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Abstract The rapid advancements in quantum computing necessitate a scientific
and rigorous approach to the construction of a corresponding software ecosystem,
a topic underexplored and primed for systematic investigation. This chapter takes
an important step in this direction. It presents scientific considerations essential for
building a quantum software ecosystem that makes quantum computing available
for scientific and industrial problem-solving. Central to this discourse is the concept
of hardware–software co-design, which fosters a bidirectional feedback loop from
the application layer at the top of the software stack down to the hardware.
This approach begins with compilers and low-level software that are specifically
designed to align with the unique specifications and constraints of the quantum
processor, proceeds with algorithms developed with a clear understanding of
underlying hardware and computational model features, and extends to applica-
tions that effectively leverage the capabilities to achieve a quantum advantage.
We analyze the ecosystem from two critical perspectives: the conceptual view,
focusing on theoretical foundations, and the technical infrastructure, addressing
practical implementations around real quantum devices necessary for a functional
ecosystem. This approach ensures that the focus is toward promising applications
with optimized algorithm–circuit synergy, while ensuring a user-friendly design, an
effective data management, and an overall orchestration. This chapter thus offers a
guide to the essential concepts and practical strategies necessary for developing a
scientifically grounded quantum software ecosystem.
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1 Introduction

Over the past few decades, quantum computing has steadily garnered attention
owing to its potentially transformative applications in various fields including
cryptography [1], material science [2], linear algebra [3], and combinatorial
optimization [4], among others. The possibility to vastly improve computational
efficiencies in solving certain classes of problems, compared to classical computers,
has driven significant interest and investment in quantum computing technologies
from both the scientific community and industry.

In recent years the field has reached a new level of maturity, characterized by
the development of more stable qubit systems and increased gate fidelities [5].
The emergence of quantum hardware platforms from academia and industry has
underlined the significant strides made in this direction, creating a foundation for
more advanced research and practical explorations in quantum computing [6].
However, it must be acknowledged that while substantial, these advancements are
but the precursors to a fully fault-tolerant quantum computing potential.

Despite the progress, the current era of noisy intermediate-scale quantum (NISQ)
devices [7] presents significant challenges, including limited qubit connectivity, low
coherence times, and gate cross-talk. Moreover, the reliable physical fabrication
of these devices, especially on an industrial scale, involves considerable hurdles:
ensuring the purity of materials, achieving the precise alignment of nanostructures,
and maintaining the ultra-low temperatures necessary for operation present ongoing
challenges. Another problem is our limited understanding concerning the underlying
principles of quantum algorithms, with a yet limited selection of algorithmic build-
ing blocks available, like the quantum Fourier transformation and the amplitude
amplification. The development of a diverse and comprehensive portfolio of high-
level algorithms is central to advancing the quantum computing field.

These factors naturally lead to the question: What is necessary to advance the
field of quantum algorithms and how can we obtain meaningful results from these
near-term quantum devices given the existing limitations? It is evident that, in the
NISQ era, the fruitful utilization of quantum devices necessitates approaches that
can effectively navigate the noise and errors inherent to current hardware.

In answer to this central question, we propose the necessity of creating an
ecosystem that uses an interdisciplinary approach grounded in the principle of
hardware–software co-design. This ecosystem requires the systematic development
in software encompassing applications, algorithms, and compilers, and a robust
technical infrastructure that is precisely aligned with the intricacies of existing and
swiftly advancing quantum hardware. By establishing a framework where software
development is intricately linked with hardware evolution, we aim to maximize the
utility of quantum computing in its current NISQ stage and beyond. This approach
does not exclude but rather complements hardware-agnostic abstractions that allow
for more generic software development independently of the specific hardware.

In our view, a quantum software ecosystem comprehends all aspects in and
around software designed for quantum computers, e.g., novel quantum algorithms



Quantum Software Ecosystem Design 145

designed for specific devices, optimized compilers, pre- and post-processing tools
for results from quantum computations, and the technical integration into existing
high-performance computing (HPC) environments. It includes the whole path from
user perspective over access to actual hardware and, reversely, from the embedded
hardware access to the general availability for different end users.

In this review we first describe a potential vision, how such a quantum software
ecosystem interfaces with the potential end users and with the quantum hardware,
in Sect. 2. We then analyze the requirements for an efficient ecosystem from the
conceptual view, focusing on abstract requirements and methods, in Sect. 3. In
Sect. 4 we are concerned with the technical implementation of such an ecosystem,
and finally in Sect. 5 we give a concise conclusion and an outlook for the potential
of such a scientifically constructed software ecosystem.

2 Quantum Computing Perspective

Future applications of quantum algorithms have the potential to provide novel
efficient solutions in various sectors. This includes breakthroughs in material
science, such as new superconductors or ultrafast memory, solutions for industrial
size planning problems, applications in cryptography, or the design of new and
more efficient drugs. In the following section we describe how a quantum software
ecosystem supports these aims, by interfacing the applications with the quantum
devices in a comprehensive and user-centered way.

2.1 Achieving the Vision Through the Quantum Software
Ecosystem

As quantum computers continue to develop, it is plausible to predict a scenario
where stakeholders, from academic researchers to industrial partners, gain access
to quantum computational capabilities through cloud platforms. While such cloud
access to quantum devices is already available for a limited number of platforms,
the process is not yet streamlined and has various drawbacks due to the quantum
device imperfections. However, such cloud-based access simplifies the challenges
associated with operating and using quantum hardware, making it more feasible for
a wider range of users.

At the heart of such a scenario, specialized quantum algorithms, devised by
algorithmic developers, will be processed. In order to make these algorithms
compatible with quantum hardware, specialized compilers, developed by experts
in quantum software, will be crucial. These compilers will be responsible for
translating high-level quantum logic into specific instructions, tailored for the
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distinct hardware platforms created by quantum hardware designers. Facilitating
this process is the core responsibility of the quantum software ecosystem.

Furthermore, an integral component of this ecosystem will be the integration of
quantum computers with classical systems. Fast embedded classical computers will
process quantum-classical feedback algorithms within the coherence time of the
quantum computer, especially those related to error correction. Additionally, HPC
frameworks will be instrumental for algorithms that use parameterized quantum
circuits, as these often require intensive computations to optimize parameters in
tandem with quantum processors.

Another component shaping this ecosystem is the principle of hardware–software
co-design. In this paradigm, not only is software adapted to optimally exploit the
capabilities of the underlying quantum hardware, but the design of future quantum
processors is also influenced by application-driven requirements. This bidirectional
feedback ensures that hardware evolution remains attuned to the practical needs and
challenges posed by real-world quantum applications. By closely intertwining the
development processes of both hardware and software, the co-design approach seeks
to accelerate the maturation and optimization of the quantum computing landscape.

