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Abstract
Computational fluid dynamics has become an important method for aerodynamic analysis, supplementing or
partially even substituting wind tunnel experiments or flight tests. A spatial discretization on so-called grids is
used to approximate a solution of the boundary-value problem of interest. In general, increasing the number
of degrees of freedom, the accuracy of the approximate solution improves, typically going hand-in-hand with
additional computational complexity. Consequently, conducting a rigorous amount of accurate simulations, as
for example for a complete flight envelope, is possibly infeasible. Thus, there is a need for novel approaches
to reduce the overall numerical cost to allow for faster and inexpensive design process iterations. This work
shows how machine learning methods can be employed as a post-processing tool to improve the accuracy of
comparably inexpensive low-fidelity results, including coarse grid finite volume and low-order discontinuous
Galerkin simulations. It is shown that using two different regression models, a random forest and a graph
neural network, inaccurate simulations can be corrected to approximate the high-fidelity simulation projected
to the low-fidelity discretization. Improved flow fields are obtained as well as improvements in pressure and lift
coefficient. A main limitation of the method involves the loss of accuracy due to projection, resulting in less
significant corrections of velocity gradient dependent values, such as friction and drag coefficient. Independent of
the chosen discretization, be it finite volume or discontinuous Galerkin, results show possibilities and drawbacks
of applying data-driven methods to correct low-fidelity simulations. It is anticipated that the proposed method
can be used to quickly iterate over simulations conducted within a chosen design space, which could entail a given
flight envelope. Furthermore, this work is a promising baseline for further research, including the correction of
unsteady simulations and the use of a machine learning based error indicator for refinement strategies.
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NOMENCLATURE

Abbreviations

CFD Computational Fluid Dynamics

DG Discontinuous Galerkin

DoFs Degrees of Freedom

FV Finite Volume

GNN Graph Neural Network

ML Machine Learning

RF Random Forest

1. INTRODUCTION

Computational fluid dynamics (CFD) has become an
important method for aerodynamic analysis in the
aerospace industry, allowing insights into complex
fluid phenomena for analysis or optimization tasks.

Even if CFD supplements or partially even substitutes
wind tunnel experiments or flight tests, conducting full
scale simulations is still computationally demanding.
Currently, second order Finite Volume (FV) is the in-
dustrial standard in terms of spatial discretization to
solve for the equations of interest for fluid problems [1].
Another method which receives more attention from
academia than from industry is the so-called Discon-
tinuous Galerkin (DG) method [2]. Both methods re-
quire the design of a grid on which the equations are
discretized. Accurate results with FV are achieved
by refinement of these grids. Thus, it is common
to have grids with several hundred million elements
and Degrees of Freedom (DoFs). With DG, a solu-
tion is approximated as a piece-wise polynomial per
grid element. Thus, different levels of accuracy can
be achieved on the same grid by increasing the poly-
nomial degree. Nevertheless, for both FV and DG,
the computational cost increases significantly with a
higher number of DoFs and improved accuracy. For a
laminar flow around a NACA0012 airfoil this effect is

