, the more particular

a PFH is compared to the others, the better and more robust the feature is for the correspondence

determination phase. The technique that provides such PFH is called Persistence Analysis,

which analyses the neighborhood of each point 𝒑 of the point cloud, contained in a sphere

whose center is 𝒑 and whose radius is varied in an interval dependent on the size and density

of the point cloud.

The main advantage of this feature is that it is invariant to position, orientation and point cloud

density, and the histograms cope well with noisy datasets, but, a very important drawback of

the PFH is the computational complexity: the theoretical computational complexity of the PFH

for a given point cloud with 𝑛 points is 𝑂(𝑛 · 𝑘2), where 𝑘 is the number of neighbors for each

point 𝒑 of the point cloud.

Fast Point Feature Histograms

The problem of the computational cost of PFH led to the development of a simpler and faster

variant, called Fast Point Feature Histograms (FPFH), presented by Rusu et al. in [22], in which:

31

• Each query point is connected only to the nearest neighbors, then the features between

the pairs of points are calculated, which this time are no longer 4 but 3, excluding the

Euclidean distance 𝑓2 (See Equation 2.1), obtaining for each point considered the

Simplified Point Feature Histogram (SPFH);

• For each point considered in the previous step, the k-neighbors are considered, and

therefore, exploiting the SPFH of the neighbors previously calculated, the final

histogram (FPFH) relating to the point 𝒑 is estimated, as shown in Equation 2.2:

 𝐹𝑃𝐹𝐻(𝒑) = 𝑆𝑃𝐹𝐻(𝒑) +
1

𝑘
∑

1

𝜔𝑘
 𝑆𝑃𝐹𝐻(𝒑𝑘)

𝑘

𝑖=1

(2.2)

 where the weight 𝜔𝑘 is the distance between 𝒑 and 𝒑𝑘.

In Figure 2.8 the diagram of the region of influence of a FPFH is shown. The great advantage

of the FPFH descriptor is that it maintains most of the discriminative power as PFH, but in

addition it is much faster; in fact, the theoretical computational cost of the FPFH is reduced to

𝑂(𝑛 · 𝑘), becoming able to estimate features almost in real time.

Figure 2.8 - The influence region diagram for a Fast Point Feature Histogram [22]

The output of this first phase is a set of candidate features which will be analyzed and compared

with the features of the acquired point cloud in the next phase of correspondence search to find

the optimal matching and thus align the two point clouds.

32

2.1.1.2. Point Cloud Alignment

Once the set of candidate features is obtained, the local features on one surface are compared

with the local features on the other surface to obtain point-to-point correspondences. Finally,

the transformation is estimated from the constructed correspondences for registering the two

surfaces. This task is particularly challenging, as the generated correspondences may contain a

large number of outliers due to symmetric structures, noise, clutter and occlusions. To address

and solve this problem, various algorithms have been developed, and some of these are

presented in this paragraph.

Sample Consensus Initial Alignment

A very popular algorithm in the field of computer vision, capable of counteracting this problem,

is the Random Sample Consensus (RANSAC) algorithm, developed by Fischler and Bolles and

presented in [32]. RANSAC is an iterative method to estimate the best parameters for a

mathematical model that fits a dataset with outliers, which are ignored in the estimation. It is a

non-deterministic algorithm in the sense that it produces a reasonable result only with a certain

probability, which is greater the higher the number of iterations.

Starting from this method, a family of RANSAC-based algorithms has been developed for point

cloud initial alignment purposes, one of which was presented by Rusu et al. in [22] and applied

to the FPFH descriptor, the Sample Consensus Initial Alignment (SAC-IA). This algorithm

iteratively carries out the following steps:

• Keypoints Sampling. At least three sample points are selected from the model point

cloud while making sure that their pairwise distances are greater than a user-defined

minimum distance;

• Correspondence Search. For each sample point, a list of 𝐾 candidate points in the scene

point cloud, with a similar local descriptor, is found. Then, one point from the candidates

is randomly selected as the correspondence point;

• Transformation Matrix Estimation. With three correspondence pairs, it is possible to

estimate the transformation matrix 𝑻𝑗 , where 𝑗 is the iteration index;

33

• Performance Evaluating. The model point cloud is transformed using 𝑻𝑗 and is

compared to the scene point cloud. The quality of the comparison is measured using a

Huber penalty measure as an error metric [33].

The robustness is proportional to the trial number. However, too many trials will decrease the

efficiency. In spite of that, SAC-IA can still get a good result after many iterations and be widely

used in the initial alignment process. Since the obtained transformation matrix may deviate

from the real one, a refinement step follows, commonly performed through the ICP. Being a

RANSAC-based method, SAC-IA is robust to noise and outliers. In particular, unlike the classic

RANSAC algorithm, the SAC-IA reduces some unreasonable iterations by judging the

qualification of current sampled correspondences according to a distance constrain. However,

its efficiency and accuracy are limited in complex cluttered environment.

Fast Global Registration

Existing approaches are generally based on iterative methods that aim to search for

correspondences between two point clouds, thanks to which the alignment/recognition process

is then carried out. Much of the computational cost is wasted to compare the point cloud with

candidates that are subsequently discarded, and in particular these methods are based on a first

step of global estimation of the pose (first acquisition) and on a subsequent step of local

refinement [11].

The Fast Global Registration (FGR) algorithm overcomes the limitations of these approaches,

proving to be as precise as well-initialized local refinement algorithms and faster than them.

This approach, presented by Zhou et al. in [34], unlike most existing methods, does not involve

iterative sampling, model fitting, or local refinement. It does not require initialization and can

align noisy partially overlapping surfaces.

Given two point sets, 𝑷 and 𝑸, the key idea is to establish correspondences between them, after

which an optimization process of an objective follows based on these correspondences.

Importantly, during the optimization process, these matches are not recalculated.

In [34], the set of correspondences 𝑲 = (𝒑, 𝒒) between 𝑷 and 𝑸 is computed using the FPFH

descriptor given the great speed with which this feature can be calculated and the accuracy it

34

guarantees. Specifically, three main steps are performed that aim at determining the set K based

on the similarity between FPFH, through the Nearest Neighbor retrieval, and on the

"compatibility" between tuples of correspondences, through the comparison of the lengths of

segments obtained from pairs of points identified on the two point clouds.

Once the set of correspondences 𝑲 is obtained, the objective is to minimize the distances

between corresponding points, taking care not to consider spurious correspondences, thus

optimizing the pose 𝑻. Figure 2.9 shows an example with 2D point sets.

Figure 2.9 - Illustration with 2D point sets. In blue: genuine correspondences; in red:

spurious correspondences [34]

To accomplish this task, an objective function 𝐸 to be minimized is first defined, which contains

in the formula a robust penalty 𝜌, the value of which must be chosen very carefully as it

influences the fraction of matches to be excluded in the optimization process. This formula is

shown in Equation 2.3.

𝐸(𝑻) = ∑ 𝜌(‖𝒑 − 𝑻𝒒‖)

(𝒑,𝒒)∈𝑲

(2.3)

As a robust penalty, a scaled Geman-McClure estimator is chosen, whose formula is shown in

Equation 2.4 and where the parameter 𝜇 controls the range within which residuals have a

significant effect on the objective.

 𝜌(𝑥) =
𝜇𝑥2

𝜇 + 𝑥2
 (2.4)

35

After a reformulation of the objective function, using the Black-Rangarajan duality between

robust estimation and line processes [35], and of the matrix 𝑻 by rewriting it as a vector 𝝃

containing the 3 rotational and 3 translational parameters, an iterative cycle is implemented

which, through the Gauss-Newton method, recalculates 𝝃 (and therefore 𝑻) from time to time

until convergence, i.e. until the minimum of the objective function is reached, or until 𝜇 falls

below a certain threshold.

Given this operating principle of the FGR, this algorithm is very fast. In particular, since the

correspondences are not recomputed during the optimization process, unlike SAC-IA, FGR is

expected to be faster than the other algorithm. On the other hand, FGR has limited robustness

to outliers, also due to the fact that the factor of robustness to outliers and spurious

correspondences is strongly dependent on the estimator selected for the objective function.

Furthermore, the FGR performances are evaluated under the assumption that the two surfaces

to be aligned are partially overlapped.

Database Search: Geometric Hashing

The alignment of the point clouds, as well as through appropriate algorithms, some of which

are illustrated above, can also be carried out thanks to the search and matching of the features

of the model point cloud previously stored in a database. This in particular is the case of the

GH, PAH and CTA algorithms, which, as already seen in the first step (paragraph 2.1.1.1), store

data in a hash table, constructed in order to carry out a rapid search for correspondence and

consequently align the point clouds.

In the case of GH, once the construction of the hash table containing the information relating

to the object model is completed, in the online recognition phase the features are extracted from

the range image acquired by the sensor and transformed into the reference system defined by a

base, and are matched with the features stored in the database. The new coordinates of the points

expressed in the new reference system enter the hash table and each base of the model

previously stored in the hash table is given a vote. The model basis that scored the largest

number of votes corresponds to the chosen image basis. Then, once the basis in the hash table

is identified, the rigid transformation between the reference systems of the model and the image

can be determined, thus obtaining the pose. In Figure 2.10 a scheme of the GH recognition

phase is shown.

36

Figure 2.10 - Geometric Hashing recognition step. The diagram represents the continuation

of Figure 2.4 [31]

Database Search: Polygonal Aspect Hashing

Instead, in the case of PAH, once the Offline Processing phase in which the hash table is

constructed is finished, the Runtime Localization phase follows, i.e. the polygon matching

process in which the reference database created in the offline phase and the sparse 3D point

cloud obtained from the sensor are used, determining the position vector 𝑻 and the rotation

matrix 𝑹 of the target model w.r.t. the sensor focal point. This step can be summarized as

follows:

• Selection of a polygon of 𝑁 points from the input point cloud;

• Reduction of the set of possible poses to those where the polygon input scan points line

up with their corresponding model surface points within a specified tolerance, thanks to

the hash table;

• From each matched polygon pairs, the corresponding relative pose (𝑻,𝑹) can be

computed;

• Evaluation of the quality of the alignment between input point cloud and polygonal

model, transforming the points of the point cloud into the model reference frame using

(𝑻,𝑹). The solution is the pose candidate that exhibits the best alignment.

37

Database Search: Congruent Tetrahedron Align

Finally, in the case of the CTA method, once the tetrahedron is defined in the scanning point

cloud and the hash table containing the information from the model point cloud is built, the

process of searching for the congruent tetrahedron in the model point cloud is carried out. The

output of this search are the four vertices of the tetrahedron in question. Once these vertices and

therefore the tetrahedron is found, the pose can be estimated. In general, more than one

corresponding tetrahedron can be found in the hash table, but only one is correct. In order to

deal with this case and choose the correct one, the ICP algorithm is used to refine the registration

result. The accuracy measurement of the algorithm is the ICP convergence score, computed by

Equation 2.5:

 𝑓𝑐𝑜𝑛𝑣 =
1

𝑛
∑‖𝒎𝑖 − (𝑹𝒔𝑖 + 𝒕)‖2

𝑛

𝑖=1

 (2.5)

where 𝒔𝑖 and 𝒎𝑖 are the vertices of the tetrahedra built respectively on the scanning and on the

model point cloud, while 𝑹 and 𝒕 are the rotation matrix and the translation vector that define

the transformation between the two point clouds. The transformation corresponding to the

smallest ICP convergence score is the output of the CTA algorithm and the input of the pose

tracking.

2.1.2. Global-Feature-Based Methods

As done for the local-feature-based methods, also for the global-feature-based ones a

preliminary comment is made on the pipeline adopted by them and shown in Figure 2.11.

Figure 2.11 - Global-feature-based methods pipeline

The basic idea is to extract features - again not in all cases - from a series of point cloud models

with different poses and store them in a database; subsequently, in the recognition phase, each

38

feature of this database is compared with the feature extracted from the point cloud acquired by

the LiDAR, and the quality of this comparison is evaluated through an appropriate metric. The

feature that exhibits the best comparison provides the pose parameters.

2.1.2.1. Global Feature Extraction/Description

This paragraph illustrates the feature database construction procedure adopted by some global-

feature-based methods.

Online 3 DOF Template Matching

A series of methods that have caught on, especially in the space field, use the entire point cloud

as a global feature and are the Template Matching (TM) techniques. The basic idea of this

method is to compare the point cloud acquired by the sensor with a series of templates generated

using a model point cloud in different poses, and evaluate the quality of matching through a

correlation function. The pose is obtained from the template that presents the best match.

However, strictly speaking, this method would require the generation of templates in the entire

6 DOF pose space, obtaining a huge number of templates and, consequently, taking up a lot of

on-board memory and making the computational cost very high. To make this principle

applicable to space applications, several ideas have been developed to reduce the necessary

number of templates to generate and thus accelerate the subsequent recognition phase.

An example is given by Online 3 DOF TM, proposed by Opromolla et al. in [25], in which the

position of the centroid of the acquired point cloud is exploited to estimate the relative position

vector of the target with respect to the sensor. This greatly simplifies the problem; in fact, the

online creation of the templates is carried out by restraining the pose search space to a 3 DOF

database consisting only of the attitude parameters.

It is important to underline that, in this Template Matching algorithm, as well as in the other

Online TM techniques that follow, the feature extraction/description step is not completely

separated from the recognition step, as the entire database is not created before the recognition

phase but, as the templates are generated, the recognition phase is also carried out (in which the

quality of the matching between the i-th template and the acquired point cloud is evaluated).

39

Despite the significant improvement compared to the traditional Template Matching technique,

given the greatly reduced number of templates to generate, it is still highly time consuming.

Online Fast 3 DOF Template Matching

A variant called Online Fast 3 DOF TM, presented by Opromolla et al. in [10], includes a

strategy to speed up the recognition step; therefore, it is covered in paragraph 2.1.2.2.

PCA-based Online Template Matching

Another idea, applied in the PCA-based online TM, developed by Opromolla et al. in [28], is

to exploit, together with the position of the centroid of the point cloud, also the Principal

Component Analysis (PCA) [36] to estimate the target main axis 𝒆𝑀. The main axis 𝒆𝑀 is

identified by the eigenvector associated with the maximum eigenvalue of the covariance matrix

of the measured point cloud. It is important to underline that PCA can only be effectively

adopted for elongated targets. Although there is this limitation of applicability, this feature fits

perfectly into the space scenario as many spacecrafts and debris have this shape. The

determination of the main axis of the target easily allows the calculation of 2 of the 3 Euler

angles (roll, 𝛼 and pitch, 𝛽), effectively limiting the application of the TM to a single DOF

database built online. This clearly allows a strong reduction in the number of templates to be

generated, and consequently in the amount of data to be stored on board, significantly lowering

the computational cost compared to other TM techniques. The unknown Euler angle (yaw, 𝛾)

represents the rotation around the target main axis.

2 DOF Template Matching

Finally, the last variant of the Template Matching techniques that is illustrated is the 2 DOF

TM, proposed by Guo et al. in [27]. The key idea of this method is linked to the definition of

an attitude sphere where to represent the relative attitudes between LiDAR Coordinate System

(LCS) and Target Coordinate System (TCS).This sphere is centered at the origin of TCS, and

LCS is located on the sphere surface with Z axis (the line of sight of the LiDAR system)

pointing to the center.

The first step of this method is an offline phase and starts from building the silhouette image

template dataset offline, where silhouette image means the projection of the 3D point cloud on

40

the X-Y plane of the LCS. In addition, this method also exploits the centroid of point cloud data

for the estimation of the spacecraft position, restricting the sampling within 3-DOF attitude

domain, as already seen in the variants reported above. The assumption made with the attitude

sphere is very important because, when the silhouette image is generated, rotating the LiDAR

system around the line of sight, would not change the shape of the generated silhouette but only

alters its orientations. This means that the 𝛾 angle can be unwrapped out of the attitude angles,

since it can be calculated as the rotation between the scene silhouette image and the template

image. Specifically, one silhouette image represents all attitudes that have the same (𝛼,𝛽) but

different 𝛾.

The silhouette generation pipeline is shown in Figure 2.12.

Figure 2.12 - Pipeline of silhouette image generation [27]

Once the point cloud is projected, the Delaunay triangulation algorithm is applied. This step is

crucial since it ensures robustness of the shape against point sparseness, thus making the

silhouette image resilient to translation. Then, edges longer than a certain threshold are

eliminated and the silhouette binary image is formed, in order to store the silhouette shape for

matching. An Image Coordinate System (ICS) is defined, where the X axis and the Y axis are

set to be aligned with the X axis and Y axis of LCS. Subsequently, each silhouette image is

rotated to a status where its two principal directions are aligned with the X axis and Y axis of

ICS and finally a second-time silhouette imaging process follows. For binary image generation,

the pixel length must be appropriately selected: a small length will result in a feature with higher

descriptiveness, but it will also be easier to suffer from noise perturbations.

41

The last two steps of the silhouette generation pipeline are fundamental to allow the subsequent

estimation of 𝛾. So, the template dataset is constructed in a two Euler-angle domain (𝛼,𝛽), i.e.,

the azimuth angle and elevation angle in the attitude sphere. Unlike the other template matching

techniques already seen, in this case the template is built offline, thus saving online processing

time.

Viewpoint Feature Histogram

Taking up the concept of descriptors, further ones were developed from PFH and FPFH, first

adding information representative of the entire point cloud, obtaining the so-called Viewpoint

Feature Histogram (VFH).

The idea of developing the VFH (Rusu et al., [37]) arose from the characteristic of PFH and

FPFH of being invariant to an object’s scale and its pose. This invariance characteristic is useful

if features must be extracted which, regardless of how two objects are oriented, allow their

recognition and subsequent alignment using specific algorithms, but clearly alone are not

sufficient for pose estimation. The goal was to create a descriptor that could be run in real time

to simultaneously recognize an object and calculate its pose. VFH addresses the pose invariance

of PFH/FPFH by considering the camera viewpoint as a fourth feature, which is concatenated

to the three features of the FPFH. This fourth feature is the distribution of angles between the

viewpoint direction (i.e. the position of the centroid of the point cloud) and each points’ normal.

The most distinctive difference between PFH/FPFH and VFH is the number of histograms

generated per point cloud: indeed, PFH/FPFH created a descriptor for each point in the point

cloud, while VFH creates only one descriptor per scene point cloud. Thanks to the addition of

this information, VFH may now be used to identify objects in 3D space, being more robust than

PFH/FPFH in describing an object, and estimate their relative poses, however stopping at 5

DOF, being invariant to camera roll. Furthermore, other major flaws to VFH are its sensitivity

to noise and occlusions, and scale invariance. Indeed, although the height of the VFH histogram

implicitly conveys information about the scale of the object, as it is a function of the total

number of points in the distance image, in the PCL implementation the histogram is normalized

by the total number of points in the scene, which causes all histograms to have the same height

range of [0-1]. This inconsistency provides insight into the difficulty these histograms have in

conveying information about an object’s scale.

42

Clustered Viewpoint Feature Histogram

Subsequently, the principle adopted by VFH on the entire point cloud was extended to clusters

of point clouds, thus obtaining the Clustered Viewpoint Feature Histogram (CVFH).

The CFVH (Aldoma et al., [23]) addresses the deficiencies present in VFH being able to

distinguish identical objects but of different scales (the CVFH histogram is not normalized by

the total number of points in the scene, so the scale of the object is implicitly characterized by

the histogram) and considering the effects of partial occlusions. CVFH remedies the roll

invariance of VFH by concatenating a Camera Roll Histogram (CRH) onto the descriptor.

The basic idea is to identify smooth and continuous clusters 𝑪𝑖 on the surface 𝑺 to be described

and use only the points in 𝑪𝑖 to build a coordinate system while still using all points in 𝑺 to

describe its geometry. The cluster is smooth if the dot product of the normals of two neighboring

points is larger than a threshold 𝑡𝑛, and it is continuous if two neighboring points are separated

by less than Euclidean distance threshold 𝑡𝑑. Then, a point 𝒑𝑘 of normal 𝒏𝑘 is added to the

cluster 𝑪𝑖 if the constraint shown in Equation 2.6 is fulfilled:

 ∃𝒑𝑗 ∈ 𝑪𝑖: ‖𝒑ℎ − 𝒑𝑗‖ < 𝑡𝑑 ⋀ 𝒏ℎ ⋅ 𝒏𝑗 > 𝑡𝑛 (2.6)

Depending on the structure of 𝑺, it might be composed of several 𝑪𝑖 from which a different

coordinate system is obtained and therefore a different CVFH histogram, each one describing

the same surface but encoding it differently. So, the main difference between CVFH and VFH

is that, instead of one histogram for the entire scene, there is now a CVFH histogram descriptor

for each cluster in the scene. Each 𝑪𝑖 is paired with a (𝒄𝑖, 𝒏𝑖), respectively representing the

centroid and the average of the normals of 𝑪𝑖. Each pair (𝒄𝑖, 𝒏𝑖) is then deployed as one of the

axis of a point-wise reference frame from which three angular distributions (each made out of

45 bins) of the normal 𝒏𝑗 can be computed (similar to the first three VFH features) and finally

added in the corresponding histogram bin.