After the computations are completed, users will receive their results via the
same cloud interface. This closed-loop system aims to streamline the process of
quantum computing, from input to result retrieval, while maximizing efficiency
and user accessibility. The sustainability and success of this vision are inherently
tied to the collaborative effort between quantum algorithm developers, compiler
specialists, hardware builders, software engineers, and the users themselves.

2.2 Interested Parties and Their Requirements

Research and development in Quantum computing (QC) have accelerated dramat-
ically in recent years. Due to its potential, efforts in QC have attracted different
parties. They are classified as primary and secondary stakeholders. Primary stake-
holders are stakeholders that directly contribute to the development of quantum
computing as shown in Fig. 1.

1. End users: End users are individuals or organizations from different fields
that use or adopt QC for various purposes, e.g., to speed up simulations for
electric car batteries, to predict financial risk in insurance companies, or to
optimize antenna patterns in radar technology. They are influenced by design
and functionality features provided by the QC software researchers and the QC
hardware developers. End users’ expectations, values, and requirements must be
considered to guarantee that the technology is effective and benefits them. The
end users may not know how to write the algorithm and formulate the problem
as a quantum program, but they can express it mathematically and are capable of
post-processing the result of the computation as shown on the left panel of Fig. 1.
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Fig. 1 Schematic diagram of the workflow and the stakeholders that directly use and develop
quantum computing technologies

2. Researchers and developers: They are individuals and organizations that are
directly involved in the development of and research on QC. Currently, research
institutes and universities are the primary sources of this group, but also more
and more large companies and start-ups participate in the development of QC.
These vendors contribute significantly to the advancement of QC, for example,
by developing hardware and software packages for industry and research insti-
tutions. Their role is shown on the right panel of Fig. 1 and includes algorithmic
problem descriptions, compilation, software, and hardware development, such
that the produced results can be post-processed and returned back to the end
users. Hence, their work influences the design and development of technology;
at the same time they must align with the goals of other stakeholders.

(a) Software developers: These include private companies or research insti-
tutions that develop novel quantum algorithms, compilation schemes, and
software interfaces between algorithmic solutions and hardware for QC.
They also explore novel quantum computing architectures and investigate
promising use cases for QC. Due to the noisy nature of current devices, the
development has to take the low-level hardware properties into account to
ensure optimal algorithm execution leading to unique design paradigms. In
this context, it is important to have a clear and precise understanding of the
performance of components and of the impact of physical quantum noise,
which can be characterized by low-level benchmarks.

(b) Hardware designers: The development of physical quantum computers is
crucial. In many cases, hardware advancement is the bottleneck in the field of
QC. Quantum computers are particularly sensitive to noise and errors caused
by interactions with their surroundings. This can lead to an accumulation
of errors, lowering computation quality. Thus, improving the fidelity of the
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hardware operations is critical, even though noise can be tackled to some
extent in software as well (see Sect. 3.7). Hardware manufacturers have a
natural interest in making their devices available to a wide range of users.
Some QC hardware is developed by private companies which might restrict
information about the implementation details and restrict access to low-level
control features, a fact that needs to be considered when developing software
at the lower layers of the QC stack.

Secondary stakeholders are interested parties who can influence the future of QC
but contribute indirectly to the workflow in Fig. 1.

1. Suppliers: They provide the necessary equipment and spare parts to build
QC hardware. These stakeholders should consider requests from researchers
and developers, whose involvement can shape the design and availability of
technology. Semiconductor and chip manufacturers are two examples of this
stakeholder group. The term “enabling technologies” is used in the context of QC
to denote the development of products and enhanced manufacturing techniques
that are not directly related to QC itself but will facilitate breakthroughs in QC
and other fields. Therefore the suppliers play a crucial role in advancing the
ecosystem.

2. Regulators and policymakers: They are responsible for the community’s well-
being and ensure that the developed technology boosts innovation. These
governmental entities are also responsible for ensuring that QC aligns with
society’s values and needs, for example by motivating the development of QC
to strengthen the economy and industrial advancement. Hence, they create laws
and regulations for the development and use of QC. In many situations, they
provide state funding for research and development and encourage enterprises to
foster the growth of QC.

3. Investors: These are private funding sources that support research and develop-
ment of QC. Investors are interested in the development of QC and expect a
return on investment in the future. Investment in QC has increased significantly
from US$93.5 million in 2015 to US$1.02 billion in 2021 globally [8].
Most investments are made for hardware, but there are also deals for software
promising potential applications in the future.

4. Media: Media also play a significant role in the advancement of QC technology.
They shape public opinion, hence raising awareness of QC development and
its impact on society. They also convey the basic principles of this technology
to the general public. Not only the potential, but also the growth of research,
technology, startups, and investment is communicated through media.

Only the collaborative effort between all of these stakeholders will enable
quantum computing to be established as a well-founded technology, where the
quantum software ecosystem should support the communication and form the
baseline for further advancements.
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3 Conceptual View

In this section, we examine the quantum software ecosystem from a more theoretical
viewpoint, focusing on conceptually important ideas and abstracted QC concepts,
which are the main area of scientific research on QC. This conceptual view includes
various topics, as shown in Fig. 2.

At the top of this “stack,” i.e., on the side of the user, is the application or problem
that needs to be solved, and on the bottom of the stack lies the hardware that executes
the necessary QC steps. Those ends are connected by the software, including various
algorithms and compilation schemes. In order to attain the correct results, it is
necessary to handle the noise-induced errors emerging during the computation,
which requires accurate error models for the hardware. One major challenge is the
verification of the various parts of this stack. In the following, we look at each part
of this stack and its role in the quantum software ecosystem.

3.1 Computational Paradigms

The development of a functional quantum computer is a central research goal these
days. There exist different paradigms on how such a machine could look even on a
conceptual level. In this section, we first review the basic principles of quantum
mechanics on which all these quantum computing paradigms rely. Afterwards,
we discuss the most prominent ones, namely the gate-based model and adiabatic
quantum computation. Finally, we briefly mention a few alternatives.

3.1.1 Foundations of Quantum Computing

In this section, we outline the phenomenology that builds the foundation of QC
without elucidating the rich mathematical framework of quantum mechanics that
can be found in many textbooks [9, 10].

A quantum bit, or qubit for short, is a direct generalization of a classical bit
with two additional, inherently quantum-mechanical properties: superposition and
entanglement with other qubits. While a classical bit can only take one of the
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two states 0 and 1, a qubit can be in a superposition of both at the same time.
Mathematically, the state of a single qubit can be expressed as

.|ψ〉 = a|0〉 + b|1〉, (1)

where .|0〉 and .|1〉 denote the computational basis states written in Dirac notation
that is convenient in quantum mechanics and a and b are complex numbers with
.|a|2 + |b|2 = 1. The probability of measuring the state .|0〉, i.e., a bit 0, is given
by .|a|2 and analogously for .|1〉 by .|b|2. After measurement, the state of the qubit
collapses to only the parts in agreement with the measurement outcome, i.e., .|ψ0〉 =
|0〉 or .|ψ1〉 = |1〉.