1



(a) FV: number of DoFs increases with elements in the grid

(b) DG: number of DoFs increases with polynomial degree

FIG 1. Cost and accuracy versus DoFs using FV and DG

presented in figure 1 for FV and DG: increasing the
number of elements for FV or the polynomial degree
for DG leads to a more accurate lift coefficient approx-
imating the reference value [3]. Obviously, the compu-
tational time does not scale linearly with the number
of DoFs. Though only shown exemplary, this effect
can be observed for other test cases [4–6]. Thus, it is
necessary to investigate novel approaches to improve
these methods to enable faster and computationally
less expensive design process iterations. Many meth-
ods aim to decrease the computational cost of high-
fidelity and accurate simulations, as obtained by FV
on fine grids or by DG with a high polynomial de-
gree. Such approaches include multi-grid methods [7]
and adaptive refinement of the grid and of the poly-
nomial degree [8,9]. Still, for 3-D industrial test cases,
so far none of the developed methods show in general
a linear scaling of the computational complexity with
respect to the number of DoFs. As a consequence, in
addition to improve algorithms as the ones previously
mentioned, this work explores the possible use of Ma-
chine Learning techniques to improve the accuracy of
low-fidelity discretizations, such as coarse grid FV or
low-order DG simulations, while preserving their low
simulation costs. This has recently been the aim of
many data-driven approaches, where the core idea is
to inject high-fidelity information into the low-fidelity
solution by a Machine Learning (ML) trained model.
For instance, a neural network has been trained to pre-
dict corrected drag forces for coarse grid fluid-particle
interactions in [10]. The authors achieved improved

results across varying metrics, including the run-off
distance of particles. [11] directly corrects the error re-
sulting from the coarse grid discretization, e.g. the dis-
cretization error, of FV simulations. Two different ML
models, a random forest and a neural network, were
trained to predict the element-wise correction based
on local flow features for a 3-D flow in a lid-driven
cavity. This approach was adopted by [12], where a
random forest was used to correct the flow around a
bluff-body in an enclosed duct, computed on coarse
grids. Similarly, [13] employ a neural network to cor-
rect coarse grid induced errors of mixing flows inside
spinner flask bioreactors. While limitations were en-
countered regarding the generalization capabilities of
the trained models, all three studies report reduced
errors while increasing computational efficiency com-
pared to the fine grid counterpart simulation. For DG
simulations, similar work has been conducted to in-
crease the efficiency of unsteady simulations. DoFs of
low-order DG simulations for the 1-D Burgers’ equa-
tion [14] and the 3-D Navier-Stokes equations for the
Taylor Green Vortex problem [15] were corrected by
employing a neural network, aiming to approximate
the filtered high-order simulation.
This work extends the approach proposed in [11]
to the turbulent flow around an RAE2822 airfoil
for coarse grid FV, as initially explored in [16], and
low-order DG simulations. For all CFD computations,
the Reynolds Averaged Navier-Stokes equations with
Spalart-Allmaras turbulence model are employed and
data is generated by varying Mach number and angle
of attack. Two ML models are explored: a random
forest and a graph neural network, with latter being a
natural choice for graph structured data, which is the
case for simulations obtained on grids.
This paper is structured as follows: section 2 describes
the methodology to correct coarse grid FV simulations,
followed by the correction approach for low-order DG
simulations. Then, random forest, graph neural net-
work, and the selected model input features are pre-
sented. Section 3 discusses the choice of design space
for sample generation, the ML training and the ML
corrected solutions, before closing with a conclusion
in section 4.

2. METHODOLOGY

Let u be the unknown function and ũ an approximate
solution of the discretized problem. This work con-
siders the residual R(ũ) = 0, where R corresponds to
a boundary value problem of the Reynolds Averaged
Navier-Stokes equations [4, 17].

2.1. Correction of Coarse Grid FV Simulations

Denoting the coarse and fine grids with subscript c and
f , respectively, the variables of interest on each grid
become ũc and ũf . For the FV study of this work, the
goal is to quantify and learn the discretization error on
the coarse grid. Thus, a fine-to-coarse mapping oper-
ator Icf is introduced, such that the fine grid solution
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ũf is projected to the coarse grid discretization:

(1) ũI,c = Icf (ũf )

Subsequently, the error ∆ũ can be formulated as:

(2) ∆ũ = ũI,c − ũc

After the ML training, the model returns a prediction
∆û of the true error ∆ũ. This prediction is used to
correct coarse grid simulations unseen during the ML
training to approximate the projected fine grid solu-
tion on the coarse grid discretization:

(3) ũc +∆û ≈ ũI,c

For the FV simulations, the DLR CFD solver TAU is
employed [4], which uses a vertex-based data structure.
The coarse and fine C-type grids for this study consist
of 1’280 and 327’680 elements, respectively, and are
shown in figure 2, while the number of DoFs per equa-
tion are reported in table 1. A detailed study for the
complete grid sequence can be found in [18]. Since
these grids are nested, injection can be used as map-
ping operator Icf , which takes for each coarse grid node
the value of the corresponding fine grid node. The
variables of interest to be corrected include density,
velocity, and pressure, such that u = [ρ, Ux, Uz, p]

T .