CVFH includes as well a fourth and fifth component (45 and 128 bins respectively) into the

histogram, the fourth being based on the L1-distribution obtained from 𝒄𝑖 and each 𝒑𝑗 ∈ 𝑺 and

the fifth resulting from yet another angular distribution obtained from each 𝒏𝑗 and the central

view direction (similar to the fifth VFH feature). The total size of a CVFH histogram is 308.

43

CVFH has been shown to deliver good results in the context of 3D recognition; however, it has

the important drawback that, for pose estimation, it needs the addition of the CRH, which results

in extra calculations and a larger overall feature histogram.

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

Finally, starting from the CVFH, the Oriented Unique Repeatable Clustered Viewpoint Feature

Histogram (OUR-CVFH) was developed.

The OUR-CVFH descriptor (Aldoma et al., [24]) solves this main problem of the CVFH,

introducing the concept of Semi-Global Unique Reference Frame (SGURF) which better

integrates the information previously provided by the CRH, defining multiple repeatable

coordinate systems on 𝑺. There are five components in total to the OUR-CVFH, of which the

concatenation creates a single descriptor. To generate the OUR-CVFH the following steps are

performed:

• First, points whose curvature is higher than a certain 𝑡𝑐 threshold are removed from the

surface 𝑺, yielding 𝑺𝑓;

• 𝑺𝑓 is now separated into smooth and continuous clusters 𝑪𝑘, similarly to what CVFH

does. Each cluster is initiated with an arbitrary point in 𝑺𝑓 that has not yet been assigned

to any cluster;

• Differently to CVFH, the points 𝒑𝑘 ∈ 𝑪𝑖 are filtered once more by the angle between

𝒏𝑘 and 𝒏𝑖 (the average normal of the points in 𝑪𝑖);

• Each 𝑪𝑖 is associated with a pair (𝒄𝑖, 𝒏𝑖) representing its centroid and average normal.

For a specific 𝑪𝑖, the associated SGURF is found and placed at its centroid.

So far, for a specific surface 𝑺, 𝑁 triplets (𝒄𝑖, 𝒏𝑖, 𝑅𝐹𝑖), where 𝑅𝐹 stands for Reference Frame,

have been computed. The five components of the OUR-CVFH are defined as follows:

• First, 𝒄𝑖 and 𝒏𝑖 are used to compute the first three components of CVFH and the

viewpoint component (the fifth component), as presented in [23]. The viewpoint

component is however encoded using 64 bins instead of the original 128;

• The fourth component of CVFH is removed and instead the surface 𝑺 is spatially

described by means of the computed 𝑅𝐹𝑖. To perform this, 𝑺 is transformed from the

44

original coordinate system of 𝑺 (the camera’s reference frame) into the local 𝑅𝐹𝑖. After

the transformation, the points in 𝑺 are divided into the 8 octants defined by the signed

axes (𝑥−, 𝑦−, 𝑧−) . . . (𝑥+, 𝑦−, 𝑧−) . . . (𝑥+, 𝑦+, 𝑧+). In order to account for perturbations

due to noise or missing parts, interpolation is performed between octants by associating

to each point 𝒑𝑘 eight weights, one for each octant. The weights are computed by

placing three 1D Gaussian functions over each of the axes centered at the 𝑅𝐹𝑖 origin

with a standard deviation of 𝜎. Because this interpolation scheme describes the

likelihood that a particular point lies in a particular octant, this Gaussian weighting

describes the likelihood that measurement noise could cause a point to appear in a

different octant. Therefore, the spatial distribution information of points, appropriately

weighted, grouped into octants is stored in 8 histograms.

The total size of the descriptor is 45 · 3 + 8 · 13 + 64 = 303 bins. In Figure 2.13, an example

of OUR-CVFH histogram is shown.

Figure 2.13 - Left: point cloud of a wine glass (black) with associated cluster 𝑪𝑖 (green) and

the SGURF reference frame. Right: the resulting OUR-CVFH histogram [24]

The first step of the global recognition pipeline using the OUR-CVFH descriptor is a training

session, in which a database of features is generated. The recognition step is briefly analyzed

in paragraph 2.1.2.2. Training is performed by either using an actual 3D sensor to take range

images of a real object at various ranges and attitudes or using a 3D sensor simulator and a 3D

mesh model. For space applications the latter option is usually preferable.

45

The OUR-CVFH descriptor has several advantages, such as the robustness to many types of

occlusions, the speed in performing the pose estimate and the accuracy that this method can

achieve with sufficient training, without then having to resort to a refinement phase with the

ICP. On the other hand, this method generally requires high quality 3D models and evenly

distributed high resolution 3D data; its recognition capabilities tends to decrease rapidly as the

distance from the camera of the object to be recognized increases; finally, training at multiple

ranges presents its own complication since, similarly to the CVFH, the only information on the

scale of the object is that implicitly provided by the height of the OUR-CVFH histograms.

Indeed, in [24], Aldoma et al. consider training from multiple viewpoints but only at a single

constant range.

This architecture has been implemented in recent research for spacecraft navigation, producing

favorable results [38, 39].

Basis Point Set

Finally, an interesting and efficient point cloud coding technique is briefly illustrated, the Basis

Point Set (BPS), proposed by Prokudin et al. in [17]. The point cloud is encoded as a fixed-

length feature vector 𝑿 = {𝑥1, . . . , 𝑥𝑛}, computed as the minimal distances to a fixed set of

points 𝑩 = {𝒃1, . . . , 𝒃𝑘}𝑇. A graphical representation of this technique is shown in Figure 2.14.

Figure 2.14 - Basis Point Set encoding for point clouds [17]

46

Therefore, every point cloud is reduced to a relatively small fixed-length vector, whose length

can be adjusted to meet computational constraints for specific applications and represents a

trade-off between fidelity of the encoding and computational efficiency. Compared to other

encodings of point clouds, the proposed representation also has an advantage in being more

efficient with the number of values needed to preserve high frequency information of surfaces.

Finally, this type of coding allows the BPS method to easily deal with the problem of varying

the cardinality of point clouds.

The feature estimation process is divided into three main phases:

• Normalization. The encoding algorithm takes in input a set of point clouds 𝑿𝑖. Every

point cloud can have a different number of points. In this first step, all point clouds are

normalized to a fit unit ball;

• BPS Construction. To obtain the Basis Point Set vector, 𝑘 points are randomly selected

from a ball of a given radius 𝑟, as shown in Equation 2.7:

 𝑩 = [𝒃1, … , 𝒃𝑘]𝑇 , 𝒃𝑗 ∈ 𝑹𝑑 , ‖𝒃𝑗‖ ≤ 𝑟 (2.7)

where 𝑑 = 3 for the case of 3D point clouds. This set is arbitrary but fixed for all point

clouds in the dataset; 𝑟 and 𝑘 are hyper-parameters of the method, and the latter can be

used to determine the trade-off between computational complexity and the fidelity of

the representation;

• Feature Computation. Finally, for each point cloud in the dataset, the feature vector is

constructed by calculating the minimum distance from every basis point to the nearest

point in the point cloud under consideration (Equation 2.8) or by storing not only the

distance information, but the entire delta vector from each basis point to the nearest

point in the original point cloud (Equation 2.9):

𝑥𝑖

𝐵 = [min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃1, 𝒙𝑖𝑗), … , min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃𝑘, 𝒙𝑖𝑗)] 𝑇 , 𝑥𝑖
𝐵 ∈ 𝑹𝑘

(2.8)

𝑿𝑖

𝐵 = {(arg min
𝒙𝑖𝑗∈𝑿𝑖

𝑑(𝒃𝑞 , 𝒙𝑖𝑗) − 𝒃𝑞)} ∈ 𝑹𝑘×𝑑
(2.9)

47

In [17] the BPS is introduced as a method for estimating global point cloud features that can be

used as input for learning algorithms; therefore, since a recognition phase has not been treated

using classical methods, this part will not be present in this literature analysis.

2.1.2.2. Recognition

This paragraph illustrates the matching process between the features stored in the database and

the features of the measured point cloud.

Online 3 DOF Template Matching

As already mentioned in paragraph 2.1.2.1, in Template Matching techniques, once the database

is built (or, after the generation of each individual template, in the case of Online TM

approaches), a phase follows in which the point cloud templates and the point cloud acquired

by the sensor are compared and, through a correlation function, the quality of this comparison

is evaluated.

In the case of Online 3 DOF TM, after template generation, the centroid overlapping and

correlation function evaluation phases follow, which allow the best correlation and therefore

the pose of the target to be identified. The correlation parameter selected in [25] is the mean

square distance of corresponding points between the template itself and the acquired point

cloud. The best correlation is the one that minimizes the correlation function shown in Equation

2.10:

 𝑪(𝑞, 𝑻) =
1

𝑁𝑝
∑|𝑷𝑆𝐸𝑁𝑆𝑂𝑅

𝑖 − 𝑷𝑇𝐸𝑀𝑃𝐿𝐴𝑇𝐸
𝑖 (𝑞, 𝑻)|

2

𝑁𝑝

𝑖=1

 (2.10)

where 𝑻 is the relative position vector, 𝑞 is the unit quaternion describing the relative attitude,

𝑁𝑝 is the dimension of the LiDAR point cloud, 𝑷𝑆𝐸𝑁𝑆𝑂𝑅
𝑖 is the i-th point of the LiDAR point

cloud and 𝑷𝑇𝐸𝑀𝑃𝐿𝐴𝑇𝐸
𝑖 is the i-th point of the template point cloud.

A diagram of the overall Online 3 DOF TM architecture is shown in Figure 2.15.

48

Figure 2.15 - Flow diagram of the Online TM algorithm [10]

However, in the presence of self-occlusion or truncated point cloud conditions, it becomes

difficult to guarantee adequate results; therefore, to counter these problems, Nocerino et al. in

[26] have proposed improvements to the 3 DOF TM architecture, as well as in the PCA-based

variant. Specifically, a centroid correction phase is performed once the best correlated template

is found, since the centroid may exhibit a notable displacement from the true center of the target,

especially along the sensor boresight direction, due to the fact that the measured point cloud

exclusively captures the visible portion of the target surface within the sensor’s Field of View

(FOV). The position estimation is updated using Equation 2.11:

 𝑻𝑛𝑒𝑤 = 𝑻 − 𝜹 (2.11)

where 𝜹 is the difference between the centroids of the acquired datasets and of the best

correlated template.

49

Online Fast 3 DOF Template Matching

As anticipated in paragraph 2.1.2.1, the Online 3 DOF TM Recognition phase is strongly

optimized in the Online Fast 3 DOF TM variant, operating a further reduction in the number of

templates in a step preceding the matching between the point cloud template and the point cloud

acquired by the sensor. More precisely, before moving on to the matching of the point clouds,

various templates are already discarded through the estimation of the error in the average

distance between the points of the point cloud and the sensor boresight axis, calculated for both

point clouds (sensor and template); if this error exceeds a certain threshold (determined through

numerical simulations), then the template is discarded.

In the related paper it is observed that, although the Online Fast TM presents less accurate

results than the classic 3 DOF TM, this procedure leads to a significant reduction in the

computational cost, and the advantage of this new method lies in the fact that, by choosing a

small enough step angle with which to sample the Euler angles and build the templates, the

difference in accuracy with the classical method is negligible, despite a significant reduction in

the computational cost. Instead, as the angular step increases, it can be seen that the difference

in accuracy increases, and therefore, despite the higher computational cost, the classical method

becomes preferable.

PCA-based Online Template Matching

Similarly, also for the PCA-based Online TM a correlation function is used to measure the

quality of the matching between the templates in order to find, from the best match, the

unknown value of 𝛾. The correlation function is defined as the mean squared distance of

corresponding template/sensor points, as shown in Equation 2.12:

 𝑪(𝛾) =
1

𝑁𝑝
∑|(𝑷𝑖 − 𝑷𝐶) − (𝑷𝑇

𝑖 (𝛾) − 𝑷𝐶𝑇(𝛾))|
2

𝑁𝑝

𝑖=1

 (2.12)

where 𝑷𝑇
𝑖 (𝛾) and 𝑷𝐶𝑇(𝛾) represent the i-th point and the centroid of the template point cloud

associated with each value of 𝛾. The substantial difference compared to the 3 DOF variants is

the problem of the ambiguity of the pose solution due to the use of PCA. Indeed, from this

procedure, 2 pose solutions are obtained, as the PCA allows only the direction of the main axis

50

to be found, but not its direction, thus obtaining 2 solutions of 𝛼 and 𝛽, and consequently having

to run the TM part 2 times, obtaining 2 values of 𝛾. This ambiguity is solved by the acquisition-

to-tracking transition step, which consists in applying the ICP algorithm twice, exploiting the

Nearest Neighbor (NN) and the Normal Shooting (NS) approaches [40].

As in the 3 DOF variant, improvements have also been made in this variant [26]: in addition to

the correction of the centroid, already seen for the 3 DOF architecture, a similar approach can

be adopted to also correct the estimate of the main axis of the target in the PCA-based TM case.

To carry out this correction, the PCA is applied not only to the point cloud acquired by the

target, obtaining a main axis that is not very precise due to the partial visibility of the point

cloud, but, following the superposition of the centroids, it is also applied to each template, in

order to find, in addition to the main axis of the template, the angle between the two main axes,

so as to be able to apply a rotation to each template. Once the best template is found, the

corresponding rotation matrix is applied to the main axis direction of the acquired dataset to

update its estimate.

2 DOF Template Matching

Instead, in the 2 DOF TM, once the template database is built, a silhouette image is constructed

using the point cloud acquired by the LiDAR, after which the binary image matching process

follows. To measure the quality of the matching between binary images, the Jaccard coefficient

is chosen, which is defined in Equation 2.13:

 𝑆 =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
 (2.13)

where 𝑨 and 𝑩 are two binary image vectors. All binary images, stored as vectors, are organized

into a matrix 𝑭𝑀 = (𝒇1
𝑇 , 𝒇2

𝑇 , . . . , 𝒇𝑚
𝑇)𝑇 where 𝑚 is the number of templates. At this point, given

a query scene image 𝒇𝑠, through simple multiplications between matrices, it is possible to

calculate, for each comparison between the templates 𝒇𝑖 and 𝒇𝑠, the Jaccard coefficient and

select as the nearest template the one corresponding to the highest coefficient. Finally, once the

nearest template 𝒇𝑚 is found, the pose estimation can theoretically be carried out, having found

the pair of Euler angles (𝛼𝑚, 𝛽𝑚) through the template and being able to calculate 𝛾 as the

rotation between the scene silhouette image and the template image. However, for symmetric

51

targets, there are cases of ambiguity in pose estimation; there may be more than two different

attitudes that will result in the same template feature. This problem is addressed by adopting a

principal-direction-based strategy, exploiting small asymmetrical parts of the target, and

finally the ICP algorithm is used to refine the pose.

The results shown in [27] demonstrate that 2 DOF TM outperforms CTA, 1 DOF TM and Fast

3 DOF TM in success rate and time consumption but, on the other hand, its main limitation is

that the target is assumed to be completely in the LIDAR FOV.

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

Very similarly to the methodology adopted by the TM algorithms in the Recognition phase, the

actual pose estimation phase using the OUR-CVFH histogram is also based on a matching

process between the descriptors extracted from the measured scene set and those extracted from

the training set created in the first step. The matching process is briefly described below:

• Every descriptor belonging to the measured scene set is matched with every descriptor

belonging to the training set using a distance metric. From this process, 𝑁 candidates

are found that produce the smallest distance metric;

• For each of the 𝑁 best matches, ICP refines the pose by aligning the model points with

the scene points. This process returns 𝑁 separate 6 DOF relative pose estimates;

• Finally, the best candidate is selected. This step gives preference to matching clusters

of similar size by considering the number of inliers and outliers of the point clouds.

With the point clouds in the same reference frame, a point in the model cloud is

considered an inlier if the distance to a point in the scene cloud is within a threshold

distance 𝑡𝑖, otherwise it is an outlier. Then, a cost metric is calculated, which is defined

in Equation 2.14:

 𝐽 = #𝑖𝑛𝑙𝑖𝑒𝑟𝑠 − 𝜆 #𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (2.14)

where 𝜆 is used to weight the outlier count. The best candidate is determined as the one

maximizing 𝐽.

52

2.1.3. Literature Analysis Conclusion

This Subsection contains a final summary of the performance of the analyzed methods, also in

this case carried out by separately considering the feature extraction/description logical block

(Table 2.1) and the alignment/recognition block (Table 2.2). Table 2.1 is built with the aim of

summarizing: (1) The type of feature (local or global); (2) Whether feature extraction is

required; (3) Pros and cons of the methodology adopted; (4) If it is applied in the space field.

Feature Type Extr. Pros Cons Space

Geometric

Primitives

(GH)

Local Yes
Pose and scale invariant

features

Evenly distributed high

resolution 3D data required
No

Polygons

(PAH)
Local No

A polygon with large

surface area will provide

fewer polygon matches.

More polygons can

increase robustness to

outliers and occlusions

More polygons increase the

computational cost. It is

essential to find a good

compromise

Yes

Tetrahedrons

(CTA)
Local No

The greater the volume, the

greater the robustness and

reliability of the method

The number of buckets

must not be very large

because, although the

correspondence search

becomes more accurate, the

computational cost

increases

Yes

PFH Local Yes

Invariance to position,

orientation and point cloud

density; the histograms

cope well with noisy

datasets

High computational cost,

not suitable for real-time

applications

No

FPFH Local Yes

Much lower computational

cost, compared to PFH,

while maintaining the same

advantages and

discriminative power

Obviously, some

information is lost,

compared to PFH

No

53

Point Cloud

Template

(TM)

Global No

The point cloud is sparse,

reducing the amount of

data to be processed in the

recognition phase

Due to the symmetries,

errors in the pose may arise

due to ambiguity

Yes

Point Cloud

w/main axis

(PCA TM)

Global No

Addition of the direction

information along which

more points are

concentrated

The orientation of the

principal axis is not

established

Yes

Silhouette

image (2

DOF TM)

Global No

Silhouette robustness

against point sparseness,

resilience to translation. It

is stored as a binary image,

resulting in simplification

of matching

The pixel length must be

appropriately selected: a

small length will result in a

feature with higher

descriptiveness, but it will

also be easier to suffer

from noise perturbations

Yes

VFH Global Yes

VFH more robust than PFH

/ FPFH in describing an

object

Sensitivity to noise and

occlusions; scale

invariance; invariance to

camera roll. Only allows 5

DOF pose estimation

No

CVFH Global Yes

Ability to distinguish

identical objects of

different scales and

considering the effects of

partial occlusions

Requires CRH to resolve

roll invariance (larger

overall feature histogram);

scale sensitivity

No

OUR-CVFH Global Yes
Robustness to many types

of occlusions
Scale sensitivity Yes

BPS Global No

Point cloud reduced to a

relatively small fixed

length vector. Fast

encoding process while

still maintaining accuracy

in surface description

Too many points, although

they increase the

information content, also

increase the computational

cost, and vice versa if too

few are chosen

No

Table 2.1 - Feature Extraction/Description pros and cons

54

Note how the invariance property is considered a pro for local features, while a con for global

ones, precisely due to the difference in the methodology adopted to exploit them.

Table 2.2, similarly, is constructed to summarize: (1) Pros and cons of the applied methodology;

(2) If this method is applied in the space field.

Method Pros Cons Space

GH

Ability to handle partially occluded

objects. Efficient online recognition,

since most of the computational work

is done during the offline step

A transformation which is

based on correspondences of

two base pairs may be

sensitive to noise

No

PAH

Efficient with very sparse point clouds;

the input point cloud is not expected to

be organized in any specific pattern

The point cloud should cover

as much of the target as

possible

Yes

CTA
Efficient with very sparse point clouds.

Accurate and robust to noise

Ambiguity resolved through

ICP algorithm. The model

point cloud should be

resampled as uniform as

possible

Yes

SAC-IA Robustness to noise and outliers

Limited efficiency and

accuracy in complex cluttered

environment. Higher

computational cost than FGR

No

FGR

It does not involve iterative sampling,

model fitting, or local refinement,

correspondences are not recomputed.