Since a and b are complex numbers, they each contain a phase (.a = |a|eiϕa ). In
quantum mechanics, only the phase difference .ϕ = ϕb − ϕa is relevant; hence the
single-qubit state can be fully expressed by one probability and the relative phase,
or equally by two angles. Thus, any single-qubit state can be visualized as a unit
vector

.|ψ〉 =
⎛
⎝
sin (θ) cos (ϕ)

sin (θ) sin (ϕ)

cos (θ)

⎞
⎠ (2)

on the Bloch sphere, which is depicted in Fig. 3. This visualization is also useful
to understand the concept of the computational basis: any two opposite points on
the Bloch sphere can be chosen as the computational basis states .|0〉 and .|1〉 and
changing the basis is equivalent to rotating the qubit state.

A superposition state needs to be initialized using classical information and
after performing a measurement collapses to one of these two states, i.e., back to
a classical bit. Therefore, the input and output are always restricted to classical
bits, but during the computation the full space of superpositions can be exploited.
It needs to be stressed that while a register of N classical bits can describe one
of .2N different states at a time, an N -qubit register can describe any state in a

Fig. 3 Visualization of an
arbitrary qubit state called the
Bloch sphere. The
computational basis states .|0〉
and .|1〉 are mapped to the
north pole and the south pole
respectively. A general state
.|ψ〉 is fully determined by the
angles .θ and .ϕ. Any quantum
gate on a single qubit
corresponds to a rotation of
the state on that sphere.
Graphic taken from [11]
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continuous region of a .2N -dimensional vector space. As a consequence, qubits are
tremendously more expressive than bits. Since each measurement can change the
qubit state .|ψ〉, consecutive measurements of the same qubit in different bases do not
yield additional information, unless one prepares .|ψ〉 anew for each measurement.

The second important property of qubits, quantum entanglement, is the ability
of multiple qubits to interfere with one another such that their probabilities become
correlated in a way that is not possible for classical bits. For instance, two qubits
can be entangled in the state .|ψ〉 = a|00〉 + b|11〉. When measuring the state of one
of the qubits, the result automatically determines the state of the other qubit in the
same computational basis, since, e.g., finding .|0〉 for the first qubit collapses the full
state to .|ψ0〉 = |00〉.

It is noteworthy that any computation on the full qubit state .|ψ〉 acts on all
superposed states at the same time, e.g., on both .|00〉 and .|11〉. This is utilized
by many powerful quantum algorithms that perform computations using precisely
choreographed patterns of interference between superpositions of bit strings, which
together with quantum entanglement realize the quantum computational efficiency.
One needs to remember that measuring all qubits in a register collapses the carefully
computed quantum state to a classical bit string, so care must be taken to prepare
the final quantum state in a way that maximizes the probability of measuring the bit
string that contains the relevant computational result.

Any natural or artificial quantum mechanical two-level system could in principle
serve as a qubit, making the number of possible realizations incredible large.
However, for fault tolerance a hardware platform needs at least to satisfy the
DiVincenzo criteria [12]. It is necessary to have

1. A scalable physical system with well-characterized qubits
2. The ability to initialize the state of the qubits to a simple state
3. Long relevant coherence times
4. A universal set of gates
5. A qubit-specific measurement capability

These qualitative criteria point out immediately why building a functional quantum
computer remains a challenge to date: on the one hand, satisfying criterion 3
requires decoupling the quantum system from any environmental disturbances. On
the other hand, criteria 2, 4, and 5 demand direct physical access to the system
and, therefore it is necessary to couple it at least to its measurement apparatus and
some control electronics. This ambivalence makes quantum computers inherently
error prone. As of now, no quantum system exists that fulfills all criteria equally, but
recent quantum hardware has reached a level of maturity that allows for small-scale
quantum computations. Platforms that have reached this level are dubbed NISQ
devices.
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3.1.2 Gate-Based Quantum Computing

In this section, we review the paradigm of gate-based quantum computing, which
was the first quantum computing paradigm to be proposed [10]. Here, a quantum
gate denotes the analog of a logical gate in classical computing. In the latter, there
are only two possible gates on a single bit, namely the identity and the negation. By
contrast, any operation corresponding to a rotation on the Bloch sphere, shown in
Fig. 3, represents a valid quantum gate on a single qubit. Therefore, the set of valid
quantum gates is uncountable even for that single qubit.

In order to realize an actually useful quantum computer, it does not suffice to
consider single-qubit rotations. Instead, we need an N -qubit register, and we need
to be able to apply multi-qubit gates on any set of qubits. Fortuitously, it turns out
to be sufficient to have access to just a single maximally entangling two-qubit gate
and to arbitrary single-qubit rotations to achieve universality [13]. In other words,
any quantum gate applied to the N -qubit register can be realized as a sequence of
these elementary gates. There are multiple universal gate sets. In many cases the QC
hardware provides a basic set of gates, which ideally is universal.

One important consequence of quantum mechanical dynamics is that valid
quantum gates must be unitary, i.e., the gate operations are represented by unitary
matrices, which are reversible. Therefore, classical logic gates like the AND-gate,
which has two input bits and one output bit, cannot be implemented directly on
qubits without a second output qubit to ensure reversibility. Another consequence is
that it is not possible to fully clone arbitrary qubit states, turning error correction by
redundancy into a challenging prospect.

A sequence of quantum gates that solves a computational task composes a
quantum algorithm. Quantum circuit diagrams have become established as a mode
of representation, where the individual qubits usually correspond to horizontal lines
on which gate operations are drawn (time runs from left to right) [10]. An example
can be seen in Fig. 4.

Fig. 4 An example of a circuit diagram, the most common way to represent quantum programs
today. Horizontal lines correspond to qubits. Gates are represented by special symbols or boxes
with labels. Double lines indicate classical information, which can represent results of the circuit.
But they can also be used to condition the application of gates on measurement results, a technique
called feed-forward
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3.1.3 Adiabatic Quantum Computation and Quantum Annealing

Around 2000, a new computational concept based on quantum mechanical prin-
ciples was developed, the adiabatic quantum computation (AQC) [14]. The
underlying adiabatic theorem is a fundamental result in quantum mechanics,
originally formulated in [15]. The AQC paradigm is different to the “conventional”
quantum computing in the way that it does not provide a universal programmability
straightforwardly in terms of implementing quantum gates to form quantum circuits.
It rather represents a single algorithm whose input data can be varied. Nevertheless,
the authors of [16] and [17] have shown that QC and AQC are equivalent in the
sense that each can efficiently simulate the other. We briefly summarize the main
background of AQC here, but for a more detailed review, we refer the reader to [18].