(a) Fine grid for the FV study

(b) Coarse grid for the FV study

FIG 2. Fine and coarse grid used for the FV study

Coarse Fine
1’368 329’088

TAB 1. Degrees of freedom per equation for FV study

2.2. Correction of Low-Order DG Simulations

Employing a DG discretization with orthonomal basis
function, the numerical solution ũ is expressed in each

element k as piecewise polynomial function:

(4) ũ =

N∑
i=1

aiψi

with a = [a1, . . . , aN ] being the unknowns of ũ at
each DoF in element k, ψ = [ψ1, . . . , ψN ] the basis
functions defined by a modified Gram-Schmidt proce-
dure [19], and N the number of DoFs per equation per
element. Denoting the low-order and high-order so-
lutions with subscript LO and HO, respectively, the
variables of interest are denoted as ũLO and ũHO with
their unknowns aLO and aHO and it is assumed that
NLO < NHO. To define the discretization error on the
low-order discretization, which is later to be learned by
the ML model, the high-order DoFs are truncated to
the low-order discretization, resulting in the truncated
solution ũT,LO:

(5) ũT,LO =

NLO∑
i=1

ai,HOψi

This results in an L2 projection, since the basis is hier-
archical and orthonormal. With the truncated DoFs,
the error is computed as:

(6) ∆ai = ai,HO − ai,LO

for 1 ≤ i ≤ NLO. Thus, with the ML predictions
∆â approximating the true error ∆a, the LO solution
can be corrected to approximate the truncated solu-
tion ũT,LO:

(7)
NLO∑
i=1

(ai,LO +∆âi)ψi ≈ ũT,LO.

For the DG simulations, the CFD software developed
by ONERA, DLR, Airbus (CODA) [17] is used, em-
ploying a cell-centered data structure. The variables
of interest include density, momentum, and total en-
ergy, such that u = [ρ,Mx,Mz, E]T . For both high-
and low-order simulations, the same C-type grid is em-
ployed with 2’464 quadratic elements, as given in fig-
ure 3. The accurate high-order solution is achieved us-
ing a polynomial degree of 2, whereas inaccurate sim-
ulation results are obtained using polynomial degrees
of 0 and 1. Here, only the results correcting low-order
of polynomial degree 0 are discussed. The number of
DoFs per equation are reported in table 2.

FIG 3. Grid used for the DG study
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Degree 0 Degree 2
2’464 17’248

TAB 2. Degrees of freedom per equation for the DG study

2.3. ML Model 1: Random Forest

A Random Forest (RF) model is used as a baseline
model for this study. Compared to graph neural net-
works, RFs are easy to train with few hyperparame-
ters needing adjustment to quickly obtain a well fitted
model. RF was first introduced by Breiman [20] and
is classified as an ensemble method, combining the re-
sults of a multitude of trained weak learners. For RF,
the weak learners are decision trees and the final pre-
diction result ŷ is the averaged output of all NDT de-
cision trees, where a single decision tree prediction is
based on the feature vector input xk, such that

(8) ŷ =
1

NDT

NDT∑
i=1

ŷi(xk)