Hence, it is very fast. It is accurate and

robust to noise

Limited robustness to outliers,

highly dependent on the choice

of estimator for the objective

function. Tested on partially

overlapping surfaces

No

Online 3 DOF

TM

No offline preprocessing stage

required. Efficient with sparse point

clouds. Reduced computational cost

and amount of on-board stored data

w.r.t. traditional 6 DOF TM. Improved

centroid estimation, counteracting self-

occlusion problems

Compared to subsequent TM

variants, it is still highly time

consuming

Yes

55

Online Fast 3

DOF TM

Reduced computational cost w.r.t. 3

DOF TM, coupled with a negligible

loss of success rate when the attitude

search space is adequately sampled or

the point cloud is dense enough.

Improved centroid estimation,

counteracting self-occlusion problems

By increasing the angular step

too much, the trade-off

between computational cost

and accuracy is no longer

convenient

Yes

PCA-based

Online TM

Significantly reduced computational

cost thanks to PCA. Improved centroid

estimation and principal axis

estimation, counter acting self-

occlusion problems

It is an effective method only

if applied to elongated targets.

PCA produces ambiguities to

be resolved in the acquisition-

to-tracking transition step

Yes

2 DOF TM

Ability to work with sparse point

clouds. Experimental results

demonstrate that it outperforms CTA,

1 DOF TM and Fast 3 DoF TM in

success rate and time consumption

For symmetric targets there are

cases of ambiguity in pose

estimation, ICP required to

refine the pose. The target

must remain completely in the

LiDAR’s view

Yes

OUR-CVFH

It is fast in performing the pose

estimate and can achieve high

accuracy with sufficient training,

without then having to resort to a

refinement phase with the ICP

It generally requires high

quality 3D models and evenly

distributed high resolution 3D

data; its recognition

capabilities tend to decrease as

the distance increases

Yes

Table 2.2 - Alignment/Recognition pros and cons

56

3. Methodologies

The literature analysis has revealed advantages and disadvantages of some of the classic

methods of feature extraction/description and alignment/recognition of point clouds.

For this thesis work, great attention is paid to point-normal structures and Hash Tables, given

the interesting strengths emerged from Chapter 2. In particular, point-normal structures are

handled both as local and non-local features: in the first case using FPFHs; in the second case,

by matching pairs of points with their relative normals, called Point-Pair-Features (PPF) [41,

42, 43], which will be referred to as surflet pairs. In this Chapter, all the analyses carried out

are presented, which converge in the development of three feature-based algorithms:

• A Label-based RANSAC method, which collects offline FPFH statistics for elementary

geometrical elements of the target satellite, and then finds online the target points with

similar FPFH statistics;

• A Persistence-Analysis-based (PA-based) RANSAC method, which uses the so-called

Persistence Analysis to identify the points with the most distinctive FPFHs in the point

clouds;

• A PPF-based RANSAC method, which only exploits the information contained in pairs

of points with their local normal vectors to identify correspondences.

Specifically, after having defined the reference geometry used for the analyses (Section 3.1)

and after several preliminary analyses conducted on the estimation of the normals and the FPFH

(Subsection 3.2.1 and paragraph 3.2.2.1), the studies carried out on the FPFH extraction

techniques used for the above-mentioned algorithms are presented, focused on Persistence

Analysis (paragraph 3.2.2.2) and on the segmentation of the point cloud in geometric primitives

(paragraph 3.2.2.3), key principles of the PA-based RANSAC and Label-based RANSAC

methods respectively, while for the PPF-based RANSAC method no feature extraction

technique is used. In addition, the analyses conducted on the construction of the Hash Tables

are presented (Section 3.3). Finally, the offline phase (Section 3.4) and online phase (Section

3.5) of the above-mentioned algorithms are outlined, to obtain the initial pose guess which is

subsequently refined through post-processing (Section 3.6).

57

3.1. Reference Geometry

The global registration algorithms presented in this thesis work have been developed using as

reference geometry the DLR Client Satellite of the OOS-SIM (On-Orbit Servicing Simulator

for Capture), the German Aerospace Center Robotics and Mechatronics (DLR-RM) laboratory

facility for realistic simulation of on-orbit servicing scenarios [44]. Furthermore, for a clear

description of the implemented operations, it is worth defining the TRF of the reference

geometry. The frontal and lateral views of the CAD model of this target and the TRF are shown

in Figure 3.1.

Figure 3.1 - CAD model of the OOS-SIM Client Satellite and TRF representation

As can be observed from Figure 3.1, the considered satellite geometry has a 6-fold symmetry

of the structure, broken only by minor elements, with respect to the maximum inertia axis. This

(approximate) symmetry adds complexity to the pose estimation problem. Regarding the TRF,

instead, it can be observed that the 𝑥-axis is the roll axis, while the 𝑦 and 𝑧 axes lie on the upper

face of the main body.

Starting from the CAD of the reference geometry, a dataset of 1000 synthetic point clouds has

been generated by simulating two Velodyne™ VLP-16 scanning LiDARs, rotated by 90° with

respect to each other. Random samples are drawn with a pointing constraint according to which

58

the target is in the Field Of View (FOV) of both sensors, by varying the relative position

(between 1 m and 2 m distance) and the relative attitude of the target. The attitude, in particular,

is generated in such a way as to uniformly cover SO(3) [45].

The resulting point clouds appear to be partial, sparse and non-uniform, but are unaffected by

data artifacts such as noise and outliers.

3.2. Feature Extraction Analysis

This Section describes all the analyses carried out for efficient feature extraction. Since the

FPFHs are closely related to how the local normals are estimated, a preliminary analysis on the

estimation of point normals is first shown.

3.2.1. Normal Estimation Analysis

All the analyses are performed in Python environment; specifically, the Open3D library is used,

an open-source library that allows the visualization and processing of 3D data, including the

estimation of normals and FPFH [46]. The function used by Open3D for estimating normals

computes them for each point of the point cloud. Given a query point, the function finds the

neighborhood of that point and computes the principal axis using covariance analysis. In

particular, such neighborhood is defined through two tuning parameters provided as input, 𝑟

and 𝑚𝑎𝑥𝑛𝑛, i.e., the radius of a sphere, centered in the query point, that includes the

neighborhood points and the maximum number of Nearest Neighbors (NN) to be collected,

respectively. The analysis presented in this Section focuses on the determination of optimal

values of these parameters.

The procedure adopted for normal estimation analysis is the following: given as input a model

point cloud, generated from the satellite CAD model, and the LiDAR scans with the ground

truth of the poses, knowing the pose the alignment between the two point clouds is performed;

then, for each point of the LiDAR point cloud, the NN is identified in the model point cloud by

exploiting a KDTree structure. A KDTree is a data structure for storing a finite set of points

from a k-dimensional space [47, 48].

59

At this point, for each pair of correspondences, the relative normals are compared and the

angular error is estimated; finally, the mean, median and standard deviation of the error vector

are computed. Additionally, the normal estimation is improved by exploiting the sensor

viewpoint directions, i.e. the rays from the sensor viewpoint to each data point of the LiDAR

point cloud, as a reference for an outward direction at each point (although of course mostly

not orthogonal to the surface). In practice, the viewpoint correction is implemented through

Equation 3.1:

 cos−1 (𝒏𝐿(𝑖) ∙
−𝒑𝐿(𝑖)

‖𝒑𝐿(𝑖)‖
) >

𝜋

2
 (3.1)

where 𝒏𝐿(𝑖) and 𝒑𝐿(𝑖) represent respectively the normal vector and the position (x, y, z

coordinates) of the i-th point of the LiDAR point cloud w.r.t. the sensor origin; in Equation 3.1,

𝒑𝐿(𝑖) is considered with the opposite direction. Graphically, 𝒏𝐿(𝑖) and − 𝒑𝐿(𝑖) represent

respectively the red and the black arrow shown in Figure 3.2.

Figure 3.2 - Graphical visualization of normal correction using sensor viewpoint [49]

From Figure 3.2, the meaning of Equation 3.1 can be easily understood: in fact, if the angle

between 𝒏𝐿(𝑖) and −𝒑𝐿(𝑖) is less than 90°, as in the figure, then the normal is well oriented,

because it exits the surface and is directed towards the origin of the sensor; if, instead, the angle

is greater than 90°, it means that the normal is entering the surface and therefore must be

reversed.

60

Given the very high number of point clouds in the dataset, the normal estimation analysis has

been performed on only three scans by analyzing, varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛, the mean and median

of the angular error vector. Figure 3.3 shows the trends of the mean error as 𝑟 varies, for fixed

𝑚𝑎𝑥𝑛𝑛, and vice versa, for a LiDAR scan of the dataset, named Scan 1.

Figure 3.3 - Mean error plots for Scan 1 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛

From the plots shown in Figure 3.3 it can be observed that the mean error always remains very

low in the analyzed ranges of 𝑟 (from 0.01 to 0.3 𝑚) and 𝑚𝑎𝑥𝑛𝑛 (from 3 to 100), remaining

between 3° and 6°. From the plot on the left, first of all it can first observed that, given a fixed

𝑚𝑎𝑥𝑛𝑛, at a certain point a neighborhood radius 𝑟 is reached, beyond which the situation no

longer changes, since evidently the same neighborhood of points is always taken. Similarly,

given a fixed 𝑟, once a certain value of 𝑚𝑎𝑥𝑛𝑛 is reached, the error becomes constant, and this

is clearly more evident for small radii. Regarding the median of the error vector, instead, it

remains much lower than the mean (order of magnitude of 10−5), indicating that many normals

are well estimated, but with some outliers that raise the mean of the error. Finally, while from

the left plot the situation seems to be better for the case 𝑚𝑎𝑥𝑛𝑛 = 5, from the right plot, instead,

it can be seen that, by increasing 𝑚𝑎𝑥𝑛𝑛 beyond 30 (approximately), the situation becomes

more favorable for bigger 𝑟.

These results, however, are related to a rather particular case of point cloud, since it represents

a scan with many planar points, as can be seen from the colored point cloud, produced

considering, as an example, 𝑟 = 0.07 𝑚 and 𝑚𝑎𝑥𝑛𝑛 = 5, shown in Figure 3.4. From the figure

it can be seen that the highest angular errors come from the high curvature areas.

61

Figure 3.4 - Scan 1 colored point cloud

Regarding instead the subsequent scans (indicated as Scan 2 and Scan 3), the plots shown in

Figure 3.5 and Figure 3.6 show trends that are quite different from those observed for Scan 1.

Figure 3.5 - Mean error plots for Scan 2 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛

Figure 3.6 - Mean error plots for Scan 3 by varying 𝑟 and 𝑚𝑎𝑥𝑛𝑛

62

From these latest results, in fact, it can be seen that the mean error is much larger than in the

first case. Once again, from the plots on the left, for a fixed 𝑚𝑎𝑥𝑛𝑛, it can be observed that,

from a certain 𝑟 onwards, the error becomes constant, while from the plots on the right it is

evident that, this time, as 𝑚𝑎𝑥𝑛𝑛 increases (𝑟 fixed), following an improvement in the error

there is a worsening, except for the case 𝑟 = 0.01 𝑚 where, again, the error becomes constant.

It can clearly be deduced that the increase in error is based on the fact that, unlike the first scan

analyzed, there is now a greater number of non-planar points where the normal is not well

estimated.

Finally, the computational time for normal estimation has been measured. Tests have been

performed for fixed 𝑟 values while varying 𝑚𝑎𝑥𝑛𝑛, on the scans indicated in this discussion as

Scan 1 and Scan 2. The computational time plots are shown in Figure 3.7.

Figure 3.7 - Normal estimation time performance for Scan 1 and Scan 2

From the plots in Figure 3.7 it can be observed that the computational time increases slightly

as 𝑚𝑎𝑥𝑛𝑛 increases. Furthermore, the reason why the computational time in the case of Scan 1

is much larger than that obtained for Scan 2 is simply related to the number of points of the

point cloud, higher in the first case.

Following the analyses performed and the plots obtained, the optimal values of search radius 𝑟

and maximum number of NN 𝑚𝑎𝑥𝑛𝑛 to be used for the estimation of the normals have been

identified. The selected values are shown in Table 3.1 and will serve as a reference for normal

estimation during the development of the algorithms.

63

Parameters Optimal range identified Final value

𝒓 [𝒎] 0.05 ÷ 0.1 0.07

𝒎𝒂𝒙𝒏𝒏 40 ÷ 50 40

Table 3.1 - Parameters selection for normal estimation

3.2.2. FPFH Analysis

The analyses conducted on the estimation of normals are fundamental for the estimation of

FPFH; in fact, given a query point, this descriptor is computed by exploiting the coordinates

and normals of the points belonging to the neighborhood of the query point itself. In this

Subsection, all the analyses that have been carried out on the FPFHs are explained.

The function used by Open3D for FPFH estimation [46] allows, given a point cloud as input,

to compute a FPFH for each point of the point cloud. The descriptor is computed as a 33-

dimensional vector. Therefore, the output of this function is a 33𝑥𝑁 matrix, where N is the

number of points of the point cloud. As for the estimation of normals, also this function requires

the initialization of 𝑟 and 𝑚𝑎𝑥𝑛𝑛 parameters.

3.2.2.1. FPFH Distance Histogram

All the analyses on the FPFHs have been conducted on the point cloud dataset already

introduced in Section 3.1; in particular, the first tests are focused on understanding whether the

FPFHs are actually able to discriminate a specific region of the satellite.

As input, the LiDAR point clouds with the ground truth of the poses and the model point cloud

with the ground truth of the normals are used. Using this information, the normals of the LiDAR

point cloud and the FPFHs of both point clouds are determined; then, for each FPFH of the

LiDAR point cloud, the NN in the model point cloud is determined, thus creating

correspondence pairs; then, the alignment is performed using the ground truth of the pose and,

for each correspondence pair, the Euclidean distance between them is computed, thus obtaining

a distance vector represented with a histogram.

64

Figure 3.8 shows, as an example, the histograms obtained for Scan 1 using the previously

obtained 𝑟 and 𝑚𝑎𝑥𝑛𝑛 parameters (i.e., 𝑟 = 0.07 𝑚 and 𝑚𝑎𝑥𝑛𝑛 = 40) for normal estimation

while, for FPFH estimation, 𝑟 = 0.01 𝑚 (left) and 0.2 𝑚 (right) are used, while 𝑚𝑎𝑥𝑛𝑛 in both

cases is set to 100.

Figure 3.8 - FPFH distance histograms for Scan 1

The histograms shown in Figure 3.8 therefore group the correspondence pairs, obtained through

the NN retrieval in the FPFH space, into distance bins representing the Euclidean distances

between the pairs of points downstream of the alignment between the model and the measured

point cloud. The ideal case would therefore be that in which all the pairs of points are placed in

the first bin (zero distance), indicating that the FPFHs have allowed a perfect recognition of the

points; but the situation seen in these plots is totally different: the most occupied bins are the

central ones, almost forming a sort of Gaussian, and this answers the initial question. Given the

symmetric geometry of the target satellite, there are many similar FPFHs even in different areas

of the geometry, and therefore the FPFH identified as the most similar (through the NN

retrieval) can easily be the FPFH of a point far from the one considered. Therefore, it is as if

the association of the NN were random.

Therefore, to make the use of FPFHs on this geometry more effective, it is essential to reduce

the number of points to act on; in particular, it is necessary to try to act on the points whose

FPFH is less common, in order to reduce the risk of confusing it with the FPFH of other points.

For this reason, Persistence Analysis has been studied in depth, and is discussed in more detail

in the next paragraph.

65

3.2.2.2. Persistence Analysis

Persistence Analysis is a technique that consists of identifying, within the set of FPFH

calculated for each point of the point cloud, the most distinctive ones. This allows to make a

smaller, more solid set of candidate correspondences. This analysis is divided into two steps:

1. Search for unique points. The FPFH is computed for every point; then, the mean of the

FPFHs of all the points in the cloud is computed (𝜇 – histogram); so, the distance

between the FPFH of each point and the 𝜇 – histogram is calculated. The distribution

can be approximated by a Gaussian, and the points whose FPFH fall outside the 𝜇 ± 𝛽𝜎

interval, where 𝜇 and 𝜎 are respectively the mean and standard deviation of the above

distribution, while 𝛽 is a tuning parameter that controls the width of the interval, are

called unique.

2. Search for persistent points. The previous step is repeated considering spheres of

different radii 𝑟𝑖 for the FPFH computation. The unique points as the radius varies are

called persistent.

The set of persistent features is indicated in Equation 3.2:

 𝑷𝑓 = ⋃ [𝑷𝑓𝑖
∩ 𝑷𝑓𝑖+1

]
𝑛−1

𝑖=1
 (3.2)

where 𝑷𝑓𝑖
 are the unique features, while 𝑷𝑓 is the set of persistent features given by the

intersection of those features that are unique in both 𝑟𝑖 and 𝑟𝑖+1. As a distance metric to compute

the distance between the FPFH of each point and the 𝜇 – histogram, the Kullback-Leibler (KL)

Divergence is used [20, 21].

The inputs are once again the LiDAR and model point clouds. After estimating the normal and

FPFH for both the point clouds, Persistence Analysis has been carried out, looking for the

unique and persistent features, after which, considering only the persistent features sets obtained

from both the point clouds, the same procedure previously illustrated has been repeated for the

construction of the histogram of distances (therefore, NN retrieval, alignment between the point

clouds using the ground truth of the poses and computation of the Euclidean distances between

the correspondences).

66

The results of the analyses carried out considering, as LiDAR point clouds, the scans previously

indicated as Scan 1 and 2 are reported below. In particular, in Table 3.2, Figure 3.9 and Figure

3.10 the parameters set and the results obtained are shown respectively.

Point

cloud

Normal estimation parameters FPFH estimation parameters
𝜷

𝑟 [𝑚] 𝑚𝑎𝑥𝑛𝑛 𝑟𝑖 [𝑚] 𝑚𝑎𝑥𝑛𝑛

LiDAR 0.07 40 0.05, 0.07, 0.1 100 1

Model Ground Truth Normals 0.015, 0.02, 0.025 100 1

Table 3.2 - Normal and FPFH estimation parameters for both LiDAR and model point clouds

Figure 3.9 - Persistent points for model point cloud (left), Scan 1 (central) and Scan 2 (right)

Figure 3.10 - Persistent FPFH distance histograms for Scan 1 and Scan 2

From the results it is clear that Persistence Analysis alone is not enough to improve the Distance

Histograms: indeed, from Figure 3.10 a great confusion continues to be observed in identifying

67

correspondences between NN FPFHs. However, a very interesting result emerges from Figure

3.9: by observing the point clouds, in fact, it is clear that Persistence Analysis actually has an

effect in detecting particular classes of points; the most evident advantage is that it seems to

exclude quite effectively the points belonging to planar regions, selecting points on the edges,

the toroid, the handles and the sphere at the top. Therefore, this technique helps to identify a

reduced set of points that can be exploited to achieve an alignment between the model and the

LiDAR point cloud, and in fact it is finally adopted in one of the global registration algorithms

presented in this Thesis work: the PA-based RANSAC method, whose pipeline is shown in

Sections 3.4 (offline phase) and 3.5 (online phase).

Downstream of PA, a further FPFH extraction technique has been investigated, which is based

on the segmentation of the point cloud, dividing it into geometric primitives. This analysis is

explained in detail in the next paragraph.

3.2.2.3. Geometric Primitives Recognition

The key idea of the analysis presented in this paragraph is to develop a feature extraction

technique aimed at recognizing the FPFHs belonging to a specific geometry of the satellite: in

other words, the satellite geometry is decomposed into simpler geometries and the FPFH of

each of these geometries is analyzed.

To perform this study, the model point cloud is split into geometric primitives (toroid, edges,

sphere, handles, cylinder, planes) and a ground truth of the mean FPFHs for each geometry is

built; then, these reference FPFHs are compared with the mean FPFHs of each geometry

extracted by the LiDAR point cloud dataset.

A training dataset, defined as the 80% of the 1000 scan input dataset, is used to generate a

mean FPFH representative of each of the defined geometries. Naturally, the segmentation of

the training scans is performed through the alignment with the model point cloud, using the

pose ground truths. These FPFHs are finally compared with the corresponding mean FPFHs

obtained from the model point cloud, to evaluate the similarity between the histograms. A good

similarity between the histograms of a specific geometry is a symptom of the fact that, taking a

68

random LiDAR point cloud, the recognition of that geometry through FPFH estimation is

possible.

Starting from the satellite CAD model, this is broken down in Blender environment into

geometric primitives, from which dense point clouds are generated. The segmented point cloud

of the satellite, with geometry labels, is shown in Figure 3.11.

Figure 3.11 - Segmented point cloud

Then, for each point of these point clouds, the NN is searched among the points of the model

point cloud, in order to reconstruct the point clouds of the geometric primitives using the same

points of the model point cloud. This step is performed to then associate the ground truths of

the normals of the model point cloud provided as input to the point clouds of the geometries.