Given two related quantum systems, the rapid transfer from one to another might
cause the system to change its state from their lowest-energy state, i.e., the ground
state. However, by applying an adiabatic evolution process instead, which means
a sufficiently slow transformation according to the adiabatic theorem, the system
can remain in its instantaneous ground state with high probability. By encoding a
mathematical optimization problem in the target quantum system, where the energy
states represent the feasible solutions, we could thus obtain the minimal solution to
the problem.

The first company that strived to build quantum systems based on AQC and made
them commercially available was D-Wave Systems Inc. They implement the trans-
verse field Ising model [19, 20], established by Ernst Ising, using superconducting
loops to form qubits in a quantum system [21]. A current flow induces a magnetic
flux in these loops, pointing either up or down or being in a superposition of both.
Due to couplings of the loops by joints, the qubits interact with each other pairwise,
where the strengths of the interactions can be adjusted with external magnetic fields.
This way we can encode a quadratic function over binary variables, with linear
and quadratic terms weighted according to the magnetic field strength. Finding the
solution for such a quadratic unconstrained binary optimization (QUBO) problem
is hard on classical computers. More precisely, its corresponding decision problem
belongs to the class of NP-hard problems. This also means it relates to a large
number of other problems, which can easily be transferred into a QUBO and
therefore solved with these machines, at least in theory.

Although empirical studies like [22] provide hints that the output of the devices is
in general close to the optimal solution, it is, however, not guaranteed to be achieved,
nor is the success probability known in advance. Several physical restrictions
prevent the realization of the theoretical concept of the adiabatic theorem, which
only applies if ideal conditions prevail. One obstacle is, for instance, the shielding
against environmental noise, which is never entirely achieved. Therefore, the term
quantum annealing (QA) has been established, in reference to the classical heuristic
simulated annealing, to distinguish the theoretical concept from the heuristic process
performed by the corresponding devices [23]. In general, quantum annealing
is repeated several times with the same configuration to obtain a sample set of
solutions, and from those the best one is extracted.
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3.1.4 Others

The gate-based model and quantum annealing are without question the leading
quantum computing paradigms. However, there exist alternative paradigms that turn
out to be computationally equivalent to these mainstream approaches. For example,
a paradigm called one-way quantum computing is pursued in the context of photonic
quantum computers [24]. As photons hardly interact in nature, they can have enor-
mous coherence times (one detects coherent photons from other stars regularly),
but it is a challenge to perform two-qubit gates between them for the same reason.
In order to circumvent this issue, an elegant idea that relies on the Knill-Laflamme-
Milburn proposal [25] is to prepare all entanglement non-deterministically first. If
successful, then the computation is proceeded by measurements and single-qubit
rotations only, i.e., by avoiding any further interaction [26]. However, functional
one-way quantum computing has not been demonstrated yet.

Another universal approach for quantum computation is quantum random walks,
or short quantum walks, a quantum mechanical analog to the classical random
walk [27, 28, 29, 30, 31]. They can either be discrete-time [32] or continuous-
time [33], and they are studied in the context of machine learning [34, 35] and
photosynthesis [36]. Both versions can again be extended to non-unitary evolution
by a joint generalization of quantum and classical random walks, called quantum
stochastic walks [37, 38, 39]. In contrast to the completely coherent quantum walk,
quantum stochastic walks give rise to a directed evolution.

3.2 Hardware

In 1936, Alan Turing proposed a conceptual blueprint for a universally pro-
grammable computer [40]. This event became the child birth of modern computer
science. However, as the direct physical implementation of the “Turing machine”
would be impractical, a huge variety of different hardware platforms were used to
realize different computational models. This early time of modern computer science
came to a sudden end with the invention of the transistor [41]. Since then, the
development of classical computers has relied on the same key building blocks but
miniaturizing them.

In close analogy to these early days of classical computing, there exists a huge
variety of candidates for quantum computing hardware—the current status of quan-
tum computer development resembles the construction of the Z3 by Konrad Zuse
rather than building modern HPC systems. A rather broad overview of hardware
platforms, including a classification with respect to the state of development,1 can be
found in [42]. In the following, we focus on the most developed platforms according
to this study, which are depicted in Fig. 5.

1 Due to the status of the year 2020.
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Fig. 5 State of development of different hardware platforms according to [42]. In this study, the
platforms are classified into five different levels from satisfying the DiVincenco criteria (level A),
to demonstration of high fidelities (level B), to the demonstration of quantum error correction
(level C). The levels D (execution of fault-tolerant operations) and E (running fault-tolerant
algorithms) have not been achieved by any platform so far

Generally speaking, there are two different classes of qubit candidates: natural
quantum systems like neutral atoms, ions, or photons [25, 43, 44, 45], and artificial
quantum systems like superconducting circuits or other solid state architectures [46,
47, 48, 49]. The state-of-the-art leading hardware platforms are based on trapped
ions and planar transmons; the latter is a specific version of superconducting circuits.
These platforms achieved the level of development C in Fig. 5, i.e., they allow for
the demonstration of quantum error correction.

Superconducting integrated circuits are viewed as one of the most promising
hardware candidates [50]. These circuits are put onto a chip that needs to be cooled
to cryogenic temperatures, i.e., a few tens of mK, and they are controlled with
electromagnetic fields in the microwave range. Even for this specific architecture,
there is a variety of different qubit designs. However, all these designs share the
same key ingredient, namely the Josephson junction [51]. This is a nonlinear
element leading to a non-equidistant energy spectrum of the circuit. This property
is crucial to address two quantum states as the computational states individually.

There are two mainstream types of superconducting qubits, i.e., charge qubit-
[52, 53, 54] and flux qubit [55, 56, 57]-derived designs. To date, the primary
representative of charge-derived qubits is the planar transmon, due to its suppressed
sensitivity against charge noise at the cost of small anharmonicities in the level
splittings [54, 58]. It operates at a sweet spot with rather long coherence times and
a good reproducability of the qubits. The main benefit of planar transmons is their
rather straightforward scaling in qubit numbers; the challenge here is to maintain
the controllability of the individual qubits and to keep high-fidelity operations
when scaling up. Transmons are typically considered for implementing gate-based
quantum computing. One draft of a corresponding chip is shown in Fig. 6, where
the planar transmons are arranged in a two-dimensional square lattice with nearest-
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Fig. 6 Sketch of the
KQCircuits chip design by
the company IQM Quantum
Computers (courtesy of IQM
Quantum Computers)

neighbor interactions. Control and readout lines are connected to the qubits from
below.

Flux qubits consist of superconducting loops that are interrupted by an (effec-
tively) odd number of Josephson junctions. Their computational states are encoded
in the magnetic fluxes that are induced by clockwise and anticlockwise circulating
currents. By design, they share a lot of similarities to superconducting quantum
interference devices (SQUIDs) [59]. Flux qubits can be coupled easily via mutual
induction with coupling constants up to ultra-strong coupling if needed. This makes
them an auspicious candidate for quantum annealing, and possibly for specific
quantum simulation applications. In comparison to planar transmons, flux qubits
are easier to couple, but it is harder to reproduce them reliably.