2.4. ML Model 2: Graph Neural Network

The core principle of Graph Neural Networks (GNN)
is to update the initial vertex feature vector of the
currently considered vertex vk given as ht=0

k = xk to
a new node feature vector representation ht+1

k . This
update is dependent on the feature vector of the cur-
rent vertex at previous step ht

k, the vertex features
of all neighbouring vertices ht

j for all vj ∈ N(vk),
and if applicable any edge feature vectors ej,k for all
vj ∈ N(vk). This is done within three steps: the mes-
sage passing, the aggregation, and the final update of
the feature vector representation. During the message
passing, a function Mt is defined with parameters to
be optimized for during training. This function passes
neighbourhood information as a message mt+1

j,k from
each neighbour vertex vj to vertex vk, as given in equa-
tion 9. During the aggregation step, all messages re-
ceived from neighbouring vertices need to be combined
into the message mt+1

k . This aggregation function
⊕

is permutation-invariant and often consists of a sum
or mean, such that the final message is independent of
the number of neighbours or their indices. The general
aggregation function is given in equation 10. In the fi-
nal step, the feature vector representation of current
vertex vk is updated based on a function Ut, which
similarly to the message passing function consists of
parameters to be optimized for during training. The
update function Ut takes into account the previous fea-
ture vector ht

k and the aggregated message mt+1
k , as

given in equation 11. Combining these three steps of
message passing, aggregation and update, yields equa-
tion 12.

(9) mt+1
j,k =Mt(h

t
j ,h

t
k, ej,k)

(10) mt+1
k =

⊕
vj∈Nvk

mt+1
j,k

(11) ht+1
k = Ut(h

t
k,m

t+1
k )

(12) ht+1
k = Ut

ht
k,

⊕
vj∈Nvk

Mt(h
t
j ,h

t
k, ej,k)


For CFD simulations, the data is already represented
in a graph structure using the computational grid,
thus GNNs are easily applicable even with unstruc-
tured and three dimensional grids. The advantage of
using GNNs compared to the RF approach is that its
vertex-wise predictions are not only based on the cur-
rent vertex features, but also takes into account neigh-
bourhood information, and optionally also edge infor-
mation.

2.5. ML Input Features

For both FV and DG, each ML model predicts 4 out-
puts and receives 25 inputs per vertex or element.
For FV, the ML models predict for each vertex sepa-
rately one discretization error per variable of interest,
whereas for the DG study this is done for each element.
The input features are defined as the first and sec-
ond derivatives of the variables of interest, computed
by a weighted least squares approach, and a local cell
Reynolds number which is formulated using the local
velocity, wall distance dw and molecular viscosity ν, as
given in equation 13, where k denotes either vertex or
element.

(13) Rek =
|Uk|dw,k

νk

3. RESULTS

This section reports the sample points used for the
generation of the data set and the training of the ML
models, which is identical for FV and DG if not stated
differently. Then, results on the test set samples are
presented firstly for the FV study, followed by results
for the DG study. The section closes with a discussion
of possible limitations of the proposed methodology.

3.1. Design of Experiment and ML Training

For both FV and DG studies, steady-state simulations
are performed across Mach numbers 0.52 ≤M ≤ 0.82
and angles of attack 0.0 ≤ α ≤ 9.0, as depicted in
figure 4. For higher angles of attack, 30 points are
chosen using a Halton sampling, for lower angles of
attack additional 30 points are added using a Latin
Hypercube sampling. These 60 points make up the
train and validation set, whereas additional 29 samples
are added at Mach numbers 0.6 and 0.75 for testing of
the trained ML models, a strategy previously deployed
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in [16]. The average simulation wall clock times are
reported in table 3 and 4.
For the ML training, the training data is divided into
five folds. Only for the FV study, a 5-fold cross vali-
dation is used to find optimal hyperparameters, as re-
ported in [16]. For the DG study and both ML models,
the same hyperparameters found during the FV study
are employed. The hyperparameters used for the RF
are: 236 decision tree estimators, 12 features consid-
ered for each split, and no bootstrapping applied. For
the GNN, the found hyperparameters are 0.00162 for
the the initial learning rate, a gamma value of 0.995
for the exponential decay of the learning rate, 285 hid-
den channels with 9 graph convolutional layers [21],
Adam optimizer, and hyperbolic tangent as non-linear
layer. For the hyperparameter optimization, the Op-
tuna library [22] was employed, for the RF models the
scikit-learn library [23], and for GNN the SMARTy
library [24] with pytorch-geometric backend [25].