Once the ground truths of the normals are assigned to the point clouds, the mean FPFH for each

of these geometries is computed.

Regarding the training dataset, instead, each scan is segmented using the point clouds of the

geometries previously generated and the pose ground truths and, for each geometry, an FPFH

averaged over all the training scans is computed. Figure 3.12, Figure 3.13 and Figure 3.14 show

the histograms comparing model point cloud and training dataset.

69

Figure 3.12 - Comparison mean FPFH toroid and edges

Figure 3.13 - Comparison mean FPFH sphere and handles

Figure 3.14 - Comparison mean FPFH cylinder and planes

From the results shown it is clear that the mean FPFHs obtained from the training dataset do

not reproduce very well the trend of the corresponding mean FPFHs obtained from the model

70

point cloud, as expected, given the irregular distribution of points in the LiDAR point clouds.

However, for some geometries there are interesting similarities: excluding planes, which do not

represent the best geometry to exploit for the alignment of the point clouds, edges and cylinder

resulted the most interesting geometries to rely on for the pose estimation algorithm.

After identifying the most promising geometries, the corresponding FPFH-based signatures

averaged over the training dataset have been taken as a reference to perform an optimization

analysis on the extraction of the FPFH from random LiDAR point clouds, selecting a priori the

geometry of interest and trying to extract from the point cloud the FPFHs corresponding to that

geometry. This analysis has been carried out considering three geometries: in addition to the

cylinder and the edges, i.e., the most interesting geometries from the latest analyses shown, the

handles have also been included. Therefore, starting from the FPFH-based signatures of these

geometries, 100 LiDAR point clouds have been randomly selected and a specific FPFH

extraction procedure has been performed, which is explained below.

This procedure consists of 2 phases:

1. k-NN retrieval. The FPFHs calculated for each point of the measured point cloud are

organized according to a KDTree structure. For each class, the 𝑘𝐹𝑃𝐹𝐻 NNs to the

corresponding FPFH-based signature are found. While this approach would result in

2𝑘𝐹𝑃𝐹𝐻 points composing the set of candidates 𝑲, an additional filter is applied to keep

only the points with distance from the FPFH-based signature of that class smaller than

a threshold (𝑑𝐹𝑃𝐹𝐻).

2. Reciprocity Test. All the candidate points from the previous steps are compared to the

FPFH-based signatures of all the geometry classes identified for the target satellite, to

check that the minimum FPFH-based distance is relative to the identified class. This

check avoids selecting candidate points from different geometrical elements, especially

in cases in which points belonging to the identified class are not in the sensor field of

view.

In the previous explanation of the FPFH extraction procedure, some parameters have been

mentioned that are currently unknown, which are the number 𝑘𝐹𝑃𝐹𝐻 of NNs and the distance

threshold 𝑑𝐹𝑃𝐹𝐻 in the FPFH space: the best values of these parameters are obtained

71

experimentally through an optimization analysis based on the construction of the Precision-

Recall curves.

An example is presented below to understand the purpose of this analysis. If the procedure

explained above is used to extract for example the points belonging to the cylinder class, the

cases shown in Figure 3.15 may occur:

1. True Positives 𝑇𝑃. The extracted points actually belong to the cylinder class;

2. True Negatives 𝑇𝑁. The non-extracted points actually do not belong to the cylinder class;

3. False Positives 𝐹𝑃. The extracted points do not belong to the cylinder class;

4. False Negatives 𝐹𝑁. The non-extracted points belong to the cylinder class.

Figure 3.15 - Example of cylinder-points detection and terminology used

The Precision and Recall parameters are based on these definitions. In information retrieval,

precision is a measure of result relevancy, while recall is a measure of how many truly relevant

results are returned. They are defined as shown in Equations 3.3 and 3.4.

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.3)

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4)

Therefore, 𝑃 indicates a measure of the number of candidates extracted correctly compared to

the total number of candidates extracted, while 𝑅 is a measure of the number of candidates

72

extracted correctly compared to the actual number of points of interest. So, for each scan a

Precision and Recall value are obtained for each geometry. These parameters are averaged over

100 random training scans; furthermore, these parameters have been computed in one case by

varying 𝑑𝐹𝑃𝐹𝐻, with no constraint on 𝑘𝐹𝑃𝐹𝐻, while in another case by varying 𝑘𝐹𝑃𝐹𝐻, with no

constraint on 𝑑𝐹𝑃𝐹𝐻. The settings of these parameters for the two cases are reported in Table

3.3.

Precision-Recall parameters Case 1 Case 2

N° scans 100 100

𝒅𝑭𝑷𝑭𝑯 [30, 35, 40, …, 400] No Constraint

𝒌𝑭𝑷𝑭𝑯 No Constraint [10, 15, 20, …, 400]

Table 3.3 - Precision-Recall analyses: Cases 1 and 2 parameter setting

What is expected is that, by relaxing the distance constraint, increasing the threshold, or

increasing the number 𝑘𝐹𝑃𝐹𝐻 of NNs to be identified, the Recall increases, as it increases the

percentage of extracted points that actually belong to the geometry of interest; at the same time,

however, a decrease in Precision may occur because, being less restrictive in the selection of

candidates, in addition to increasing the number of correctly extracted points, it also increases

the number of incorrectly extracted points, not actually belonging to that geometry. Therefore,

the goal of this analysis is to find the optimal parameters of 𝑘𝐹𝑃𝐹𝐻 and 𝑑𝐹𝑃𝐹𝐻 so that a good

compromise between Precision and Recall is found. The Precision-Recall curves for cylinder,

edges, and handles are shown in Figure 3.16, Figure 3.17 and Figure 3.18.

Figure 3.16 - Precision-Recall curves for cylinder geometry: cases 1 and 2

73

Figure 3.17 - Precision-Recall curves for edges geometry: cases 1 and 2

Figure 3.18 - Precision-Recall curves for handles geometry: cases 1 and 2

From these plots some very important results can be drawn. First of all, the observations made

upstream of the analyses have been verified: in fact, by increasing 𝑑𝐹𝑃𝐹𝐻 (Case 1) or 𝑘𝐹𝑃𝐹𝐻

(Case 2), an increase in Recall at the expense of Precision is observed, especially for the edges;

furthermore, the values of Recall and Precision for cylinder and edges are much more promising

than those obtained for the handles, where in particular a rather strange trend can be seen:

starting from very few detected points, by relaxing the constraints on the identification of the

candidates, in addition to increasing the Recall, Precision also increases, even if by very little.

The comparison plots between the Precision-Recall curves of the different geometries analyzed

are better shown in Figure 3.19.

74

Figure 3.19 - Precision-Recall curves comparison between the geometries analyzed

From Figure 3.19 it is very clear that, unfortunately, handles are not such good geometries to

rely on, unlike cylinders and edges.

Therefore, from the Precision and Recall analyses, optimal values of 𝑑𝐹𝑃𝐹𝐻 and 𝑘𝐹𝑃𝐹𝐻 emerged

to be used to effectively filter the FPFHs belonging to the geometry of interest. These values

are shown in Table 3.4, reporting only the cases of cylinder and edges, given the relatively less

satisfactory results of the handles.

Filtering parameters Cylinder Edges

𝒅𝑭𝑷𝑭𝑯 55 50

𝒌𝑭𝑷𝑭𝑯 190 180

Table 3.4 - Filtering parameters resulting from Precision-Recall analysis

The use of FPFH-based signatures representative of the above-mentioned geometries is the

underlying principle of another of the global registration algorithms presented in this Thesis

work: the Label-based RANSAC method, whose pipeline is shown in Sections 3.4 (offline

phase) and 3.5 (online phase). The procedure illustrated in this Subsection has been

implemented in this global registration algorithm for the extraction of the points belonging to

the cylinder and edges classes from the point cloud acquired online, using the tuning parameter

values resulting from this study.

75

3.3. Hash Tables

The underlying principle of the global registration algorithms presented in this thesis work is

the following: the pose is estimated through the alignment between two sets of points, a set

expressed in the SRF and a set expressed in the TRF. The set of SRF points is extracted from

the point cloud measured online, while the set of corresponding TRF points is searched within

Hash Tables appropriately built offline. Hash Tables are data structures built for the purpose of

storing data in a way that makes their retrieval quick and efficient.

A hash table stores a certain number of values by matching them with keys that contain

information about the related value. Specifically, given a key, it is transformed, through an

appropriate hash function, into an integer, called hash index or hash code, which identifies the

cell of the hash table, called bucket, in which the associated value will be stored. A simplified

diagram describing the working principle of a hash table is shown in Figure 3.20.

Figure 3.20 - Working principle of a hash table

A hash function converts the data to be indexed into an integer between 0 and 𝑚 − 1; therefore,

the hash table is organized into 𝑚 buckets, each of which is identified by a specific hash code.

The choice of the hash function strongly affects the construction of a hash table: an ideal hash

function should be an injective function, i.e., a function that transforms different keys into

different hash codes; however, being an ideal case, the adopted hash functions do not satisfy

this property and, therefore, cases occur in which different keys are transformed into the same

76

hash code, thus generating collisions. There are several techniques to manage collisions; the

most used are:

• Open addressing, in which, in case of collisions, the first empty bucket is searched to

store the value;

• Separate chaining, in which, in case of collisions, the value is inserted into that same

bucket, creating a linked list.

In the case of interest, hash tables are built by storing triplets/pairs of points in buckets localized

by specific hash codes depending on the geometric properties they exhibit. In particular, a

similar approach to separate chaining is used to handle collisions, since in each bucket lists

containing sets of points are stored: since the geometric information of the sets of points to be

stored is exploited to generate the corresponding keys, the sets stored in the same bucket are

characterized by similar geometric properties, and this will be an advantage for determining

online the correspondences for alignment. A simplified scheme is shown in Figure 3.21.

Figure 3.21 - Collision handling

The following subsections describe in detail the hash table construction methodologies used in

the algorithms, showing the different variants tested.

77

3.3.1. Training Hash Tables

This subsection describes the construction methods of the Hash Tables (HTs) used in the final

algorithms. These HTs, as the name suggests, are built by exploiting the scans of a training

dataset rather than the complete model point cloud (variant presented in Subsection 3.3.2) since,

by taking the sets of points to be stored - triplets or surflets, depending on the method considered

- from LiDAR scans, all the stored sets are possible sets, i.e., observable by the sensor; instead,

by randomly taking point triplets from a complete point cloud, there is the possibility that many

stored point sets are not realizable. The following paragraphs describe the various training HTs

implemented, built after a preliminary classification of the training scans, as explained in

paragraph 3.3.1.1. The values of the HT construction tuning parameters, defined in the next

paragraphs, are shown in paragraph 5.2.1.1.

3.3.1.1. Point Cloud Classifier

In Subsection 3.2.2, two main techniques for extracting FPFHs based on particular properties

have been analyzed, in particular Persistence Analysis, which is based on the selection of the

FPFHs furthest from the mean FPFH of the point cloud, the underlying principle of the PA-

based RANSAC method, and Point Cloud Segmentation, with the aim of determining FPFH-

based signatures for the identification of points belonging to a certain geometry, the underlying

principle of the Label-based RANSAC method. As already mentioned at the beginning of

Chapter 3, a third algorithm has been developed during this thesis work, which is based on the

search for surflets with similar properties, named PPF-based RANSAC method. However, the

adopted features and extraction techniques may present problems depending on the acquired

scan: for example, if the acquired LiDAR point cloud is a scan that is made up of a single plane,

the selection of the points belonging to the cylinder clearly fails, since that part is not visible in

the scan, while the selection of the points belonging to the edges could easily fail, since the

extraction algorithm does not recognize "sharp" areas given by the intersection of two planes.

Therefore, the technique adopted by the Label-based RANSAC method is not at all suitable for

this type of scan, as well as the Persistence Analysis, since the FPFH of the points of the

considered scan will all be very similar. For the same reason, the search for surflets is not

efficient in this case either. Therefore, in these algorithms a classification of the point clouds of

the training dataset is first carried out by a Point Cloud Classifier block, distinguishing between

78

Complex Structure (CS) and Flat Structure (FS) scans. Specifically, while for CS scans, point

and local normal information can be used to describe the shape of the target surface, FS scans

do not experience local normal variations; therefore, specific HTs are created to separately

handle these two types of scans efficiently. Clearly, in a similar way, the point cloud classifier

shall be applied to the measured point cloud in the online phase to decide which HT must be

used for pose estimation. The distinction between a CS scan and an FS scan is performed by

evaluating the variance of the set of normal unit vectors computed over the entire point cloud.

A low variance indicates aligned directions of the local normal unit vectors, therefore a

geometrically simple point cloud. Specifically, the parameter used to distinguish between these

scans is the sum of the variances of the normal components 𝜏𝜎𝑁
, which is compared to a

threshold value 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
: if 𝜏𝜎𝑁

< 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
, the point cloud is classified as an FS scan, otherwise

as a CS scan. As an example, two cases of CS scan and FS scan are shown in Figure 3.22 and

Figure 3.23, respectively.

Figure 3.22 - Two examples of CS scan normal distribution

Figure 3.23 - Two examples of FS scan normal distribution

79

The point clouds shown in Figure 3.22 are CS scans, since cylinder and/or edges can be detected

and, in general, the local geometry of the point clouds is quite varied (different FPFHs). The

same cannot be said for the point clouds shown in Figure 3.23: the left scan is mostly made up

of planar points, and edges are hard to detect, since there are no intersections between two

planes; in the right scan the problem is much more evident, since only one plane is visible, the

cylinder is not present at all, and the related FPFHs are expected to be all similar. The most

important information to distinguish these two classes of point clouds is contained in the

normals, whose variance is clearly lower in the case of the FS scans, since most of the normals

are aligned with each other; therefore, as a parameter to distinguish the scans, the sum of the

variances of the components of the normals calculated at each point of the scans is chosen: if

this value falls below a certain threshold 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
, selected after experimental tests, the scan is

classified as a FS scan, otherwise it is classified as a CS scan. Table 3.5 shows, as an example,

the values of these parameters for the point clouds shown in Figure 3.22 and Figure 3.23.

𝝉𝝈𝑵
 threshold Left point cloud Right point cloud

CS scan (Figure 3.22) 0.39 0.51

FS scan (Figure 3.23) 0.04 0.004

Table 3.5 - Sum of variances of normal components of point clouds shown as an example

As already mentioned, given the need for a classification between the point clouds, in order to

adopt a certain solution depending on whether the scan considered is CS or FS, specific HTs

have been created for both cases; in particular, as shown in the next paragraphs, a HT for CS

scans 𝑯𝑻𝑪𝑺 has been built for each of the three methods mentioned above (Label-based, PA-

based and PPF-based RANSAC), using sets of points (triplets or surflet pairs) extracted from

the CS scans of the training dataset, and a HT for FS scans 𝑯𝑻𝑭𝑺 common to all three

algorithms, built using instead triplets of points extracted from the FS scans.

3.3.1.2. Hash Table Construction for CS Scans in Label-Based RANSAC

The 𝑯𝑻𝑪𝑺 used for the Label-based RANSAC method is a two-level HT that associates two

hash codes to the stored point triplets, which are the cylinder and edge points, precisely

extracted from the CS scans of the training dataset and converted to TRF using the knowledge

80

of the ground truth pose parameters. These hash codes are defined by the corresponding hash

keys as follows:

1. The first hash code is a triplet of integer numbers, whose value is set using as key, 𝒈𝑘𝑒𝑦,

the label of points; specifically, the values 0 and 1 respectively correspond to edge and

cylinder points (e.g., 𝒈𝑘𝑒𝑦 = [𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, 𝑒𝑑𝑔𝑒] → 𝒈ℎ𝑎𝑠ℎ = [1, 1, 0]).

2. The second hash code is a triplet of integer numbers, 𝒅ℎ𝑎𝑠ℎ. The values of 𝒅ℎ𝑎𝑠ℎ are

obtained using as keys the inter-point distances of the considered point triplet, 𝒅𝑘𝑒𝑦.

Specifically, the hash function converting the key into the corresponding code is shown

in Equation 3.5, where 𝑚 is the number of buckets composing the HT and 𝐷 is the

maximum distance between pairs of points (i.e. the target satellite maximum dimension)

and, finally, the floor function returns the largest integer less than or equal to the

argument, so as to have a triplet of integers as hash code.

 𝒅ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚 ∗ 𝒅𝑘𝑒𝑦(𝑖)

𝐷
) , 𝑖 = 1,2,3 (3.5)

The value assigned to 𝑚 strongly affects the number of triplets stored in a single bucket, since

it determines the resolution with which point distances are sampled. Therefore, it plays a very

important role in the online pose estimation process: a high 𝑚 results in a finer classification of

point triplets, given the high sampling resolution of the inter-point distances, thus getting a low

number of triplets in a single bucket, but with a good chance that these are good matches for

alignment, and vice versa in the case of low 𝑚. Therefore, choosing an appropriate 𝑚 is crucial

to have a good balance between computational efficiency and accuracy.

Once the candidate points to be stored have been obtained, the following procedure for filling

the HT is adopted, which consists in a sequence of operations performed for a predetermined

number of cycles (𝑛𝑐𝑦𝑐𝑙𝑒𝑠). At each cycle, a triplet of points is randomly extracted and the three

inter-point distances are computed: if these three distances are all larger than a threshold (𝑑𝑡ℎ𝑟𝑒),

i.e., the condition in Equation 3.6 is met, the triplet is kept, otherwise it is discarded. Indeed,

this approach is essential to avoid storing triplets of points that are excessively close to each

other, which could make the subsequent pose determination inefficient.

81

 𝒅(𝑖) > 𝑑𝑡ℎ𝑟𝑒 , 𝑖 = 1,2,3 (3.6)

For all the randomly generated triplets that pass this check, the tuple of points is stored in the

HT, in terms of the two above-defined hash codes, three times in order to account for any

possible order of points in the triplet. This operation is used to avoid the case in which, after

extracting the triplet in the online phase, its correspondent is not found because it is saved in

the HT considering a different order.

3.3.1.3. Hash Table Construction for CS Scans in PA-Based RANSAC

The 𝑯𝑻𝑪𝑺 used for the PA-based RANSAC method has a single level that associates a hash

code to each of the stored point triplets. The key used is the triplet of distances between point

pairs of the triplet, exactly as for the second level of the Label-based RANSAC 𝑯𝑻𝑪𝑺, and the

hash function used is again given by Equation 3.5.

As in the previous case, the CS scans of the training dataset, expressed in TRF, are first

extracted. Then, Persistence Analysis is applied to the resulting dataset to find the set of

persistent points to be used for HT construction. The tuning parameters adopted to apply the

Persistence Analysis are the same as those shown in Table 3.2 for the LiDAR point cloud case.

The procedure for filling the HT is very similar to the one used for the Label-based RANSAC

method, with the only difference that now the point triplets are associated with one single hash

code 𝒅ℎ𝑎𝑠ℎ.

3.3.1.4. Hash Table Construction for CS Scans in PPF-Based RANSAC

Before describing the 𝑯𝑻𝑪𝑺 construction procedure for PPF-based RANSAC method, it is

necessary to introduce an additional reference system, used to obtain the hash keys to be

associated with the surflets, called Local Reference Frame (LRF). The unit vectors

corresponding to the LRF axes are defined as in Equation 3.7:

 𝒖̂ =
𝒏1

‖𝒏1‖
, 𝒗̂ =

𝒏1 × 𝒏2

‖𝒏1 × 𝒏2‖
, 𝒘̂ = 𝒖̂ × 𝒗̂ (3.7)

82

where 𝒏1 and 𝒏2 represent the normals in the first and second point of the surflet, respectively.

The LRF is assumed to be centered at the first point of the surflet. Instead, the SRF is arbitrarily

chosen. A simplified representation of the surflet and the defined LRF are shown in Figure 3.24.