Apart from technical challenges, one of the main drawbacks of superconducting
qubits is their limited connectivity: only nearest neighbors are directly coupled and
hence two-qubit gates can only be applied between them directly. If a gate-based
quantum algorithm needs gates between qubits that are not physically connected,
one needs to perform the desired logical gate by swapping the qubit state through the
intermediate qubits. This process produces a serious overhead in circuit depth. For
quantum annealing, the limited connectivity becomes even more serious, because
general optimization problems require strongly connected problem Hamiltonians.
Therefore, embedding the desired problem Hamiltonian on the actual hardware
becomes a nontrivial task [60]. Moreover, as superconducting qubits are artificially
made, every single qubit has slightly different parameters than the others, an issue
that needs to be tackled by optimal control theory [61].

With up to about 20 qubits, the best performing quantum computer is a chain
of isotopically pure ions in a linear Paul trap.2 The ions are trapped in an ultrahigh
vacuum using electromagnetic fields in a quadrupole geometry such that they form
a one-dimensional crystal [62, 63]. No cryogenics are needed; the trap operates
at room temperature. In contrast to superconducting qubits, the ions in the trap

2 Named after Nobel laureate Wolfgang Paul.
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are coupled via the long-range Coulomb interaction, leading to a natural all-to-all
connectivity of the qubits. In comparison to other hardware platforms, the relevant
coherence times are high, and the gate quality is excellent.

Unfortunately, the design of the linear Paul trap does not allow for a scaling
to large qubit numbers for two reasons. On the one hand, adding more and more
ions into the trap deforms their arrangement; the ions start to form two-dimensional
structures instead of a well-controlled chain. On the other hand, an effect called
frequency crowding becomes more and more dominant, such that the system
becomes uncontrollable [64]. Therefore, the main challenge for trap ion-based
quantum computing is the scaling to larger qubit numbers. One ansatz is to combine
several linear Paul traps via photonic links [65]. Here, the quantum information
needs to be converted from the ions in the trap to photons that are transmitted
through a fiber, and then it is converted back to the ions in another trap. This process
makes quantum computing with trapped ions enormously slow, because every single
conversion only succeeds with limited probability. A different strategy is to use
two-dimensional surface traps instead of linear Paul traps [66]. Here, the second
dimension is used to shuttle the ions during the computation to different zones on
the chip, depending on their current purpose (performing a gate, readout, etc). In the
gate zone, the surface trap mimics the linear Paul trap with its advantages locally.
A photograph of such a surface trap is shown in Fig. 7. However, surface traps have
not yet been able to demonstrate the same quality as linear Paul traps.

In this section, we discussed the benefits and drawbacks of the furthest devel-
oped hardware platforms to date, namely superconducting circuits and ion traps.
However, as the field develops rapidly, other platforms may take over in the
future. But even in this case, the substantial challenges to build functional quantum
computers will probably remain during the coming decades [7]. Therefore, any
near-term quantum software ecosystem needs to incorporate the specific hardware
restrictions that are present or that are expected to remain in the near future. For
example, one requires additional compilation techniques to run a desired quantum

Fig. 7 Photograph of the
surface trap chip design by
the company eleQtron
(courtesy of eleQtron)
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algorithm on a superconducting qubit platform due to its limited connectivity, as
on ion-trap platforms with natural all-to-all connectivity. Conversely, if a given
quantum algorithm can be easily embedded on the connectivity graph of the
superconducting chip, then this platform might be preferential because of the larger
qubit numbers that can be achieved. In the long term, as soon as universal fault-
tolerant quantum computers are realized, the necessity to keep track of the specific
hardware limitations by designing a quantum software ecosystem will become less
and less important.

3.3 Applications

Quantum computers have enabled advancements in a range of applications, starting
with well-established domains such as database search and factorization using
Grover’s and Shor’s algorithms. These have a proven potential in enhancing search
capabilities and disrupting traditional cryptographic methods, respectively, but
require a level of fault tolerance not yet reached on quantum devices.

Beyond these utilities, quantum machine learning is emerging as a noteworthy
area of application [67, 68], enabling advancements in categorization, learning
tasks, and the solution for partial differential equations. However, it is on the
intermediate timeline where quantum simulation and optimization are drawing
heightened attention. Quantum simulation facilitates the study of quantum systems,
promising more accurate modeling of atomic and chemical processes, with applica-
tions in material science, quantum chemistry, and drug design. In parallel, quantum
optimization provides avenues for solving complex problems more efficiently,
finding its relevance in logistics, finance, and more.

In the forthcoming sections, we narrow our focus on quantum simulation and
optimization, as these represent the realms where quantum computing is expected
to offer significant advantages in the near term.

3.3.1 Simulation

Digital quantum simulation (DQS) represents a notable application for future quan-
tum computers, focusing on simulating quantum systems with universal quantum
computers. Richard P. Feynman originally suggested this application [69], later
formalized by Lloyd [2]. DQS is of particular significance for studying quantum
materials like superconductors and topological insulators, which prove challenging
for classical simulations.

Emergence, described as the rise of new system properties from the fundamental
interactions of its components, has been evident in quantum phases and is directly
connected to the existence of strong quantum fluctuations and entanglement.
Traditionally, the examination of such phenomena relied on resource-intensive
experiments, which explored only a limited range of parameters, including material
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composition and external electromagnetic fields. Theoretical modeling and simu-
lation can significantly conserve resources and is pivotal for advancing material
science. Yet, simulations of quantum models on conventional computers face
challenges due to the exponential scaling with system size. Classical simulations
on modern HPC hardware are capable of describing non-equilibrium dynamics in
quantum dots [70], of 1D quantum systems [71], as well as 2D systems [72, 73],
but with strong limitations in the simulatable system size.

DQS employs quantum computers to efficiently simulate quantum systems.
However, the current state of DQS struggles to match the capabilities of con-
ventional HPC. Advancements in the present NISQ hardware require innovative
quantum algorithms like the variational quantum eigensolvers (VQEs) [74], which
capitalize on the increased expressiveness of quantum computers [75]. Ongoing
research is centered on assessing the strengths and weaknesses of various hardware
platforms concerning their potential DQS applications [76].

3.3.2 Optimization

Optimization problems appear in all fields where resources are limited, for instance
in engineering, economics, computer science, and many others. The development
of efficient solution methods and answering the question as to whether these
actually exist is the essential part of the research in mathematical optimization and
complexity theory. A very important and well-studied class of problems are the
NP-hard ones, which are, loosely speaking, those problems that cannot be solved
efficiently using classical computation. This situation cannot be alleviated simply by
increasing the computational resources of classical computers. This naturally calls
for the exploration of different, more powerful computational models. And the hope
is that quantum computation steps into the breach due to properties of superposition,
entanglement, and quantum parallelism.