FIG 4. Design of Experiment for FV and DG

Coarse Fine
1 min 30 s 7 h

TAB 3. Average wall clock time for FV simulations

Degree 0 Degree 2
30 s 50 min

TAB 4. Average wall clock time for DG simulations

3.2. ML Corrected FV Solutions

Since the main aim of this study is to correct flow
fields, the first qualitative result presented is the per-
centage error of the pressure field before and after the
ML correction with respect to the fine grid solution
mapped onto the coarse grid discretization. Figure 5
depicts this error for test set at Mach 0.6 and angle
of attack 7.5°. At this high angle of attack, the er-
ror is mainly located at the developing shock location
around the leading edge on the suction side of the air-
foil. The RF correction reduces the error, whereas re-

maining larger errors are observed close to the airfoil
boundary. Using the GNN, the error is additionally
decreased.
It is of further interest to investigate how well quan-
tities derived from the corrected flow fields perform,
since quantitative values such as the pressure coeffi-
cient Cp and lift coefficient CL are of interest. Fig-
ure 6 shows Cp along the airfoil for Mach 0.75 and
angle of attack 5.0° for the coarse and fine grid sim-
ulations, as well as the derived Cp from the ML cor-
rected flow fields. The coarse grid simulation does not
capture the shock appropriately. On the other hand,
the RF corrected coarse grid solution better captures
the shock, but shows noisy behaviour along the suction
side, specifically towards the trailing edge of the air-
foil. With the GNN, the error is reduced significantly,
resulting in a smoother correction. Nevertheless, dis-
crepancies between corrected and fine grid solution re-
main close to the shock location.
Figure 7 depicts the lift coefficient for both test sets
at Mach 0.6 and Mach 0.75. Again, the coarse grid
simulation results deviate from the fine grid simula-
tion, more dominantly at high angles of attack, where
non-linearities, such as shocks, are encountered which
are not appropriately captured by the low-fidelity dis-
cretization. Both corrections, be it RF or GNN, in
general improve the lift coefficient, very well matching
the fine grid results at low angles of attack. At higher
angles of attack, the results slightly deviate, more so
for the RF correction.

(a) Coarse grid simulation

(b) Coarse grid simulation + RF correction

(c) Coarse grid simulation + GNN correction

FIG 5. Pressure error [%] for M=0.6 and α=7.5, FV
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FIG 6. Cp for M=0.75 and α=5.0, FV
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(a) Lift coefficient, test set M=0.6, FV
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(b) Lift coefficient, test set M=0.75, FV

FIG 7. Lift coefficient for both test sets, FV

3.3. ML Corrected DG Solutions

As for the FV study, the first qualitative results of in-
terest are the corrected fields. Figure 8 depicts the
density error of the low-order simulation compared to
the truncated high-order solution at Mach 0.6 and an-

gle of attack 7.5°. Again, the error is mainly located
at the developing shock location and both ML model
corrections reduce it, while the GNN corrects the error
more significantly. Differently to the FV correction,
the GNN corrected field exhibits greater errors close
to the boundary than the RF correction. This can be
seen in figure 8.
This behaviour is reflected in the evaluation of surface
related values, such as the pressure coefficient in fig-
ure 9. Although the GNN approximates the pressure
coefficient obtained by the high-order method well at
the developing shock location, it shows overall greater
discrepancies than the RF corrected solution, due to
the correction being less significant along the airfoil
boundary.
Looking at the resulting lift coefficients for both test
sets in figure 10, both ML models achieve good per-
formance for lower angles of attack. As for the previ-
ous FV study, the performance drops for high angles
of attack, where non-linear phenomena are dominant.
For the DG correction it can be concluded that the
RF correction results in overall better surface related
values, since the correction in the elements along the
boundary layer is better compared to the GNN model.