Figure 3.24 - Graphical representation of a surflet and the defined LRF

The 𝑯𝑻𝑪𝑺 built for the PPF-based RANSAC method has a single level that associates a hash

code to each of the stored surflets. So, unlike the two 𝑯𝑻𝑪𝑺 built for Label-based RANSAC

and PA-based RANSAC algorithms, this one does not rely on point triples, but on surflets

associated with a 4D key containing three distance information and one angular information:

1. The three distance informations are the three coordinates of the relative position vector

between 𝒑1 and 𝒑2, expressed in LRF (𝒅𝐿𝑅𝐹);

2. The angular information is the angle 𝛼 between the two normals.

Since the relative distance vector in SRF and the rotation matrix from SRF to LRF are known,

the relative distance vector is simply transformed into the LRF. The formulas shown in

Equation 3.8 and Equation 3.9 are used:

 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹 = [𝒖̂ 𝒗̂ 𝒘̂]𝑇 (3.8)

 𝒅𝐿𝑅𝐹 = 𝑹𝑆𝑅𝐹→𝐿𝑅𝐹 𝒅𝑆𝑅𝐹 (3.9)

Once the key 𝒔𝑘𝑒𝑦 = [𝒅𝐿𝑅𝐹; 𝛼] is defined, the 4D hash code is generated using the hash function

reported in Equation 3.10 and Equation 3.11:

83

 𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚∗𝒅𝐿𝑅𝐹(𝑖)

𝐷
) , 𝑖 = 1, 2, 3 (3.10)

 𝒔ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (

𝑚𝑎∗𝛼

𝐴
) , 𝑖 = 4 (3.11)

where 𝑚 is the number of buckets for the coordinates, 𝐷 is the maximum distance between

point pairs and 𝒅𝐿𝑅𝐹 is the tuple of the three coordinates previously defined, while 𝑚𝑎 is the

number of buckets for the angles, 𝛼 is the angle between the respective normals and 𝐴 is the

upper bound of the allowed angles. Surflets are generated from the CS scans of the training

dataset, expressed in TRF. To build this 𝑯𝑻𝑪𝑺, the following sequence of operations is

performed for 𝑛𝑐𝑦𝑐𝑙𝑒𝑠: one of these scans is randomly selected and a surflet is randomly taken.

At this point, a condition is imposed on the angle 𝛼 between the surflet normals, which must

not be close to either 0° or 180°. The main reason behind this condition is the fact that, in the

extreme cases where 𝛼 was 0° or 180°, the normals would be aligned, and an LRF defined as

above could not be constructed: in fact, the unit vector 𝑣 is computed as the cross product

between the two normals of the surflet, which would be zero if the normals were parallel;

moreover, this generally represents an unfavourable condition for recognition: an 𝛼 around 90°

would be preferable, for example, indicating that the two points in the surflet belong to two

orthogonal planes and not to the same plane. In paragraph 5.2.1.1, the boundaries 𝛼𝑚𝑖𝑛 and

𝛼𝑚𝑎𝑥 within which the angle is to be contained are defined. If the angle condition is not

satisfied, the cycle starts again; if it is satisfied, another condition is set on the Euclidean

distance 𝑑 between the two points of the surflet, as shown in Equation 3.12:

 𝑑 > 𝑑𝑡ℎ𝑟𝑒 (3.12)

If this condition is also satisfied, the three coordinates of the distance vector 𝒅𝐿𝑅𝐹 are defined.

Once the key 𝒔𝑘𝑒𝑦 is obtained, the hash code 𝒔ℎ𝑎𝑠ℎ is generated through Equation 3.10 and

Equation 3.11 and, finally, the surflet is stored in the bucket localized by the computed hash

code, two times in order to account for the order of points and normals in the surflet.

It is very important to note that, for the PPF-based RANSAC case, no feature extraction

technique is performed, unlike what has been seen for the Label-based RANSAC algorithm and

for the PA-based RANSAC one.

84

3.3.1.5. Hash Table Construction for FS Scans

As already mentioned, in addition to the 𝑯𝑻𝑪𝑺, built for each of the presented methods, a further

HT has been built, 𝑯𝑻𝑭𝑺, common to all three methods, using exclusively the FS scans of the

training dataset. It is built with the following procedure. All the FS scans are expressed in TRF

using the corresponding ground truth pose and merged into a single set. Therefore, the same

approach described for the generation of Label-based and PA-based RANSAC 𝑯𝑻𝑪𝑺 is

adopted, thus storing triplets of points. The only difference is that a triplet is only identified by

the second hash code defined according to Equation 3.5. Given the aforementioned problems

in handling surflets with parallel normals, mentioned in paragraph 3.3.1.4, even for the PPF-

based RANSAC method the FS scan case is managed using point triplets rather than surflet

pairs.

3.3.2. Model Hash Tables

In addition to the 𝑯𝑻𝑪𝑺 training HTs, further variants have been developed that, instead of using

training scans, use the complete model point cloud. Such HTs have been generated only for the

Label-based and PA-based RANSAC methods and they also store triplets according to the same

procedure, the same keys and the same hash functions, with the only following difference:

1. For the Label-based RANSAC method, triplets are randomly selected from the set of

points belonging to the cylinder and the edges of the entire model point cloud;

2. For the PA-based RANSAC method, instead, in paragraph 3.2.2.2. it has been shown

that Persistence Analysis tends to extract points belonging to the most particular

geometries, such as the toroid, the handles, the edges, excluding planar points quite

effectively. Therefore, triplets are randomly extracted from the point cloud model,

excluding planes.

Simulations have been performed using both 𝑯𝑻𝑪𝑺 construction approaches (training and

model HTs) for Label and PA-based RANSAC algorithms. In paragraph 5.2.2.1, a comparison

between the two HT construction methodologies is reported. Again, information about tuning

parameters is given in paragraph 5.2.1.1.

85

An alternative to fixing the number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 for the construction of the training and

model HTs could have been to fix the number of sets of points (triplets/surflets) to be stored

and repeat the cycle until the preset number is reached, in such a way as to have HTs whose

size is not linked to the randomness with which the triplets/surflets are taken, since not all of

them are stored, as seen in the previous sections, but only those that exceed the set distance

thresholds.

3.4. Overview of the Offline Phase of the Algorithms

In this Section, an overview of the Offline phase of the developed algorithms is shown. For pre-

processing operations, the inputs used are the model point cloud, the training dataset, defined

as the 80% of the 1000 scans dataset, as mentioned in paragraph 3.2.2.3, and, in the case of

Label-based RANSAC, the target primitives point clouds.

3.4.1. Label-Based RANSAC

Figure 3.25 shows a block diagram detailing the offline pre-processing phase of the Label-based

RANSAC method.

Figure 3.25 - Label-based RANSAC offline block diagram

From the figure it can be observed that:

86

1. Given as input the point clouds of the geometric primitives (target primitives point

clouds), obtained, as explained in paragraph 3.2.2.3, by subdividing the satellite CAD

model in Blender environment and generating dense point clouds from them, these enter

a Labelling block, whose outputs are both the FPFH-based signatures, i.e. the 6 FPFH,

each representing a geometry, averaged over the entire training dataset, and the "exact"

cylinder and edge points from the scans of the training dataset, to build the 𝑯𝑻𝑪𝑺;

2. Given as input the training dataset, this is used to build 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.2) and

𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5);

3. Given as input the model point cloud, it is downsampled, with a voxel size of 0.025 𝑚,

and is used for the construction of a KDTree of the point cloud, which will be

fundamental in the online phase for the evaluation of the alignment quality.

Downsampling is applied because it allows a reduction of the computational time in

performing such operation. Of course, for this operation, also the point cloud measured

online is downsampled with the same voxel size.

3.4.2. PA-Based RANSAC

Figure 3.26 shows a block diagram detailing the offline pre-processing phase of the PA-based

RANSAC method.

Figure 3.26 - PA-based RANSAC offline block diagram

From the figure it can be observed that the offline phase for the PA-based RANSAC method is

simpler than the Label-based RANSAC one, being the outputs only 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.3),

𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5) and the KDTree of the model point cloud.

87

3.4.3. PPF-Based RANSAC

Figure 3.27 shows a block diagram detailing the offline pre-processing phase of the PPF-based

RANSAC method.

Figure 3.27 - PPF-based RANSAC offline block diagram

From the figure it can be observed that the PPF-based RANSAC method offline phase is the

simplest among the proposed HT-based algorithms, since it does not require any feature

extraction steps; the outputs are 𝑯𝑻𝑪𝑺 (paragraph 3.3.1.4), 𝑯𝑻𝑭𝑺 (paragraph 3.3.1.5) and the

KDTree of the model point cloud.

3.5. Initial Pose Determination

In this Section, the initial pose guess determination phase for Label-based, PA-based and PPF-

based RANSAC methods is described in detail, exploiting the HTs built offline and the

analyzed feature extraction techniques (in the cases of the Label-based and PA-based RANSAC

methods).

3.5.1. Label-Based RANSAC

Figure 3.28 shows the Label-based RANSAC online block diagram. Once the point cloud is

measured online, it is classified as a CS or FS scan using the same approach adopted in the

offline phase (paragraph 3.3.1.1).

88

Figure 3.28 - Label-based RANSAC online block diagram

While all the points belonging to an FS scan are part of the set of candidates (𝑲) sent in input

to the HT lookup block, an additional processing step is required to obtain 𝑲 from a CS scan,

being only the subset of cylinder and edge points. To identify the points corresponding to these

classes, their FPFHs must be compared with the FPFH-based signature obtained for each class.

This comparison is done through the double step of k-NN retrieval and Reciprocity Test

described in the analysis of paragraph 3.2.2.3, with the tuning parameters 𝑘 and 𝑑 exactly equal

to the optimal ones resulting from the Precision-Recall curves (Table 3.4). Once the set 𝑲 is

obtained, it enters the HT lookup block, explained in Subsection 3.5.4, whose output is the

initial pose guess of the pose.

3.5.2. PA-Based RANSAC

Figure 3.29 shows the PA-based RANSAC online block diagram. From the figure it can be seen

that the online phase for the PA-based RANSAC method is very similar to the Label-based

RANSAC one; the only difference is that, in case the measured point cloud is classified as CS

scan, PA is applied to extract the set 𝑲 to be used for the HT lookup step (Subsection 3.5.4).

89

The tuning parameters adopted to apply the PA are the same as those shown in Table 3.2 for

the LiDAR point cloud case.

Figure 3.29 - PA-based RANSAC online block diagram

3.5.3. PPF-Based RANSAC

Figure 3.30 shows the PPF-based RANSAC online block diagram.

Figure 3.30 - PPF-based RANSAC online block diagram

90

From the figure it can be seen that, consistently with the offline phase, if the point cloud is

classified as a CS scan, there is no candidate extraction phase, but the entire point cloud

constitutes the set 𝑲 that enters the HT lookup phase (Subsection 3.5.4).

3.5.4. Hash Table Lookup

This Subsection analyses in more detail what happens in the HT lookup block encountered in

Figure 3.28, Figure 3.29, Figure 3.30.

Once the set 𝑲 of SRF candidate points is obtained from the measured point cloud, an iterative

procedure is started to search for correspondences between measured and model points thus

being able to get a pose solution aligning the two point clouds. Specifically, at each iteration, a

random triplet/surflet of points (depending on the method considered) is extracted and, after a

check on the imposed filtering conditions, i.e. the condition on distances in the case of the Label

and PA-based RANSAC methods, 𝒅(𝑖) > 0.025 𝑚, 𝑖 = 1,2,3, or the conditions on both

distances and angle between normals in the case of the PPF-based RANSAC one, 𝑑 > 𝑑𝑡ℎ𝑟𝑒

and 𝛼𝑚𝑖𝑛 < 𝛼 < 𝛼𝑚𝑎𝑥, the hash codes described in Section 3.3.1 are computed and used to

access the corresponding HT bucket. In general, each bucket may contain N different triplets of

points in TRF, where each triplet represents a candidate correct association to the triplet of

candidate points from the measured point cloud. For each of the 𝑁 potential associations, a pose

guess is computed using the most appropriate alignment algorithm depending on the method

considered (paragraph 3.5.4.1). Then, the quality of this pose guess is computed by evaluating

the percentage of inliers 𝑖𝑛% downstream of the alignment. Two alignment quality assessment

approaches have been investigated, presented in paragraph 3.5.4.2. The iterative procedure

stops as soon as a threshold representing the minimum desired percentage of inliers (𝑖𝑛%,𝑡ℎ𝑟𝑒)

is reached. If it is not reached, the other 𝑁 potential associations are tested and, if it is still not

reached, the cycle restarts with the random selection of a triplet/surflet from 𝑲.

Figure 3.31 shows a block diagram describing the HT lookup phase for the presented methods.

91

Figure 3.31 – HT lookup. This diagram is representative of both the CS and FS case

3.5.4.1. Alignment Algorithms

The alignment algorithms used in this thesis work are essentially two, depending on whether it

uses point triplets or surflets to determine the pose. In particular, the implemented algorithms

are rigid registration algorithms, therefore they do not take into account variations in scale for

example.

Triplets Alignment

The alignment algorithm implemented for the Label-based and PA-based RANSAC methods

exploits point triplets to compute the pose matrix from SRF to TRF. The rigid registration

problem between two sets of points can be formalized as follows.

Given two sets of 3D points:

• A set of points expressed in the SRF {𝒑𝑖}, 𝑖 = 1,2, … , 𝑛

• A set of points expressed in the TRF {𝒒𝑖}, 𝑖 = 1,2, … , 𝑛

The goal is to find a rotation matrix 𝑹 and a translation vector 𝒕 such that the problem in

Equation 3.13 is solved:

92

 𝒒𝒊 ≈ 𝑹𝒑𝒊 + 𝒕 (3.13)

This is a least-squares problem, in fact R and t must be such as to minimize the quadratic error

between the transformed points of the model point cloud and those of the LiDAR point cloud,

as reported in Equation 3.14:

 Σ2(𝑹, 𝒕) = ∑‖𝒒𝑖 − (𝑹𝒑𝑖 + 𝒕)‖2

𝑛

𝑖=1

 (3.14)

The algorithm used for the alignment of the triplets of points makes use of the Singular Value

Decomposition (SVD) [50]. The steps followed are given below.

First, the centroids of both sets of points are computed, as shown in Equation 3.15.

 𝒑 =
1

𝑛
∑ 𝒑𝑖

𝑛

𝑖=1

, 𝒒 =
1

𝑛
∑ 𝒒𝑖

𝑛

𝑖=1

 (3.15)

Then, the centroids of the related sets are subtracted from each point, thus obtaining two new

sets of points centered with respect to their centroids, as reported in Equation 3.16.

 𝒑𝑖
′ = 𝒑𝑖 − 𝒑, 𝒒𝑖

′ = 𝒒𝑖 − 𝒒 (3.16)

In this way, rotation and translation are decoupled. In fact, the original least-squares problem

is now reduced to rotation only, and can be formulated as reported in Equation 3.17.

 Σ2(𝑹) = ∑‖𝒒𝑖
′ − 𝑹𝒑𝑖

′‖2

𝑛

𝑖=1

 (3.17)

Therefore, the problem is broken into two parts:

1. Find R to minimize Σ2 in Equation 3.17, a step that will be performed through the SVD;

2. Find 𝒕 through Equation 3.18:

 𝒕 = 𝒒 − 𝑹𝒑 (3.18)

Once the two new sets of points have been calculated, the covariance matrix is constructed by

using Equation 3.19:

93

 𝑯 = ∑ 𝒑𝑖
′𝒒𝑖

′𝑇

𝑛

𝑖=1

 (3.19)

On the obtained matrix, the SVD is performed, decomposing 𝑯 into three matrices through

Equation 3.20:

 𝑯 = 𝑼𝑺𝑽𝑻 (3.20)

Finally, the optimal rotation matrix 𝑹 that aligns the two sets of points is given by Equation

3.21:

 𝑹 = 𝑽𝑼𝑻 (3.21)

However, it is necessary to verify that the determinant of 𝑹 is positive, specifically, that

𝑑𝑒𝑡(𝑹) = 1. If 𝑑𝑒𝑡(𝑹) < 0, it means that the operation includes a reflection, which is

corrected by changing the sign of the last column of the matrix 𝑽.

Once the rotation matrix 𝑹 has been calculated, the translation vector 𝒕 is easily calculated using

Equation 3.18. For this problem to have a solution, it is sufficient that the sets of points consist

of three non-collinear points.

Surflets Alignment

The alignment algorithm used for the PPF-based RANSAC method is different to the one

adopted by Label-based and PA-based RANSAC methods, since it aligns surflets rather than

triplets. Specifically, the surflet expressed in SRF and the corresponding one expressed in TRF

are aligned using an ad-hoc algorithm that separately solves the rotation and translation

problems.

First, it computes the rotation quaternion 𝒓 from SRF to TRF as a product of two quaternions

𝒓𝟏 and 𝒓𝟐, as shown in Equation 3.22:

 𝒓 = 𝒓𝟏 ⊗ 𝒓𝟐 (3.22)

The two quaternions represent the following rotations:

94

1. The first quaternion 𝒓𝟏 aligns the difference vectors of points, aiming to rigidly rotate

one surflet on the other without considering the information on the normals;

2. The second quaternion 𝒓𝟐 aligns the projections of the normals on a plane orthogonal to

the difference vector.

After computing the rotation quaternion, the translation vector 𝒕 is computed through the

difference between the centroid of the surflet 𝒒, expressed in TRF, and the centroid of the surflet

𝒑, expressed in SRF and rotated through the computed quaternion 𝒓, as shown in Equation 3.23:

 𝒕 = 𝒒 − 𝒓𝒑𝒓∗ (3.23)

where 𝒓∗ is the conjugate of 𝒓.

The basis of this procedure is the assumption that, in the case where the points are not too close,

the direction of the point difference vector is more reliable than the direction of the estimated

normals; therefore, the difference vectors are perfectly aligned, while the normals contribute

equally to an average rotation angle about the axis that is given by the aligned difference

vectors.

3.5.4.2. Alignment Evaluation

The quality of the pose hypotheses determined through the alignment algorithm is evaluated in

RANSAC style by counting the inliers. To make this search faster, without necessarily having

to check all the possible combinations of point triplets, a percentage of inliers to be reached is

set as a stop condition. Two main approaches have been developed for assessing alignment

quality: the Nearest Neighbor approach and the Binary Matching with 3D voxel grid.

Nearest Neighbor approach

The Nearest Neighbor (NN) approach is based on finding, for each point of the measured point

cloud transformed in TRF based on the pose guess, the NN between the points of the model

point cloud, and calculating the Euclidean distance between the pairs of correspondences. If the

distance value is lower than a certain threshold 𝑑𝑖𝑛,𝑡ℎ𝑟𝑒, the point of the measured point cloud

would be counted as an inlier. These inliers are searched leveraging the KDTree of the model

95

point cloud to efficiently find the NNs between the two point clouds. In this way, the percentage

of inliers 𝑖𝑛% can be computed as shown in Equation 3.24:

 𝑖𝑛% =
#𝑖𝑛𝑙𝑖𝑒𝑟𝑠

#𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100 (3.24)

In order to limit the computational time of this step, both the model and the measured point

cloud are downsampled with the same voxel size 𝑣𝑠𝑖𝑧𝑒. As already mentioned at the beginning

of Section 3.5.4, if this percentage reaches a predetermined value 𝑖𝑛%,𝑡ℎ𝑟𝑒, then the alignment

is considered good and therefore the HT lookup cycle stops. Specifically, two thresholds of

inlier percentages are defined in this discussion, indicated as 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐶𝑆 and 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐹𝑆

depending on whether the scan considered is respectively a CS or a FS scan. The values of these

tuning parameters are shown in paragraph 5.2.1.1.

Binary Matching with 3D Voxel Grid

The Binary Matching (BM) approach, instead, is based on the counting of inliers found by

checking whether the points of the transformed measured point cloud fall within the voxels of

a grid representing the model point cloud. More precisely, the model point cloud is replaced by

a 3D grid of voxels, built offline and encoded through a HT, called in this discussion 𝑯𝑻𝑣𝑜𝑥𝑒𝑙;

𝑯𝑻𝑣𝑜𝑥𝑒𝑙 basically represents a 3D dictionary in which, for each bucket (corresponding to the

single voxel) that contains at least one point of the model point cloud, the digit “1” is stored.

The hash code associated with the bucket containing the information "1" is obtained using as a

key the triplet of coordinates of the generic point of the model point cloud, using the hash

function shown in Equation 3.25:

 𝒗ℎ𝑎𝑠ℎ(𝑖) = 𝑓𝑙𝑜𝑜𝑟 (
𝑚 ∗ 𝒅(𝑖)

𝐷
) , 𝑖 = 1,2,3 (3.25)

The hash function used is the same one already seen for the construction of the HTs explained

in Section 3.3, where 𝑚 represents the number of buckets, 𝒅 represents the coordinate vector

of the generic point of the model point cloud, while 𝐷 has been left unchanged with respect to

the definition given in Section 3.3.

96

Clearly, if the number of buckets 𝑚 chosen is small, and therefore the voxels of the grid are

large enough to contain more than one point, if a second point is associated with a bucket

already containing the information "1", no operation is performed and the next point is

considered.

The higher the number of buckets 𝑚, the denser the voxel grid (i.e., the smaller the size of each

individual voxel), and this would therefore be equivalent to requiring a greater precision in the

alignment to obtain a high percentage of inliers, at the expense of increased computational time.