As explained in Sect. 3.1.3, quantum annealing is a tailored method to solve
discrete optimization problems. Several studies have shown the practical feasibility
of this approach in different research areas, e.g., for the optimization of flight routes
[77], flight gate assignments [78], and satellite scheduling [79]. However, due to
their heuristic nature, the actual practical advantage of the quantum annealers over
dedicated classical approaches, including approximation algorithms and heuristics,
is still under discussion.

Besides the optimization-tailored QA, also algorithms for the gate-based quan-
tum computing concept have been developed, like quantum approximate optimiza-
tion algorithm (QAOA) or Grover search, which we elaborate in the next section.
However, due to currently too limited available resources, their performance on
interesting industrial applications still needs to be evaluated in the future [80].
To investigate the capabilities of all such approaches systematically, they need to
be integrated into a full software environment that allows for quickly formulating
different applications and for benchmarking the results of the quantum devices
against several classical approaches.
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3.4 Algorithms

The application cases described in Sect. 3.3 can also, in principle, be solved on
classical computers. In order to gain a speedup over these classical approaches by
using quantum computers, efficient quantum algorithms are necessary. While many
promising algorithms already exist, there is active work on expanding the existing
toolbox. A quantum software ecosystem must provide a library of algorithms that
end users can access and must also support the development of new algorithms for
domain and quantum experts.

The development of novel quantum algorithms faces two main challenges:
Currently, there is much less experience in realizing quantum algorithms as software
than for classical algorithms, and in order for quantum algorithms to be viable, they
need to provide a significant asymptotic speedup over existing classical algorithms.
The following section provides a selection of important quantum algorithms, many
of which provide super-polynomial speedup. A more extensive overview can be
found in [81].

3.4.1 Powerful Algorithms for Fault-Tolerant Devices

Table 1 lists some of the most promising quantum algorithms [82], which are
expected to provide a quantum advantage on fully fault-tolerant QC. One such
algorithm is Shor’s algorithm for the prime factorization of large integers with super-
polynomial speedup compared to the classical counterpart. Shor’s algorithm is based
on the quantum Fourier transformation and connected to the more general class of
hidden subgroup problems, which include e.g., discrete logarithms and Gauss sums.
Grover’s algorithm searches through an unsorted list with a polynomial speedup.
The quantum phase estimation algorithm approximates eigenvalues of a given
Hamiltonian. Furthermore, a quantum computer can efficiently perform quantum
time evolutions and SLE can be solved with the algorithm by Harrow et al. [3]. A
variety of other quantum algorithms, such as the Deutsch-Jozsa algorithm [83], the

Table 1 Examples of promising quantum algorithms for fault-tolerant QC

Algorithm Application case Complexity Classical complexity

Shor Prime factorization of integer
with N bits

.O(N2 logN) .O(exp(1.9N1/3 ×
(logN)2/3))

Quantum Fourier
Transform

Fourier transform with N

amplitudes
.O((logN)2) .O(N logN)

Grover Unsorted search on N items .O(
√

N) .O(N)

Quantum Phase
Estimation

Eigenvalues of unitaries up to
error .ε

.O(1/ε) .O(N2)

Harrow-Hassidim-
Lloyd

Solving SLE with N eq. and
condition number .κ

.O(κ2 logN) .O(κN)
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Table 2 Examples of promising quantum algorithms for NISQ devices

Algorithm Application case Complexity Classical

VQE Eigenenergies and -states Heuristic, often .O(Np) .O(eN )

QITE Ground state preparation For highly local Hamiltonians .O(Np) .O(eN )

QAOA Combinatorial optimization Heuristic, potentially .O(Np) .O(eN )

Bernstein-Vazirani algorithm [84], and the Simon algorithm [85], have been found
as well, but won’t be discussed here in detail.

3.4.2 Hybrid Algorithms for Noisy Intermediate Scale Devices

Fully fault-tolerant quantum computers are not expected to be built in the near
future. Therefore, great effort is put into researching efficient algorithms for NISQ
devices, where the focus lies more on achieving quantum advantage over classical
devices than on the best asymptotic performance. Many of these algorithms are
heuristic and an asymptotic speedup is expected in special cases [86]. Some
promising approaches in this area are listed in Table 2.

One general strategy to bring useful quantum algorithms on NISQ devices is
hybrid computation, where only the part of the problem that gains most from
quantum hardware is solved on such, while the remaining problem is solved on
a classical device. One example of this is variational quantum algorithms (VQAs),
most famously VQEs [87]. The idea of VQAs is to use a parameterized circuit on
the quantum processor to prepare highly entangled states in the exponentially large
Hilbert space and perform measurements on them. The classical processor evaluates
the measurement results and adapts the parameters of the quantum circuit in order
to improve the result. For instance, VQEs minimize the energy to find the ground
state. Various adaptions of this approach are being researched at the moment, such
as searching for excited states by optimizing the energy to be in a certain range or
by enforcing orthogonality to the ground state. Furthermore, ground states can be
prepared efficiently for highly local Hamiltonians by using quantum imaginary time
evolution (QITE) [88].

The QAOA [89] is used to solve combinatorial problems by encoding them
as a Hamiltonian with bit strings as representations of the possible solutions. The
QAOA applies time evolution of a mixer Hamiltonian and problem Hamiltonian in
alternation to find the bit string that minimizes the problem Hamiltonian expectation
value.

A central challenge with performing these optimization algorithms in polynomial
time is the risk of converging to local minima. It is important to extend the scope
of these algorithms and facilitate an infrastructure where a hybrid compiler (see
Sect. 3.6) can efficiently select which parts of a given problem to solve on the
quantum device with quantum speedup.
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3.5 Software Engineering

The goal of software engineering is the efficient development of high-quality
software through scientific methods and precise processes. In this context, we
understand software to be a structured collection of program code, documentation,
quality assurance measures, artifacts, and, where applicable, other data required to
execute the programs. All software is written to perform specific tasks that can
be described in the form of user stories: A user wants to achieve a goal with
the software. The value of the software therefore lies in the efficient and reliable
achievement of these goals.

Quantum software fits the above scheme just as well [90]. At this level of
abstraction, the only difference is that quantum software contains parts that are
executed on a quantum computer. As described above, quantum computers are
particularly suitable for difficult problems, and the applications institutions, such as
the German Aerospace Center (DLR),3 are particularly interested in having a strong
interdisciplinary character and will have a large scope. An efficient, structured
approach and an integrated quality assurance strategy will therefore be essential
in the near future.

In the following, we take a closer look at the aspects of software engineering
where we recognize specific requirements of quantum computing or which, in our
view, are particularly important in this context.