(a) Low-order simulation

(b) Low-order simulation + RF correction

(c) Low-order simulation + GNN correction

FIG 8. Density error [%] for M=0.6 and α=7.5, DG
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FIG 9. Cp for M=0.75 and α=5.0, DG

(a) Lift coefficient, test set M=0.6, DG

(b) Lift coefficient, test set M=0.75, DG

FIG 10. Lift coefficient for both test sets, DG

3.4. Limitations

For both discretization strategies, FV and DG, the
main limitation is the loss of accuracy after projec-
tion of the high-fidelity solution to the low-fidelity dis-
cretization space. For variables such as pressure and

lift coefficient, this is not relevant as shown in the pre-
vious result sections. This limitation is of relevance for
variables such as friction and drag coefficients, which
depend on velocity gradients. A possible explanation
is that these gradients might not be well resolved by
the respective low-fidelity discretization. This is shown
in figures 11 and 12, with the friction coefficient along
the airfoil surface for the FV study and the drag coef-
ficient for the DG study. It can be seen that with the
projection from fine to coarse grid and the truncation
of the higher polynomial degree only slight improve-
ments are achieved. Figures 11 and 12 furthermore
depict that the ML correction can at best only ap-
proximate these mapped or truncated solutions and
not the respective fine grid or high polynomial degree
solution. This, since the correction term is defined by
the projected solution or truncated degrees of freedom,
as given in equations 2 and 6, respectively.
Further drawbacks of the method, which are akin to
any data-driven method, are the need to generate high-
fidelity data for the training stage and the invested
time required to find optimal hyperparameters of the
ML models.

FIG 11. Cf for M=0.75 and α=5.0, FV

FIG 12. Drag coefficient, test set M=0.6, DG
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4. CONCLUSION

Because of computational costs, conducting a vast
amount of high-fidelity CFD simulations can be a
daunting task. Therefore, it is of interest to reduce
computational costs while maintaining a sufficient
amount of accuracy. This study presents a proce-
dure to quantify and learn discretization errors of
low-fidelity simulations, specifically between coarse
and fine grids for a FV discretization and between
different polynomial degrees for a DG discretization.
To demonstrate the proposed method, the 2-D turbu-
lent flow around an RAE2822 airfoil is employed. It
is shown that using a RF and a GNN model, the low-
fidelity flow fields can be corrected element- or vertex-
wise, such that the resulting lift and pressure coef-
ficient closely approximate the high-fidelity solution
results. Since the GNN model takes neighbourhood
information into account, it has shown better field cor-
rections than the RF model for both FV and DG study.
For the DG study though, the corrections close to the
boundary layer were less significant, resulting in bet-
ter lift and pressure coefficient using the RF model.
Limitations of the method are found at high angles of
attack, were the ML correction is less significant due
to non-linear phenomena. Additionally, defining the
error and thus the correction in terms of the mapped
or truncated high-fidelity simulation, leads to a loss of
accuracy which results in less significant corrections of
friction and drag coefficient.
Future work will include the extension of the method
to unsteady simulations and three dimensional DG
cases, since promising results have been found for three
dimensional FV problems in [16]. Additionally, for
DG, it is of interest to investigate the corrective capa-
bilities for polynomial degree greater than 0. Using the
hyperparameters found during the FV study for the
RF in the DG study showed satisfying results, whereas
it can be expected that conducting a separate hyper-
parameter optimization study for the GNN could im-
prove the results along the airfoil boundary. Further-
more, an interesting avenue would be to use the ML
predictions not as correction, but as an error indica-
tor for either h- or p-refinement. A direct comparison
of the method between FV and DG is not conducted
in this work, since the employed solvers, variables of
interest, grids and number of degrees of freedom do
not match. Such a comparative study matching these
criteria would be of interest for further investigations.
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