Given these premises, the evaluation of the alignment quality using this approach is described

below: in the online phase, for each point of the transformed measured point cloud, the

corresponding hash code is computed, through the hash function in Equation 3.25, and it is

checked whether the corresponding bucket contains the value "1" or not; if so, the inlier counter

is increased by 1. Then, in the same way as the NN approach, it is possible to calculate the

percentage of inliers 𝑖𝑛% by dividing the total inliers obtained by the number of points of the

downsampled measured point cloud (Equation 3.24) and, if 𝑖𝑛% > 𝑖𝑛%,𝑡ℎ𝑟𝑒, the alignment is

considered good and the HT lookup cycle stops.

Simulations have been performed using both the alignment evaluation approaches (NN and

BM) for Label and PA-based RANSAC algorithms. In paragraph 5.2.2.2, a comparison between

the two variants is reported, but limited to the estimation of the initial pose guess, since the

evaluation of the flip checks has only been implemented using the NN approach.

3.6. Post-Processing

This Section describes the refinement procedure of the initial pose guess, through an application

of ICP and a series of checks aimed at correcting any incorrect poses that have passed the HT

lookup phase. A diagram of the pose refinement procedure is shown in Figure 3.32.

97

Figure 3.32 – Post-processing

3.6.1. Iterative Closest Point

Once the pose between measured and model point clouds has been determined, it is refined

through the Iterative Closest Point (ICP). There are two types of ICP algorithms implemented

in Open3D:

1. Point to Point (P2P) ICP. It aims to minimize the Euclidean distance between

corresponding points in the measured and model point clouds; it establishes

correspondences based on the closest point pairs;

2. Point to Plane (P2L) ICP. It minimizes the distance between points and planes in the

model point cloud; it establishes correspondences between points in the measured cloud

and the nearest planes in the model cloud.

For the algorithms presented in this work, the P2L ICP is implemented.

Given as input to the function the transformation matrix resulting from the HT-based algorithm,

in this phase, through the ICP steps, the transformation matrix is recursively calculated for a

predetermined maximum number of iterations or until convergence is reached, thus updating

the pose from time to time. Equation 3.26 shows the pose update from iteration i to iteration

i+1 via ICP:

 𝑻𝑖+1 = 𝑻𝐼𝐶𝑃
𝑖,𝑖+1 𝑻𝑖 (3.26)

After updating the pose matrix, the Root Mean Square Error, RMSE (used to impose a stop

condition in case of convergence) and the cost function (which will be used to develop an

98

Autonomous Failure Detection algorithm, explained in Section 5.3) are evaluated. In particular,

the cost function is calculated through Equation 3.27:

𝐶(𝑻) = ∑ (𝒏𝒒

𝑇 ⋅ (𝑻𝒑 − 𝒒))
𝟐

(𝒑,𝒒)∈𝑲

(3.27)

where:

• 𝒑 represents the point of the correspondence pair (𝒑, 𝒒) belonging to the measured point

cloud.

• 𝒒 represents the point of the correspondence pair (𝒑, 𝒒) belonging to the model point

cloud.

• 𝑻 represents the SRF to TRF transformation matrix. Therefore, 𝑻𝒑 represents the

transformed point of the measured point cloud, which must align to the corresponding

point in the model point cloud 𝒒.

• 𝒏𝒒 represents the normal at the point 𝒒.

• 𝑲 represents the set of correspondences that comes out of the current ICP iteration.

The difference with respect to the RMSE is simply that, in the definition of the RMSE, the sum

of the squared differences is divided by 𝑁 and put under root. As mentioned above, the RMSE

value is used to impose a further condition, shown in Equation 3.28:

 𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸𝑖−1 < 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 (3.28)

If this condition is satisfied, i.e., the difference between the RMSE of two consecutive iterations

is lower than a certain threshold 𝑖𝑐𝑝𝑐𝑜𝑛𝑣, the algorithm has converged and so it stops before

reaching the maximum number of iterations imposed.

3.6.2. Ambiguity Reduction Process

This Subsection is dedicated to the explanation of additional checks that have been

implemented downstream of the ICP to strengthen the algorithms developed in the presence of

incorrect poses that have passed the HT lookup phase: given the geometry of the satellite under

study, it is possible that the inlier percentage set to exit the HT lookup block is satisfied with

99

an incorrect pose; therefore, it is necessary to implement checks that allow these cases to be

identified and the correct pose to be estimated.

A case of incorrect pose that can exceed the threshold of the percentage of inliers is that of a

satellite flipped, about its large planar surface, w.r.t the correct position. Therefore, the 𝑻𝐼𝐶𝑃

transformation, that is the pose solution produced by the ICP-based pose refinement step

expressed as a 4x4 roto-translation matrix from SRF to TRF, could correspond either to the

desired transformation from SRF to TRF (𝑻𝑆𝑅𝐹→𝑇𝑅𝐹) or to a transformation from SRF to a

Flipped Target Reference Frame (FTRF). Figure 3.33 shows the aforementioned problem.

Figure 3.33 - a) Case of correctly estimated pose: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹. b) Case of incorrect

pose that has passed the HT lookup phase: 𝑻𝐼𝐶𝑃 = 𝑻𝑆𝑅𝐹→𝐹𝑇𝑅𝐹

Therefore, two possible pose solutions can be investigated, which are shown in Equation 3.29

and Equation 3.30:

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹1
= 𝑻𝐼𝐶𝑃 (3.29)

 𝑻𝑆𝑅𝐹→𝑇𝑅𝐹2
= 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹𝑻𝐼𝐶𝑃 (3.30)

where 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 is a matrix dependent on the target reference geometry. Given these two

possible solutions, the percentage of inliers is calculated for both cases, and the matrix

corresponding to the case with the highest percentage of inliers is selected as the final one.

100

The considered flip cases are shown in Figure 3.34.

Figure 3.34 - Flips implemented. a) Flip check performed for all scans. b) FS Flip check:

upper plane; c) FS Flip check: lower plane

Given the Client Satellite geometry, two different types of flip checks are performed: one

applied to both CS and FS scans (a), and an additional check for FS scans only (b, c), which is

performed before (a). The latter flip check type addresses the case in which the corresponding

planes match, but with opposite normal orientation. Therefore, to detect such a case, a

comparison is made between the direction of corresponding normal vectors. If the median angle

between corresponding normals is greater than 90°, it is highly likely that the FS scan is upside

down, and therefore it is necessary to apply, downstream of 𝑻𝐼𝐶𝑃, a 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 transformation

to flip the measured point cloud. The choice of the median instead of the mean derives from the

fact that, in this way, the final angle value is not influenced by outliers. Since the FS scan

considered (upper or lower plane) is not known a priori, the transformations related to both

cases (b, c) are applied and the best one in terms of number of inliers is selected.

Table 3.6 shows rotations and translations composing the transformation matrix 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹,

where ℎ is the height of the hexagonal main body. In particular, regarding rotation, the above

mentioned flips are tested for two cases, i.e., the rotation around the pitch axis and around the

yaw axis, since, depending on the axis around which the rotation is performed, the detection of

the handles can make the difference in recognizing the correct pose. The best one is selected by

counting the inliers.

101

 𝜸, 𝜷, 𝜶 rotation sequence [deg] 𝒙, 𝒚, 𝒛 translation [m]

𝑻𝑭𝑻𝑹𝑭→𝑻𝑹𝑭

Case (a)
0, 180, 0 −ℎ, 0, 0

180, 0, 0 −ℎ, 0, 0

Case (b)
0, 180, 0 0, 0, 0

180, 0, 0 0, 0, 0

Case (c)
0, 180, 0 −2ℎ, 0, 0

180, 0, 0 −2ℎ, 0, 0

Table 3.6 – Flip matrices 𝑻𝐹𝑇𝑅𝐹→𝑇𝑅𝐹 defined

The reason why the flip check is performed downstream of the ICP is simply due to the fact

that, if the alignment obtained upstream were very rough (therefore, percentage of inliers just

above the minimum to exit the HT lookup cycle), even if the flip were correct, there would be

a higher probability of failing to distinguish the correct case from the flipped case by comparing

the respective percentages of inliers: indeed, even more so in this specific case, the increase in

the percentage of inliers downstream of the flip is mainly entrusted to the good alignment of

the points off plane (i.e., those points belonging to the toroid, the cylinder and the sphere);

therefore, the better the starting alignment, the easier it will be to see this difference in the

percentage.

102

4. Open3D Global Registration Algorithms

The global registration algorithms developed during this thesis work have been compared with

algorithms already implemented in Open3D. These algorithms are FPFH-based RANSAC and

Fast Global Registration (FGR) [46], briefly described in this Chapter.

4.1. FPFH-Based RANSAC

The implementation procedure of the Open3D FPFH-based RANSAC is described below. Both

the model and the measured point cloud are downsampled with voxel size 𝑣𝑠𝑖𝑧𝑒, normals are

estimated, and then, for each point of the point clouds, the FPFH is calculated.

At this point, the RANSAC algorithm is applied: iteratively, 𝑛 points are randomly extracted

from the model point cloud; then, the set of corresponding points in the measured point cloud

is identified by searching for the NN in the FPFH space. For a quick search, Open3D provides

algorithms to filter the good matches:

1. CorrespondenceCheckerBasedOnDistance. It checks the goodness of a match by

measuring the distance between the corresponding points in the model and the measured

point cloud downstream of the alignment. This distance is compared with a threshold

entered as input; the match is considered valid if the distance between the points is

below the threshold. The value of this tuning parameter is shown in paragraph 5.2.1.1.

2. CorrespondenceCheckerBasedOnEdgeLength. It checks the quality of the

correspondences from another point of view, that is, considering the length of the

segments obtained from pairs of points on the model and on the measured point cloud.

Specifically, given two points on the model point cloud and the two corresponding

points on the measured point cloud, the two segments are constructed and the lengths

are calculated (‖𝑒𝑑𝑔𝑒𝑚‖ and ‖𝑒𝑑𝑔𝑒𝑡‖, respectively). This condition is satisfied if the

relations shown in Equation 4.1 are valid:

103

‖𝑒𝑑𝑔𝑒𝑚‖

‖𝑒𝑑𝑔𝑒𝑡‖
> 𝑡ℎ𝑟𝑒,

‖𝑒𝑑𝑔𝑒𝑡‖

‖𝑒𝑑𝑔𝑒𝑚‖
> 𝑡ℎ𝑟𝑒 (4.1)

where 𝑡ℎ𝑟𝑒 is the threshold set in input (value shown in paragraph 5.2.1.1). In fact, it is

possible to exploit the similarity between the geometries constructed on both point

clouds, given the nature of the rigid transformation.

3. CorrespondenceCheckerBasedOnNormal. It checks the consistency between the

normals of two corresponding points in the two point clouds. In this case, given two

corresponding points, one on the model and one on the measured point cloud, the angle

between the normals is measured and compared with a certain threshold. The

correspondence is considered valid if the angle between the normals is less than this

threshold.

The checks implemented in the classic Open3D FPFH-based RANSAC algorithm to find good

matches are the first two.

As highlighted in Chapter 3, a very similar concept has been applied in the development of the

three global registration algorithms presented in this thesis. Specifically, the iterative sampling

of correspondences, followed by inlier computation for alignment quality assessment, is a

typical characteristic of RANSAC-based approaches and is effectively utilized in the HT-based

methods.

The matches that satisfy the above conditions are used to compute the transformation. A

maximum number of iterations and a confidence probability (values shown in paragraph

5.2.1.1) are set as stopping conditions for the algorithm, where the latter indicates, by definition,

the desired probability that the RANSAC algorithm provides at least one useful result after

running.

More precisely, RANSAC returns a good result if, in at least one iteration, it selects only inliers

from the dataset, when the 𝑛 points are randomly selected to compute the transformation. Using

this definition of success probability 𝑝, that is, at least one iteration out of 𝑘, 𝑛 inliers are

selected, the failure probability is defined as the probability that, in all 𝑘 iterations, a set of

inliers is never selected, but at least one outlier is always selected among the 𝑛 points. This

definition is shown in Equation 4.2:

104

 1 − 𝑝 = (1 − 𝑤𝑛)𝑘 (4.2)

where 𝑤 represents the probability that a single selected point is an inlier, which is nothing but

the inlier ratio (a number between 0 and 1 that has exactly the same meaning as the percentage

of inliers previously seen).

From Equation 4.2, given as input the value of the desired probability, it is possible to calculate

the number of iterations needed through Equation 4.3:

 𝑘 =
𝑙𝑜𝑔(1 − 𝑝)

𝑙𝑜𝑔 (1 − 𝑤𝑛)
 (4.3)

Clearly, if the selected confidence level requires too high a number of iterations, the other stop

condition, i.e. the maximum number of iterations, stops the algorithm, avoiding large

computation times.

The larger these two numbers are, the more accurate the result is, but also the more

computational time is required for the algorithm to output the solution.

4.2. Fast Global Registration

In the Open3D tutorial, FGR is also presented as an algorithm for global registration, in contrast

to the FPFH-based RANSAC approach.

Using the same point cloud pre-processing procedure (downsampling, normal estimation,

FPFH estimation), the FGR implementation follows, as already illustrated in Chapter 2 [34].

Again, the FGR algorithm takes as input the two point clouds subjected to downsampling, the

two sets of FPFH, and a distance threshold for the identification of correspondences.

105

5. Experiments

This Chapter presents the performance results produced by the developed global registration

algorithms, which are compared with the Open3D FPFH-based RANSAC and FGR algorithms.

5.1. Evaluation Metrics

In this Section, the error metrics for evaluating the performance of the algorithms are defined.

Given the quasi-symmetric geometry of the satellite under study, specifically around the roll

axis, for the method evaluation, the symmetric variant of the estimated pose which minimizes

the error is considered. Let 𝑻 be the pose ground truth and 𝑻̂ be the estimated pose, within the

set of equivalent poses by symmetry, with the smallest error.

The Average Distance of model points for Distinguishable (ADD) and for Indistinguishable

(ADI) points are computed [51, 52], given a complete uniform model point cloud ℳ, which

are defined in Equation 5.1 and Equation 5.2:

 𝐴𝐷𝐷 = avg
𝒙∈ℳ

‖ 𝑻𝒙 − 𝑻̂𝒙‖ (5.1)

 𝐴𝐷𝐼 = avg
𝒙1∈ℳ

 min
𝒙2∈ℳ

‖ 𝑻𝒙1 − 𝑻̂𝒙2‖ (5.2)

Furthermore, for each testing sample, the translational and rotational errors are computed as

shown in Equation 5.3 and Equation 5.4:

 𝑡𝑒𝑟𝑟 = ‖𝒕 − 𝒕̂‖ (5.3)

 𝜙𝑒𝑟𝑟 = 2 arccos|〈𝒒, 𝒒̂∗〉| (5.4)

where 𝒕, 𝒒 are the translational and rotational components of 𝑻, while 𝒕̂, 𝒒̂ are the translational

and rotational components of 𝑻̂. The rotational part is expressed in terms of quaternions:

specifically, 𝒒 is the true attitude quaternion, 𝒒̂∗ is the conjugate of the estimated attitude

106

quaternion, while |〈𝒒, 𝒒̂∗〉| is the scalar part of the quaternion resulting from the quaternion

product.

These error metrics are used to compute the Success Rate (SR), which is defined as the

percentage of correctly estimated poses, as shown in Equation 5.5:

 𝑆𝑅 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 (5.5)

A pose is considered correctly estimated if 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 are simultaneously

satisfied.

Finally, the computational time of the online phase is measured from the acquisition of the

LiDAR point cloud to post-processing. The simulations are conducted on a machine equipped

with an Intel(R) Core(TM) i9-14900K CPU @ 3.20 GHz and 64 GB DDR5 RAM.

5.2. Performance Analysis

The next Subsections show the results of the developed algorithms. The results are obtained by

testing the global registration algorithms on a testing dataset composed by the 20% of the entire

1000-scan dataset used for analyzes.

In particular, in Subsection 5.2.1, the values of the tuning parameters set and the comparison

results between the main algorithms, without and with post-processing, are shown; in

Subsection 5.2.2, some comparisons are shown between different variants of the developed HT-

based algorithms; finally, in Subsection 5.2.3, additional results regarding further analyses

carried out on the Open3D implementations are presented.

5.2.1. Comparison of the Main Algorithms

This Subsection presents the performance comparison results between the main variants of the

developed HT-based algorithms and the Open3D FPFH-based RANSAC and FGR,

appropriately modified by integrating to the already existing architecture the classification of

107

point clouds in CS and FS scans and the post-processing block (ICP + flip checks) also used

for the HT-based algorithms (Subsection 3.6).

As already seen in Chapter 3, some variants of the HT-based algorithms have been proposed,

depending on:

1. The offline 𝑯𝑻𝑪𝑺 construction methodology (model HT or training HT, Section 3.3);

2. The alignment quality evaluation (NN or BM with the 3D voxel grid, paragraph 3.5.4.2).

The performances of the Label-based RANSAC, PA-based RANSAC and PPF-based

RANSAC algorithms shown in this Subsection are those obtained using the training HTs and

the NN approach for alignment quality evaluation.

5.2.1.1. Tuning Parameters

Table 5.1 shows the values of the tuning parameters used for the construction of the HTs and

defined in Subsection 3.3.1.

Training

HTs
𝒏𝒄𝒚𝒄𝒍𝒆𝒔

Hash function parameters Filtering parameters

𝒎 𝑫 [𝒎] 𝒎𝒂 𝑨 [𝒅𝒆𝒈] 𝒅𝒕𝒉𝒓𝒆 [𝒎] 𝜶𝒎𝒊𝒏 [𝒅𝒆𝒈] 𝜶𝒎𝒂𝒙 [𝒅𝒆𝒈]

Label 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A

PA 𝑯𝑻𝑪𝑺 5e6 100 1.2 N/A N/A 0.025 N/A N/A

PPF 𝑯𝑻𝑪𝑺 5e6 100 1.2 40 170 0.025 10 170

𝑯𝑻𝑭𝑺 1e6 100 1.2 N/A N/A 0.05 N/A N/A

Table 5.1 - Tuning parameters selected for training HTs construction

Table 5.2 shows the tuning parameters used for normal, FPFH estimation and online extraction

of the set of candidates 𝑲.

108

Label-based

RANSAC

method

Normals FPFH
Cylinder points

extraction

Edge points

extraction

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯 𝒅𝑭𝑷𝑭𝑯 𝒌𝑭𝑷𝑭𝑯

0.07 40 0.07 100 55 190 50 180

PA-based

RANSAC

method

Normals FPFH Persistence Analysis parameters

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝜷 𝒓𝒊 [𝒎] 𝒎𝒂𝒙𝒏𝒏

0.07 40 0.07 100 1 0.05, 0.07, 0.1 100

PPF-based

RANSAC

method

Normals FPFH

No feature extraction step 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏

0.07 40 N/A N/A

Table 5.2 - HT-based normal, FPFH estimation and feature extraction tuning parameters

where 𝑟 and 𝑚𝑎𝑥𝑛𝑛 for normal estimation are defined in Subsection 3.2.1, 𝑑𝐹𝑃𝐹𝐻 and 𝑘𝐹𝑃𝐹𝐻

are defined in paragraph 3.2.2.3, while 𝛽, 𝑟𝑖 and 𝑚𝑎𝑥𝑛𝑛 for PA are defined in paragraph 3.2.2.2.

Table 5.3 shows the tuning parameters used for normal and FPFH estimation for FPFH-based

RANSAC and FGR.

Method
Normals FPFH

𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏 𝒓 [𝒎] 𝒎𝒂𝒙𝒏𝒏

FPFH-based RANSAC 0.07 40 0.07 100

FGR 0.1 40 0.1 100

Table 5.3 - FPFH-based RANSAC and FGR normal and FPFH estimation tuning parameters

The reason for the difference between FPFH-based RANSAC and FGR in the choice of 𝑟 for

the computation of normals and FPFHs lies in the relatively better performance of FGR in the

case of 𝑟 = 0.1 𝑚, compared to 𝑟 = 0.07 𝑚.

Regarding point cloud classification, for the HT-based methods 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.1 has been set to

distinguish CS scans from FS scans while, for FPFH-based RANSAC and FGR algorithms,

𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.25 has been set since the workflow reported in [46], also reported in Chapter 4,

involves the implementation of point cloud downsampling before estimating the normal unit

109

vectors, which therefore alters the threshold value to be considered. The value of voxel size set

for point cloud downsampling is equal to 0.025 𝑚 and the threshold 𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.25 is selected

in such a way as to classify as FS scan and CS scan the exact same samples classified using

𝜏𝜎𝑁,𝑡ℎ𝑟𝑒
= 0.1 on the non-downsampled testing dataset. For completeness of the analyses,

simulations have also been performed without downsampling of the point clouds (and therefore

with the same threshold adopted for the HT-based methods), indeed demonstrating the greater

effectiveness of FPFH-based RANSAC and FGR with downsampling. The results are shown

in Subsection 5.2.3.