3.5.1 Requirements

A particular challenge in the development of software for quantum computers is the
collection and specification of requirements [91]. It can differ significantly from
classical software requirement engineering [92].

The first step is to describe the primary requirements. In our experience, this is
done in collaboration with domain experts who often have little experience with
quantum computers. Finding a common understanding of the problem to be solved
is tedious, but always worthwhile. Subsequently, a precise mathematical formulation
must be worked out that allows the mapping of the application to an existing
quantum algorithm or the development of a new one.

The joint elaboration not only helps the software engineer to find a solution
approach, but also gives insights into quantum computing to a wider circle of
interested people. This experience building within the organization, but also within
the ecosystem as a whole, is something we have recognized as having its own
value [93, 94].

Secondary requirements arise from the primary ones, e.g., requirements on the
size of the system via the input data. The requirements must be considered together

3 www.dlr.de

www.dlr.de
www.dlr.de
www.dlr.de
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with the expected limitations of the hardware, a step that admittedly often leads to
disillusionment and requires several iterations at this point. For instance, at DLR
there is a huge gap between the problem sizes that quantum computers can handle
and the massive computing tasks that arise in engineering questions. However, we
must and can already set the course for future advantages in our fields of application.
Despite or precisely because of the current hardware-related limitations, scalability
must always be considered in quantum software development. There is great value
today in demonstrating an algorithm that can solve small instances of difficult
problems if it “only” needs to be scaled in the future; see [95, 96, 97] for the
example of Shor’s algorithm [1]. In contrast, it seems questionable to implement a
highly optimized algorithm that does not even theoretically scale to large instances.

3.5.2 Software Design

Software design is always about defining the architecture, components, and their
interfaces. In the design of quantum software, a dimension is added that is very
important. It is necessary to decide which parts of the program are to be calculated
on a conventional computer and which on a quantum computer. In this context, one
also speaks of a quantum processing unit (QPU), which can take over specific tasks.
Not every task is well suited for a QPU, and it does not currently look as if quantum
computers will completely replace conventional processors.

Once it has been determined what is to be computed where (which includes in
particular the choice of a quantum algorithm as discussed above), a specification of
the data exchanged between the conventional and quantum parts must be made. A
hardware-aware concept is required in order to feed data of a certain accuracy from
a classical computer system reliably and accurately into a specific quantum circuit.
Speed requirements here depend on the integration of the quantum hardware with
the classical hardware and on the algorithm to be executed. Some hybrid algorithms
require communication between the classical and the quantum systems within the
coherence time. The challenge here is to define abstract layers in the software design
so that software solutions for reliable and accurate data communication between
classical and quantum system are at least partially reusable.

A conceptual separation of software into hardware-specific and -agnostic parts
increases the reusability of the software we develop. It is important to understand
that, although we use very low-level methods to get the most out of our quantum
computers, we aim to develop software and methods that are useful in the long
term. Therefore, reusability is an important criterion.

Interfaces must be defined for the transfer of data. At present, there is practically
no distinction between program code and data on the quantum computer. Input data
is transferred via program code for preparing the data [98], which can be very
hardware-specific; see [99, 100] for examples on ion traps. We expect that future
abstractions will facilitate data transmission.

The development of suitable data types on quantum computers is still in its
infancy. A lot of research and standardization is still needed here. However, it is
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already apparent that, even for integers, the type of encoding has a major influence
on the performance of quantum computers [101]. Possible choices are amplitude
encoding or basis encodings like binary encoding, one hot encoding, and domain
wall encoding [102]. More ways to encode classical data into quantum states are
considered in the context of machine learning; see, e.g., [103]. They affect the
performance mainly due to the strong noise of current models, so any form of
resource optimization can help a lot.

In many engineering applications, decimal fractions are of course required,
which, depending on the required resolution, generate a very high resource require-
ment by today’s standards (measured in number of qubits). It can therefore be
worthwhile to choose an algorithm that is formulated in data types that fit well with
a quantum computer.

Finally, a good design process for quantum software includes simulations of the
program and, if possible, test runs on available hardware. It allows challenges to be
identified and the design to be adapted if necessary. A rigid approach here is even
more doomed to failure than in conventional software design.

3.5.3 Models and Representation

Let’s take a look at current ways of representing quantum software, or rather pro-
gram code for quantum computers. At the moment, mainly low-level descriptions
are used. Even in most recent publications we are still on a level where quantum
algorithms are described via elementary gates and quantum circuits. Internally,
these circuits can be represented as a list of gates, directed acyclic graphs (DAGs),
path integrals/phase polynomials, or decision diagrams. Low-level languages such
as OpenQASM [104], cirq [105], and qiskit [106] have become established as
descriptions by a user and as interfaces between tools. Despite some attempts to
create more high-level quantum programming languages, e.g., Q# [107], Silq [108],
or qrisp [109], none of these is currently widely used (for various reasons). In
the long term, however, there is no way around the introduction of more powerful
language constructs in our view. It will be crucial that these find a natural way
to represent the special capabilities of quantum computers. Although perhaps only
years of programming experience will make natural programming languages for
quantum computers possible, we want to support developments in this direction at
an early stage.

In the context of compilers in particular, intermediate representations (IR) are
also introduced as an intermediate level between the abstraction layers of the
programming language and the machine language. Examples are QIR [110] and
QSSA [111]. The formulation of quantum-specific optimization steps on this level
is a subject of current research, which we will discuss in Sect. 3.6. We should also
mention that other established tools of conventional software design are currently
translated to and tried in the context of quantum computing, e.g., the unified
modeling language (UML) [112].
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3.5.4 Software Testing

Software testing is part of the software development process that aims to ensure
the quality and reliability of the software. There are different types of tests, and
common categories are unit tests (testing small components), integration tests,
functional tests, and acceptance tests (checking fulfilment of requirements). Tests
are artifacts (code or instructions) that are executed automatically or manually. In
contrast, verification relies on formal proofs which employ static code analysis, and
benchmarking is concerned with the quantification of the performance of software
and hardware. We look at verification and benchmarking in more detail in Sect. 3.8.
We emphasize that testing is about finding programming bugs, not hardware errors,
whose treatment we discuss in Sect. 3.7. However, we investigate how the methods
developed for handling hardware errors can also be adapted to testing.

Given the above definition of testing it is clear that future software for powerful
quantum computers will also need to be tested. It is important to do basic
preliminary work already now, before the hardware allows complex software to
run. And research in this direction has indeed started [113, 114, 115, 90]. This
ensures that the reliability of software does not become a bottleneck in future
developments of QC. It is particularly important because in QC the transition from
low-level circuits to high-level programs mostly still lies ahead of us. And testing
is an exciting research topic in the field of quantum software engineering because
quantum-specific phenomena have to be taken into account.