Table 5.4 and Table 5.5 finally present the tuning parameter values for alignment evaluation

and ICP, respectively, for the HT-based algorithms, selected through an iterative process to

determine the optimal ones.

Method
Alignment evaluation

𝒗𝒔𝒊𝒛𝒆 [m] 𝒅𝒊𝒏,𝒕𝒉𝒓𝒆 [m] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑪𝑺 [%] 𝒊𝒏%,𝒕𝒉𝒓𝒆,𝑭𝑺 [%]

HT-based 0.025 0.05 80 90

Table 5.4 – Alignment evaluation tuning parameters adopted

Method
ICP

𝒊𝒄𝒑𝒕𝒉𝒓𝒆 [m] 𝒏𝒊𝒕,𝒎𝒂𝒙 𝒊𝒄𝒑𝒄𝒐𝒏𝒗 [m]

HT-based 0.05 100 10−6

Table 5.5 - ICP tuning parameters adopted

where:

• 𝑣𝑠𝑖𝑧𝑒 is the voxel size downsampling parameter used to reduce the number of points of

the model and the measured point cloud;

• 𝑑𝑖𝑛,𝑡ℎ𝑟𝑒 is the distance threshold that allows the identification of inliers;

• 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐶𝑆 and 𝑖𝑛%,𝑡ℎ𝑟𝑒,𝐹𝑆 represent the percentages of inliers to be satisfied for the pose

to be considered good, respectively for CS and FS scans;

• 𝑖𝑐𝑝𝑡ℎ𝑟𝑒 is the distance threshold set for the execution of the ICP;

• 𝑛𝑖𝑡,𝑚𝑎𝑥 is the maximum number of ICP iterations;

110

• 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 is the convergence threshold, calculated as the difference between the RMSE

of two consecutive iterations that, if reached, stops the ICP regardless of the number of

iterations reached.

Regarding FPFH-based RANSAC, instead, the number of points 𝑛, used to compute the initial

pose guess, is set equal to 3; the input parameters of the

CorrespondenceCheckerBasedOnDistance and CorrespondenceCheckerBasedOnEdgeLength

functions (Section 4.1) are set equal to 0.05 𝑚 and 0.9 respectively and, finally, the

convergence criteria of the algorithm, which are the maximum number of iterations and the

confidence probability, are set to 100000 and 0.999, respectively; finally, for FGR, the only

input parameter required by the Open3D function is the maximum correspondence distance, set

equal to 0.05 𝑚. For both algorithms, the same values of 𝑖𝑐𝑝𝑡ℎ𝑟𝑒, 𝑛𝑖𝑡,𝑚𝑎𝑥 and 𝑖𝑐𝑝𝑐𝑜𝑛𝑣 are used.

5.2.1.2. Comparison Results

Figure 5.1 shows the performance comparison between the five methods above mentioned both

without and with the post-processing steps included into the algorithmic pipeline. The top 4

plots show the percentage of samples of the testing dataset whose ADD/ADI, normalized with

respect to the maximum size of the satellite, considered equal to 1.2 𝑚, falls below a certain

threshold. The bottom 4 plots show the performance of the algorithms in terms of rotational and

translational error 𝜙𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟, in ADD/ADI style, thus showing the percentage of samples of

the testing dataset whose rotational/translational error falls below a certain angle/distance. The

larger the area under the curve, the better the performance. For all the 8 plots the [min., max.]

limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the samples of the testing

dataset are reached with the worst RANSAC-based method.

From the shown plots, first, it can be noted that FGR provides a poor accuracy compared to all

the other techniques, proving inadequate for the type of problem studied. The reason for this

difference may be the greater generality of the problem addressed, compared to the conditions

tested in [34], in which the performance of FGR was evaluated on partially overlapping

surfaces.

111

Figure 5.1 - Comparison results between the algorithms. The metrics compared are ADD,

ADI (top 4 plots), rotational error and translational error (bottom 4 plots), without post-

processing (left column) and with post-processing (right column)

112

As for the RANSAC-based algorithms, the plots in the left column show a slight overall

superiority of FPFH-based RANSAC. Furthermore, in the ADD plot, a jump in the percentage

of samples when the ADD threshold gets slightly higher than 0.5 can be observed; this is caused

by the flipped poses whose samples are included when this threshold on ADD is exceeded. This

behavior is also visible in the plots of the translational and rotational errors without post-

processing; in particular, in the one of the rotational errors it is observed right before 180°,

confirming the previous observation. On the other hand, the plots in the right column clearly

show the significant improvement in the accuracy of the results due to the post-processing:

indeed, assuming that for 𝜙𝑒𝑟𝑟 < 5° and 𝑡𝑒𝑟𝑟 < 5 𝑐𝑚 the pose is correctly estimated, the

simulations performed resulted in a SR of 98%, 98.5%, 98.5% and 98.5%, for FPFH-based

RANSAC, Label-based RANSAC, PA-based RANSAC and PPF-based RANSAC,

respectively, thus proving that the developed HT-based methods represent promising

alternatives. It is worth highlighting that the addition of flip checks in the post-processing block

contributed to the performance improvement of the FPFH-based RANSAC method: in fact,

through simulations with and without flip checks, a difference in SR of 4.5% has been observed,

therefore 93.5% in the case without flips and, as already mentioned, 98% in the case with flips,

at the expense of an increase in the mean computational time of 0.067 𝑠. Finally, the

computational times for both cases without and with post-processing are reported in Table 5.6.

Method

Computational time

without post-processing [s]

Computational time

with post-processing [s]

Mean Median Mean Median

FPFH-based RANSAC 0.0965 0.0950 0.2511 0.2060

Label-based RANSAC 0.3062 0.2136 0.4610 0.3309

PA-based RANSAC 0.4441 0.3693 0.5331 0.4357

PPF-based RANSAC 0.1098 0.1084 0.2420 0.1776

FGR 0.0237 0.0230 0.2295 0.1670

Table 5.6 - Time performance

From Table 5.6, it can be observed that the Label-based and PA-based RANSAC algorithms

are less performant than FPFH-based RANSAC and PPF-based RANSAC, which instead have

comparable computational times. It is important to underline that the presented HT-based

113

implementations are not optimized, unlike FPFH-based RANSAC, whose implementation

comes from the Open3D library. Therefore, this comparison is to be considered as preliminary.

5.2.2. Comparison of Algorithm Variants

In this Subsection, a series of comparisons between variants of the developed algorithms,

anticipated in Chapter 3, are shown. These variants present different approaches for offline HT

construction methodology (paragraph 5.2.2.1) and alignment quality assessment (paragraph

5.2.2.2) and are tested on Label-based and PA-based RANSAC methods.

5.2.2.1. Training Hash Table vs Model Hash Table

This paragraph shows the comparison analysis between training and model HTs approaches.

The tuning parameters for constructing the model HTs are the same as in Table 5.1, considering

only the 𝑯𝑻𝑪𝑺 for Label and PA-based while, to manage the FS scans, the training HT is used.

Figure 5.2 - Comparison of Label and PA-based RANSAC using training and model HT

approaches, with post-processing. Left: ADD, ADI. Right: rotational and translational errors

114

Figure 5.2 shows the comparison between the two approaches for Label-based RANSAC and

PA-based RANSAC algorithms. T indicates the approach that uses the training 𝑯𝑻𝑪𝑺, while M

indicates the approach that uses the model 𝑯𝑻𝑪𝑺. Both these variants are compared using the

NN approach for alignment quality assessment. The performances of the two variants are only

compared with post-processing. The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such

that 95% of the samples of the testing dataset are reached with the worst method, instead of

96%, so that the curves can be distinguished a little more clearly. From plots shown in Figure

5.2, it can be observed that the two variants are very comparable in the case of the PA-based

RANSAC method, but with a clear advantage for the training HT variant in the case of the

Label-based RANSAC one. The simulations performed resulted in a SR of 98.5%, 98.5%,

98.5% and 96.5%, for Label-based RANSAC (T), Label-based RANSAC (M), PA-based

RANSAC (T) and PA-based RANSAC (M), respectively. Runtimes are shown in Table 5.7.

Method
Computational Time with Post-Processing [s]

Mean Median

Label-based RANSAC
T 0.4610 0.3309

M 0.4393 0.3451

PA-based RANSAC
T 0.5331 0.4357

M 0.7705 0.6275

Table 5.7 – Runtimes of Label-based and PA-based RANSAC, with training and model HTs

Table 5.7 shows comparable computational times, except for the PA-based RANSAC method

with the model HT, which is slower.

5.2.2.2. Nearest Neighbor vs Binary Matching

In this paragraph, the comparison analysis between NN and BM approaches is shown. Table

5.8 shows the values of the parameters used to build 𝑯𝑻𝑣𝑜𝑥𝑒𝑙, defined in paragraph 3.5.4.2.

𝑯𝑻 𝒎 𝑫 [𝒎]

𝑯𝑻𝒗𝒐𝒙𝒆𝒍 12 1.2

Table 5.8 - Parameters selected for 𝑯𝑻𝑣𝑜𝑥𝑒𝑙

115

Figure 5.3 - Comparison of Label and PA-based RANSAC using NN and BM approaches,

without post-processing. Left: ADD, ADI. Right: rotational and translational errors

Figure 5.3 compares the two approaches for Label-based and PA-based RANSAC algorithms.

NN refers to the Nearest Neighbors, while BM refers to Binary Matching. Both these variants

are compared using the training HTs. The performance of the two variants is compared without

post-processing, as flip check evaluation in post-processing has only been implemented using

the NN approach. The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the

samples of the testing dataset are reached with the worst method.

Method
Computational Time without Post-Processing [s]

Mean Median

Label-based RANSAC
NN 0.3062 0.2136

BM 0.2474 0.1914

PA-based RANSAC
NN 0.4441 0.3693

BM 0.3688 0.3363

Table 5.9 – Runtimes of Label-based and PA-based RANSAC, with NN and BM approaches

116

Runtimes are shown in Table 5.9. From Figure 5.3 and Table 5.9 it can be observed that the

BM approach for alignment quality evaluation represents a very promising alternative,

especially for the lower computational time. It could be interesting to investigate the integration

of a post-processing phase where the quality of flip checks is evaluated using such an approach

instead of the NN-based one.

5.2.3. Performance of Open3D Algorithms without and with Downsampling

As already mentioned in paragraph 5.2.1.1, further simulations have been performed with

FPFH-based RANSAC and FGR without downsampling, in order to compare their

performances with the downsampled case. In Figure 5.4 the plots of ADD, ADI, rotational and

translational error with post-processing are shown.

Figure 5.4 – Comparison of Open3D algorithms with downsampling (downs.) and without

downsampling (no downs.), with post-processing. Left: ADD, ADI. Right: rotational and

translational errors

117

The limits of the horizontal axis are set to [0, 𝑝], with 𝑝 such that 96% of the samples of the

testing dataset are reached with the worst method. Runtimes are shown in Table 5.10.

Method
Computational Time with Post-Processing [s]

Mean Median

FPFH-based RANSAC
Downs. 0.2511 0.2060

No downs. 1.3757 1.0095

FGR
Downs. 0.2295 0.1670

No downs. 2.4265 1.7824

Table 5.10 – Runtimes of Open3D algorithms, without and with downsampling

From Figure 5.4 and Table 5.10, it is possible to observe the evident superiority, in terms of

accuracy and computational time, of the Open3D algorithms with preliminary downsampling

applied to the measured and model point clouds.

5.3. Autonomous Failure Detection

The last analysis carried out during this work is the development of an Autonomous Failure

Detection (AFD) algorithm which, using:

1. The rotational and translational errors 𝜙𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟, through which the SR is defined;

2. The convergence value of the ICP cost function 𝑓𝑒𝑛𝑑, i.e. the minimum sum of squared

distances to closest planes;

is able to autonomously declare the success or failure in the pose estimation. This is possible

through the computation of the optimal value of a reference variable 𝑓𝜏, which is compared with

𝑓𝑒𝑛𝑑; in fact, if the inequality shown in Equation 5.6 is verified:

 𝑓𝑒𝑛𝑑 < 𝑓𝜏 (5.6)

the algorithm declares the success in the pose estimation, otherwise it declares the failure.

118

To determine the optimal value of 𝑓𝜏, a statistical approach is used that makes use of

probabilities calculated from the experimental results obtained.

First of all, it is necessary to define the success probability 𝑃𝑠 and failure probability 𝑃𝐹 of the

algorithm which, starting from the results obtained, are defined as shown in Equation 5.7 and

Equation 5.8:

 𝑃𝑆 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑒𝑠
 (5.7)

 𝑃𝐹 =
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑒𝑠
 (5.8)

So, considering the following events:

• A: the AFD algorithm declares a success, i.e., 𝑓𝑒𝑛𝑑 < 𝑓𝜏;

• B: the pose is successfully computed, i.e., (𝜙𝑒𝑟𝑟 < 5°) ∩ (𝑡𝑒𝑟𝑟 < 0.05 𝑚).

four conditional probabilities are defined:

• 𝑃𝑆𝑆 as the probability that the AFD algorithm declares a success given the success in

pose estimation, which is computed through Equation 5.9:

 𝑃𝑆𝑆 = 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (5.9)

• 𝑃𝑆𝐹 as the probability that the AFD algorithm declares a success given the failure in

pose estimation, which is computed through Equation 5.10:

 𝑃𝑆𝐹 = 𝑃(𝐴|𝐵̅) =
𝑃(𝐴 ∩ 𝐵̅)

𝑃(𝐵̅)
 (5.10)

• 𝑃𝐹𝑆 as the probability that the AFD algorithm declares a failure given the success in

pose estimation, which is computed through Equation 5.11:

 𝑃𝐹𝑆 = 𝑃(𝐴̅|𝐵) =
𝑃(𝐴̅ ∩ 𝐵)

𝑃(𝐵)
 (5.11)

119

• 𝑃𝐹𝐹 as the probability that the AFD algorithm declares a failure given the failure in pose

estimation, which is computed through Equation 5.12:

 𝑃𝐹𝐹 = 𝑃(𝐴̅|𝐵̅) =
𝑃(𝐴̅ ∩ 𝐵̅)

𝑃(𝐵̅)
 (5.12)

Given this premise, the AFD algorithm is based on calculating these conditional probabilities

on a vector of 𝑓𝜏: it is varied from a very small value, such that every pose is declared a failure,

to a very large value, such that every pose will be declared a success. In this way it is possible

to study the behaviour of the four conditional probabilities just defined as a function of 𝑓𝜏, so

as to be able to select the value that optimally distinguishes successes from failures.

Figure 5.5 – AFD results. Highlighted are the ranges of 𝑓𝜏 such that the probability 𝑃𝑇 that

the AFD algorithm tells the truth is maximum

120

Figure 5.5 shows the AFD results for the main variants of FPFH-based RANSAC, Label-based,

PA-based and PPF-based RANSAC, respectively (Subsection 5.2.1). The potential values of 𝑓𝜏

to be selected can be deduced identifying at which 𝑓𝜏 there is the maximum probability 𝑃𝑇 that

the AFD algorithm is telling the truth. This probability is computed as shown in Equation 5.13:

 𝑃𝑇 = 𝑃𝑆𝑆 𝑃(𝐵) + 𝑃𝐹𝐹 𝑃(𝐵̅) = 𝑃((𝐴 ∩ 𝐵) ∪ (𝐴̅ ∩ 𝐵̅)) (5.13)

The stepped behavior in the 𝑃𝑆𝐹 and 𝑃𝐹𝐹 plots is due to the low number of failures in the testing

dataset: indeed, on a set of 200 scans, 98.5% of SR corresponds to 3 failures, and this explains

the corresponding number of steps in the related plots. Because of this, it is not possible to

identify an exact optimal value of 𝑓𝜏, but it is possible to indicate a range of optimal values that

can be selected. These ranges for the four plots are shown in Table 5.11.

Method
Optimal 𝒇𝝉 values

Min [𝒎𝟐] Max [𝒎𝟐]

FPFH-based RANSAC 0.038 0.14

Label-based RANSAC 0.019 0.039

PA-based RANSAC 0.043 0.061

PPF-based RANSAC 0.043 0.096

Table 5.11 – Optimal 𝑓𝜏 values resulting from AFD analysis

121

6. Conclusions and Future Works

In this thesis work, three feature-based algorithmic solutions for LiDAR-based pose acquisition

of known non-cooperative spacecraft have been presented, which exploit point-normal

structures as local features (FPFH) or as non-local primitives (PPF) and a RANSAC-based

approach to find point correspondences between a model and a data point cloud, supported by

the use of Hash Tables appropriately built offline for the rapid online retrieval of potential good

point correspondences.

After a brief introduction on the space scenarios relevant to this challenge and an overview of

the LiDAR sensors central to this discussion, a literature review has been presented, focusing

on the current state-of-the-art in classical global registration methods (i.e. non-learning-based)

to evaluate their advantages and disadvantages and identify the most promising techniques to

focus further research on. Then, several analyses have been performed, in Python environment,

focused on the effective extraction of FPFHs, exploiting the segmentation of the reference

geometry in geometric primitives and the Persistence Analysis, key principles of the Label-

based RANSAC and PA-based RANSAC methods, respectively, and on the construction of

Hash Tables, used for Label-based, PA-based and PPF-based RANSAC. These analyses

supported the development of the above mentioned pose estimation algorithms, refined through

Iterative Closest Point (ICP) and additional checks to correct “ambiguous” poses. The

performances of the developed algorithms have then been compared with well-known feature-

based approaches implemented in the Python Open3D Library: FPFH-based RANSAC and Fast

Global Registration (FGR). Performance assessment has been carried out using a dataset of

synthetic point clouds. Finally, an autonomous failure detection strategy has been described to

enhance the robustness of the proposed architectures.

From the obtained results, reported in Chapter 5, the following conclusions can be drawn. All

the developed variants are promising methods for solving the task in the context of orbital

servicing missions. A slight advantage in accuracy and speed has been observed for FPFH-

based RANSAC. The speed measurements, however, are just preliminary as not all methods

currently have an optimized implementation.

122

Regarding FGR, instead, which approaches pose estimation as a global optimization without

relying on strict point correspondences, has proven to be significantly inferior and unsuitable

for the task.

Moreover, significant accuracy improvements have been demonstrated by postprocessing the

results of global pose estimation using ICP-based refinement and checking for flip errors caused

by pose ambiguities in the LiDAR data under certain conditions.

As for the variants of the developed algorithms, in Label-based and PA-based RANSAC a

higher overall efficiency in building hash tables using scans of the training dataset instead of

the whole model point cloud has been found, and for this reason this variant has not been

implemented also in PPF-based RANSAC, while the alignment evaluation approach using the

3D voxel grid turned out to be a very promising alternative to the approach that computes inliers

via nearest neighbor retrieval, and that is worth to be further investigated, implementing it also

in PPF-based RANSAC.

It is important to note that, although all three developed HT-based methods can be generalized

to satellites with different geometries, the current Label-based RANSAC method relies

exclusively on the geometric primitives present in the DLR Client Satellite, i.e. toroids, edges,

spheres, handles, cylinders and planes, using FPFH-based signatures of these geometries,

computed using the training dataset. A potential and promising generalization of the Label-

based RANSAC method could involve an algorithm capable of creating and identifying clusters

of regions characterized by similar FPFHs. This approach would represent a more functional

and advantageous extension of the current method, as it eliminates the need for initial pre-

processing to compute averaged FPFHs for recognition. More importantly, this would enable

the method to be rapidly extended to targets with arbitrary geometries, significantly enhancing

its versatility.

Building on this concept, future research should aim to consolidate and extend the results

obtained, incorporating improvements in data realism or testing on real, noisy LiDAR data,

accounting for varying sensor characteristics, and including additional satellite models.

123

124

References

[1] Kessler, D. J., Johnson, N. L., Liou, J. C., and Matney, M., “The Kessler Syndrome:

Implications to Future Space operations,” Advances in the Astronautical Sciences, Vol. 137,

2010.

[2] Flores-Abad, A., Ma, O., Pham, K., and Ulrich, S., “A review of space robotics technologies

for on-orbit servicing”, Progress in Aerospace Sciences, Vol. 68, 2014, pp. 1-26.

[3] Bonnal, C., Ruault, J. M., and Desjean, M. C., “Active debris removal: Recent progress and

current trends”, Acta Astronautica, Vol. 85, 2013, pp. 51-60.

[4] Opromolla, R., Fasano, G., Rufino, G., and Grassi, M., “A review of cooperative and

uncooperative spacecraft pose determination techniques for close-proximity operations,”

Progress in Aerospace Sciences, Vol. 93, 2017, pp. 53-72.

[5] D’Amico, S., Benn, M., and Jørgensen, J. L., “Pose estimation of an uncooperative

spacecraft from actual space imagery,” International Journal of Space Science and

Engineering, Vol. 2, No. 2, 2014, pp. 171-189.

[6] Yu, F., He, Z., Qiao, B., and Yu, X., “Stereo-Vision-Based Relative Pose Estimation for the

Rendezvous and Docking of Noncooperative Satellites,” Mathematical Problems in

Engineering, Vol. 2014, No. 1, 2014, pp. 1-12.

[7] Pyrak, M., and Anderson, J., “Performance of Northrop Grumman’s Mission Extension

Vehicle (MEV) RPO imagers at GEO,” Autonomous Systems: Sensors, Processing and Security

for Ground, Air, Sea and Space Vehicles and Infrastructure 2022, Vol. 12115, 2022, pp. 64-

82.

[8] English, C., Zhu, S., Smith, C., Ruel, S., and Christie, I., “TriDAR: A hybrid sensor for

exploiting the complimentary nature of triangulation and LIDAR technologies,” Proceedings

of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in

Space, Vol. 1, 2005.

[9] Christian, J., and Cryan, S., “A Survey of LIDAR Technology and its Use in Spacecraft

Relative Navigation,” AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.

125

[10] Opromolla, R., Fasano, G., Rufino, G., and Grassi, M, “A Model-Based 3D Template

Matching Technique for Pose Acquisition of an Uncooperative Space Object,” Sensors, Vol.

15, No. 3, 2015, pp. 6360-6382.

[11] Li, L., Wang, R., and Zhang, X., “A Tutorial Review on Point Cloud Registrations:

Principle, Classification, Comparison, and Technology Challenges,” Mathematical Problems

in Engineering, Vol. 2021, 2021.

[12] Monji-Azad, S., Hesser, J., and Löw, N., “A review of non-rigid transformations and

learning-based 3D point cloud registration methods,” ISPRS Journal of Photogrammetry and

Remote Sensing, Vol. 196, 2023, pp. 58-72.

[13] Yang, J., Li, H., Campbell, D., and Jia, Y., “Go-ICP: A Globally Optimal Solution to 3D

ICP Point-Set Registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 38, No. 11, 2016, pp. 2241-2254.

[14] Myronenko, A., and Song, X., “Point Set Registration: Coherent Point Drift,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 12, 2010, pp. 2262-

2275.

[15] Biber, P., and Strasser, W., “The normal distributions transform: a new approach to laser

scan matching,” Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2003), Vol. 3, 2003, pp. 2743-2748.

[16] Lamdan, Y., and Wolfson, H. J., “Geometric Hashing: A General And Efficient Model-

based Recognition Scheme,” [1988 Proceedings] Second International Conference on

Computer Vision, 1988, pp. 238-249.

[17] Prokudin, S., Lassner, C., and Romero, J., “Efficient Learning on Point Clouds with Basis

Point Sets,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp.

4331–4340.

[18] Ruel, S., Luu, T., Anctil, M., and Gagnon, S., “Target Localization from 3D data for On-

Orbit Autonomous Rendezvous & Docking,” 2008 IEEE Aerospace Conference, 2008, pp. 1-

11.

126

[19] Yin, F., Chou, W., Wu, Y., Yang, G., and Xu, S., “Sparse Unorganized Point Cloud Based

Relative Pose Estimation for Uncooperative Space Target,” Sensors, Vol. 18, No. 4, 1009,

2018.

[20] Wahl, E., Hillenbrand, U., and Hirzinger, G., “Surflet-pair-relation histograms: a statistical

3D-shape representation for rapid classification,” Fourth International Conference on 3-D

Digital Imaging and Modeling, 2003, pp. 474-481.

[21] Rusu, R. B., Márton, Z., Blodow, N., and Beetz, M., “Persistent Point Feature Histograms

for 3D Point Clouds,” Proceedings of the 10th International Conference on Intelligent

Autonomous Systems (IAS-10), 2008, pp. 119-128.

[22] Rusu, R. B., Blodow, N., and Beetz, M, “Fast Point Feature Histograms (FPFH) for 3D

registration,” 2009 IEEE International Conference on Robotics and Automation, 2009, pp.

3212-3217.

[23] Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R. B., and Bradski,

G., “CAD-model recognition and 6DOF pose estimation using 3D cues,” 2011 IEEE

International Conference on Computer Vision Workshops (ICCV Workshops), 2011, pp. 585-

592.

[24] Aldoma, A., Tombari, F., Rusu, R. B., and Vincze, M., “OUR-CVFH -- Oriented, Unique

and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose

Estimation,” Pattern Recognition, 2012, pp. 113-122.

[25] Opromolla, R., Fasano, G., Rufino, G., and Grassi, M, “Uncooperative pose estimation

with a LIDAR-based system,” Acta Astronautica, Vol. 110, 2015, pp. 287-297.

[26] Nocerino, A., Saggiomo, F., Piatti, S., Fasano, G., Grassi, M., Opromolla, R., and Schmitt,

C., “Numerical and Experimental Validation of LIDAR-based Template Matching Algorithms

for Non- Cooperative Spacecraft Pose Initialization,” 2023, pp. 1-20.

[27] Guo, W., Hu, W., Liu, C., and Lu, T., “Pose Initialization of Uncooperative Spacecraft by

Template Matching with Sparse Point Cloud,” Journal of Guidance, Control, and Dynamics,

Vol. 44, No. 9, 2021, pp. 1707-1720.

127

[28] Opromolla, R., Fasano, G., Rufino, G., and Grassi, M, “Pose Estimation for Spacecraft

Relative Navigation Using Model-Based Algorithms,” IEEE Transactions on Aerospace and

Electronic Systems, Vol. 53, No. 1, 2017, pp. 431-447.

[29] Barequet, G., “8 - Geometric Hashing and Its Applications,” Database and Data

Communication Network Systems, 2002, pp. 277-287.

[30] Verreault, S., Laurendeau, D., and Bergevin, R., “Pose determination for an object in a 3-

D image using geometric hashing and the interpretation tree,” Proceedings of Canadian

Conference on Electrical and Computer Engineering, Vol. 2, 1993, pp. 755-758.

[31] Li-Chee-Ming, J., and Armenakis, C., “Feasibility Study for Pose Estimation of Small

UAS in Known 3D Environment Using Geometric Hashing,” Photogrammetric Engineering

and Remote Sensing, Vol. 80, 2014, pp. 1117-1128.

[32] Fischler, M. A., and Bolles, R. C., “Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography,” Readings in

Computer Vision, 1987, pp. 726-740.

[33] Wei, L., Hongtai, C., and Zhang, X., “Efficient 3D Object Recognition from Cluttered

Point Cloud,” Sensors, Vol. 21, No. 17, 5850, 2021.

[34] Zhou, Q. Y., Park, J., and Koltun, V., “Fast Global Registration,” Computer Vision - ECCV

2016, 2016, pp. 766–782.

[35] Black, M. J., Rangarajan, A., “On the unification of line processes, outlier rejection, and

robust statistics with applications in early vision,” International Journal of Computer Vision,

Vol. 19, No. 1, 1996, pp. 57-91.

[36] Shlens, J., “A Tutorial on Principal Component Analysis,” ArXiv, Vol. abs/1404.1100,

2014.

[37] Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J., “Fast 3D recognition and pose using

the Viewpoint Feature Histogram,” 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010, pp. 2155-2162.

128

[38] Rhodes, A., Kim, E., Christian, J. A., and Evans, T., “LIDAR-based Relative Navigation

of Non-Cooperative Objects Using Point Cloud Descriptors,” AIAA/AAS Astrodynamics

Specialist Conference, 2016.

[39] Rhodes, A., Christian, J. A., and Evans, T., “A Concise Guide to Feature Histograms with

Applications to LIDAR-Based Spacecraft Relative Navigation,” The Journal of the

Astronautical Sciences, Vol. 64, 2017, pp. 414–445.

[40] Rusinkiewicz, S., and Levoy, M., “Efficient variants of the ICP algorithm,” Proceedings

Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp. 145-152.

[41] Birdal, T., and Ilic, S., “Point Pair Features Based Object Detection and Pose Estimation

Revisited,” 2015 International Conference on 3D Vision, 2015, pp. 527-535.

[42] Hinterstoisser, S., Lepetit, V., Rajkumar, N., and Konolige, K., “Going Further with Point

Pair Features,” Computer Vision – ECCV 2016, 2016, pp. 834–848.

[43] Vidal, J., Lin, C. Y., and Martí, R., “6D Pose Estimation using an Improved Method based

on Point Pair Features,” 2018 4th International Conference on Control, Automation and

Robotics (ICCAR), 2018, pp. 405-409.

[44] Artigas, J., De Stefano, M., Rackl, W., Lampariello, R., Brunner, B., Bertleff, W., Burger,

R., Porges, O., Giordano, A., Borst, C., and Albu-Schaeffer, A., “The OOS-SIM: An on-ground

simulation facility for on-orbit servicing robotic operations,” 2015 IEEE International

Conference on Robotics and Automation (ICRA), 2015, pp. 2854-2860.

[45] Shoemake, K., “III.6 - UNIFORM RANDOM ROTATIONS,” Graphics Gems III (IBM

Version), 1992, pp. 124-132.

[46] Zhou, Q. Y., Park, J., and Koltun, V., "Open3D: A Modern Library for 3D Data

Processing", ArXiv preprint arXiv:1801.09847, 2018.

[47] Moore, A., W., “An Intoductory Tutorial on Kd-trees Extract from Andrew Moore's Phd

Thesis: Eecient Memory-based L Earning for Robot Control,” 1991

[48] Ran, L., Wanggen, W., Yiyuan, Z., Libing, L., and Ximin, Z., “Normal estimation

algorithm for point cloud using KD-Tree,” IET International Conference on Smart and

Sustainable City 2013 (ICSSC 2013), 2013, pp. 334-337.

[49] Estimating Normals for Point Clouds - Point Cloud Utils.

https://fwilliams.info/point-cloud-utils/sections/point_cloud_normal_estimation/

129

[50] Arun, K. S., Huang, T. S., and Blostein, S. D., "Least-Squares Fitting of Two 3-D Point

Sets", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 5,

1987, pp. 698-700.

[51] Piccinin, M., and Hillenbrand, U., “Deep Learning-Based Pose Regression for Satellites:

Handling Orientation Ambiguities in LiDAR Data”, Journal of image and graphics - in print.

[52] Hodaň, T., Matas, J., and Obdržálek, Š., “On Evaluation of 6D Object Pose Estimation,”

Computer Vision – ECCV 2016 Workshops, 2016, pp. 606-619.

130

131

Acknowledgements

With these pages my master's degree comes to an end, an extraordinary adventure that I have

lived surrounded by many people who have supported me and without whom none of this would

have been possible, and therefore I would like to deeply thank them because they are part of

this goal.

On the Federico II side, I thank my supervisors, Professors Michele Grassi and Roberto

Opromolla, and my co-supervisor, Ing. Alessia Nocerino, for the great support provided to the

thesis work during my time at DLR, which, despite the distance, was absolutely indispensable.

Of course, I thank my co-supervisors of the DLR, Dr. Margherita Piccinin and Dr. Ulrich

Hillenbrand, for having always supported and assisted me throughout the thesis period in the

institute, analyzing and facing together all the difficulties encountered along the way with

enlightening advice and, therefore, guiding the work with enormous availability and

professionalism. I am grateful to have lived this experience with you because it has enriched

me a lot, from a professional and personal point of view, and represents a piece of my life that

I will remember with great happiness, for the satisfactions and teachings it left me.

I dedicate a deep and heartfelt thank you to my university classmates, for making these years

unforgettable. I thank Antonio Sodano and Giuseppe Puleo, friends I now seem to have known

for a lifetime, for the strength of the bond that has united us over the years. Thank you so much

for spending every year together. I thank Davide Albanese, Anton Matacera, Francesco

D'Antuono, Vittorio di Napoli, Gianluca Montuori, Simona Morra, Antonio Napolitano,

Vincenzo Lioncino, Antonio Russano, Luigi D'Arco, Alida Sanzari and Flavia Migliaccio.

Studying together was fun, but at the same time something highly instructive, since I had the

opportunity to learn a lot from each of you. Although I have known some a little less than

others, I have still had the opportunity to discover fantastic people who are now special to me;

You were all inspiring, super capable, determined, ambitious, always ready to lend a hand, I

really couldn't hope for a better company than yours. Thank you guys from the bottom of my

heart, thank you for being a piece of my life. I really hope that our paths will continue to

intertwine in the future.

132

Leaving the university sphere, I dedicate a special thanks to my "historical" friends and

companions of adventures and outings: Giuseppe, a friend from middle school and fellow

engineer, with whom I often engage in interesting university conversations, Christian, a friend

for several years, an extremely sharp person, with whom I talk about everything and towards

whom I hold the record of the longest voice message ever sent so far, Domenico and Lorenzo,

friends literally for a lifetime, since elementary school, so there is little to say, we practically

grew up together, and finally Lena, the most recent friend, a person of great kindness and

sensitivity. I thank you guys deeply, for helping me, practically all 5 years, to disconnect my

brain when necessary, not to think about my mountain of commitments, anxieties, for always

listening to my outbursts, for video calls during my stay in Germany to make me feel your

company. You are special companions and know that, even if perhaps unconsciously, you have

had a fundamental impact on me over the years, and for this I really thank you from the bottom

of my heart.

I thank Carolyn, whom I met by surprise in Germany during my thesis period! I have never

properly thanked you for the moral support you gave me during my stay in Germany, I deeply

appreciated your support and the outings together that helped me to disconnect a little from

thoughts at work.

I deeply thank all my relatives, my grandparents, my uncles and my cousins, for never missing

the opportunity to ask me about my university exams, about my path, and congratulate me on

the goals achieved. All the warmth you have given me during this period has been a great help

in spurring me on.

I thank Luca Mercurio who, in addition to being a great addition to our family, has contributed

to making the long afternoons of study more bearable with his contagious joy.

But last to thank I left the most important, my parents and my sister Francesca, my family. I

don't know where to start to thank you for everything you have done for me, simple words on

a thesis page are not enough to express all my gratitude to you. You have been next to me in

every moment, in the best moments, of happiness for the results achieved in the exams, living

together those moments of satisfaction, but above all in the worst moments, of crisis and stress,

always spending many words of support and showing all the possible and imaginable closeness,

living together those moments of suffering. In Germany I felt that I had always had you next to

133

me, with many calls, during every moment of the day, during breaks from work, during my free

moments and even during home activities! As simple and trivial as it may seem to you, I assure

you that for me it was not at all, because it helped me immensely to spend that period without

significantly missing home.

I dedicate these last lines to you. Simply Thank you. Thank you mom and dad, Thank you

Francesca, for being my point of reference, for being part of my soul.

Thanks for everything.

134

Ringraziamenti

Con queste pagine giunge al termine il mio percorso di laurea magistrale, un’avventura

straordinaria che ho vissuto circondato da molte persone che mi hanno sostenuto e senza i quali

nulla di tutto questo sarebbe stato possibile, e che dunque desidero profondamente ringraziare

perché parte di questo traguardo.

Ringrazio, dal lato della Federico II, i miei relatori, i Professori Michele Grassi e Roberto

Opromolla, e la mia correlatrice, l’Ing. Alessia Nocerino, per il grande sostegno fornito al

lavoro di tesi durante il mio periodo al DLR, il quale, nonostante la distanza, è stato

assolutamente indispensabile.

Un grazie va naturalmente ai miei correlatori del DLR, la Dr. Margherita Piccinin e il Dr. Ulrich

Hillenbrand, per avermi sempre supportato e assistito durante tutto il periodo di tesi in istituto,

analizzando e affrontando insieme tutte le difficoltà incontrate lungo il lavoro con consigli

illuminanti e, dunque, guidando il lavoro con enorme disponibilità e professionalità. Sono grato

di aver vissuto questa esperienza con voi perché mi ha arricchito moltissimo, dal punto di vista

professionale e personale, e rappresenta un tassello della mia vita che ricorderò con molta

felicità, per le soddisfazioni e gli insegnamenti che mi ha lasciato.

Dedico un profondo e sentito grazie ai miei compagni di università, per aver reso questi anni

indimenticabili. Ringrazio Antonio Sodano e Giuseppe Puleo, amici che ormai mi sembra di

conoscere da una vita, per la forza del legame che ci ha unito in questi anni. Grazie di cuore per

aver trascorso ogni anno insieme. Ringrazio Davide Albanese, Anton Matacera, Francesco

D’Antuono, Vittorio di Napoli, Gianluca Montuori, Simona Morra, Antonio Napolitano,

Vincenzo Lioncino, Antonio Russano, Luigi D’Arco, Alida Sanzari e Flavia Migliaccio.

Studiare insieme è stato uno spasso, ma allo stesso tempo qualcosa di fortemente istruttivo, dato

che da ciascuno di voi ho avuto modo di imparare moltissimo. Sebbene abbia conosciuto alcuni

un po’ meno di altri, ho comunque avuto modo di scoprire delle persone fantastiche e oramai

per me speciali; siete stati tutti d’ispirazione, super capaci, determinati, ambiziosi, sempre

pronti a dare una mano, davvero non potevo sperare in una compagnia migliore della vostra.

Grazie di cuore a tutti voi ragazzi, grazie di essere stati un pezzo della mia vita. Spero tanto che

le nostre strade continuino a intrecciarsi in futuro.

135

Uscendo dalla sfera universitaria, dedico un grazie speciale i miei amici “storici” e compagni

di avventure e uscite: Giuseppe, amico dalle medie e collega ingegnere, con cui spesso ingaggio

interessanti conversazioni universitarie, Christian, amico da diversi anni, persona estremamente

acuta, con cui parlo di tutto e nei confronti di cui detengo il record del messaggio vocale più

lungo mai inviato finora, Domenico e Lorenzo, amici letteralmente da una vita, dalle

elementari, quindi c’è poco da dire, siamo praticamente cresciuti insieme, e infine Lena, l’amica

più recente, una persona di grandissima gentilezza e sensibilità. Vi ringrazio profondamente

ragazzi, per avermi aiutato, praticamente tutti e 5 gli anni, a staccare il cervello quando

necessario, per non pensare alla mia montagna di impegni, alle ansie, per aver ascoltato sempre

i miei sfoghi, per le videochiamate durante la mia permanenza in Germania per farmi sentire la

vostra compagnia. Siete dei compagni speciali e sappiate che, anche se magari

inconsapevolmente, avete avuto un impatto fondamentale su di me in questi anni, e per questo

vi ringrazio davvero di cuore.

Ringrazio Carolyn, incontrata a sorpresa in Germania durante il mio periodo di tesi! Non ti ho

mai ringraziato a dovere per il sostegno morale che mi hai dato durante la mia permanenza in

Germania, ho profondamente apprezzato il tuo supporto e le uscite insieme che mi hanno aiutato

a staccare un po’ dai pensieri sul lavoro.

Ringrazio profondamente tutti i miei parenti, i miei nonni, i miei zii e i miei cugini, per non

aver mai perso l’occasione di chiedermi degli esami universitari, del mio percorso, e farmi i

complimenti per i traguardi raggiunti. Tutto il calore che mi avete dato in questo periodo è stato

di grandissimo aiuto per spronarmi.

Ringrazio Luca Mercurio che, oltre a essere una grande aggiunta alla nostra famiglia, ha

contribuito a rendere più sopportabili i lunghi pomeriggi di studio con la sua contagiosa allegria.

Ma per ultimi da ringraziare ho lasciato i più importanti, i miei genitori e mia sorella Francesca,

la mia famiglia. Non saprei da dove partire per ringraziarvi per tutto quello che avete fatto per

me, delle semplici parole in una pagina di tesi non sono sufficienti per esprimere tutta la mia

gratitudine nei vostri confronti. Siete stati accanto a me in ogni momento, nei momenti migliori,

di felicità per i risultati raggiunti agli esami, vivendo insieme quei momenti di soddisfazione,

ma soprattutto nei momenti peggiori, di crisi e stress, spendendo sempre tante parole di supporto

e mostrando tutta la vicinanza possibile e immaginabile, vivendo insieme quei momenti di

136

sofferenza. In Germania ho sentito di avervi sempre avuti affianco a me, con tantissime

chiamate, durante ogni istante della giornata, durante le pause da lavoro, durante i miei momenti

liberi e persino durante le attività casalinghe! Per quanto vi possa sembrare una cosa semplice

e banale, vi assicuro che per me non lo è stato affatto, perché mi ha immensamente aiutato a

trascorrere quel periodo senza sentire in maniera significativa la mancanza di casa.

Queste ultime righe le dedico a voi. Semplicemente Grazie. Grazie mamma e papà, Grazie

Francesca, per essere il mio punto di riferimento, per essere parte della mia anima.

Grazie di tutto.