It is obvious that facts like the no-cloning theorem [116] are obstacles in testing
programs. Classical approaches that often use copying implicitly need to be adapted
in order to apply them to quantum software. The fact that in general measurements
in quantum theory disturb the observed system also complicates state monitoring.
This severely affects the possibilities for runtime tests on quantum computers (see
e.g., [117, 118]), and further research in this direction will be necessary.

Furthermore, what constitutes a typical error is quite different between classical
and quantum programming. Due to the difference in the computational model there
are even programming errors that are not meaningful in classical programming, e.g.,
when they affect only the phase of the state. It is therefore necessary to conduct
studies on what bugs are typical in quantum programs [119, 120]. Such studies
can be very programming language-specific, i.e., tailored toward Q# [121]. Only
with knowledge about typical bugs is it possible to then develop good tests that
detect as many of them as possible. A useful tool here is the creation of benchmark
collections, as well as the automatic generation of test cases.

It is necessary to define tests that circumvent the abovementioned quantum-
specific challenges, and are still meaningful. And this leads to further research
questions, such as the definition of meaningful measures for the significance of tests.
Once more and more quantum software is written, guidelines for writing reliable
code and informative tests which are based on the above research will be very useful.
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3.6 Compiling

3.6.1 Gate-Based Quantum Computing

Like conventional computers, quantum computers also implement a finite set of
elementary basic operations, the gates already mentioned above. Different sets of
gates have become accepted for the description of quantum circuits [122, 123, 10].
If a gate set enables an efficient approximation of any unitary operation, we call it a
universal gate set. By efficient here we mean that the new length of the circuit scales
polynomially with the original circuit length when switching from any other gate
set.

On the one hand, convenient gate sets are used for the theoretical description
of quantum algorithms. These sets in general contain significantly more gates than
necessary, are useful in the context of fault tolerance, and might also contain larger,
undecomposed blocks. On the other hand, each hardware platform implements
different, sometimes very limited, gate sets. A major restriction results, for example,
from limited connectivity, which means that the two-qubit operations provided
are not possible for every pair of qubits. However, some hardware platforms, in
particular ion traps, provide native multi-qubit gates that allow this issue to be
circumvented; see also Sect. 3.2.

The transition from one description of the quantum circuit to another is called
transpiling. Specifically, the transition from a general unitary to a set of elementary
gates is called synthesis. Both transitions are core tasks of a compiler. Furthermore,
the compiler, just like its conventional analog, has the task of customizing the
output to the specific hardware as best as possible. In summary, the requirement
of a compiler is producing correct, efficient, and hardware-compatible output, as
explained in more detail below.

The typical compiler architecture can be divided into individual steps (passes),
which are connected in series as a pipeline where each step transforms the quantum
circuit. The best order is not obvious and passes can also be repeated at a later point
in the compilation. Typical transformation steps include:

• Synthesis. Larger operations need to be decomposed into a universal set of basic
gates. Small operations can be decomposed optimally with regard to a certain cost
function, while synthesis of larger operations will not yield optimal solutions in
general.

• Routing. The circuit needs to be rewritten in a way that contains only gates that
are natively supported by the hardware. In particular, multi-qubit gates can only
act on qubits that can interact physically. Even qubits that might not be part of a
calculation can mediate the interaction.

• Optimization. The overall circuit can be optimized with regard to some cost
function as well. Here the input and the output are both decomposed circuits. We
discuss this point in more detail in the following.
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Various objective functions for circuit optimization are conceivable and are
used. For example, the number of certain gates (e.g., controlled-Not gate, T
gate), the depth of the circuit (related but not identical to the runtime), or the
expected noise on the final state can be minimized. Of course, one can also try
to maximize algorithm-specific performance, e.g., the probability of success. The
problem of optimizing a circuit with respect to a particular objective is generally
very difficult [124, 125, 126], such that there is no efficient algorithm to find the
global minimum except for small circuits. Some approaches are based on meet-
in-the-middle [127] or satisfiability (SAT) solvers [128]. For larger circuits only
heuristic algorithms are feasible; see, e.g., [129]. For the optimization passes
there are promising research approaches to transfer the conventionally established
methods based on IR to quantum compilers.

Deciding whether the result of the compilation is indeed efficient on actual
devices is not obvious. Since the global optimum is generally not known, one can
only compare the result with other reference compilers. However, this comparison
depends strongly on the circuits. It is important to use balanced benchmark suites,
for example, the Arline Benchmark suite [130]. Further developments in this
direction are foreseeable.

The development of compilers of hybrid programs has a major impact on the
possibilities for optimization. Such hybrid compilers are compilers that do not
generate pure quantum circuits, but executable code on conventional computers
that contains calls to a QPU [131]. This results in strong optimization potential
because the compiler can automatically decide whether the calculations are better
computed on the QPU or on a conventional computer. Furthermore, it is even
possible to apply hybrid simplification rules, which, e.g., move individual operations
from the quantum circuit to conventional pre- or post-processing [132], where they
can be combined and simplified with established methods. The goal is to leave
only the essence of the quantum algorithm in the quantum circuit. These hybrid
simplification rules in particular can benefit from the established concept of IR.

Another motivation for hybrid compilers is a closer coupling of the central
processing unit (CPU) and the QPU. In particular, hybrid quantum algorithms
such as VQAs [87] benefit greatly from an efficient coupling of conventional and
quantum systems. Here, experience in GPU programming (e.g., CUDA [133])
can be built upon. In the future, abstract language constructs should simplify
and unify the use of different hardware architectures. QPU and CPU codes are
developed in a common project folder, where calls to the QPU are controlled
via synchronous and asynchronous commands. Efficient interfaces and protocols
must be developed for uploading data and code to the QPU and downloading
measurement results. The QPU code may not only contain quantum operations but
also increasingly complex dynamic operations that directly process measurement
results and influence subsequent quantum operations. This feed-forward approach
opens up exciting possibilities for new experiments, and it is essential in the
measurement-based model of quantum computation [134]. The close coupling of
a CPU and a QPU is flanked by development work aimed at integrating quantum
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computers into HPC environments; see [135, 136]. The experience with these
prototypes will influence the necessary standards.

As mentioned, we require the correctness of the compiler, i.e., a proof that
the output corresponds in functionality to the original input, possibly in human-
readable form. However, it is known that the general equivalence test problem for
quantum circuits is not efficiently solvable, as it is in the class of QMA-complete
problems [137], which are, loosely speaking, those problems that are hard to
solve for quantum computers. This means that we have little hope of proving the
correctness of the final result. What we can do instead is to prove the correctness
of the process. The compiler is correct if it only applies correct transformations.
And for each individual transformation, it is possible to show correctness. When
we speak of heuristics in the compiler pipeline, we mean procedures that do not
necessarily lead to improved circuits but which nevertheless output a correct circuit
in every case.

In addition to the described methodology, some approaches attempt to prove
the equivalence of circuits. Although they suffer from an exponential increase in
resources (time or memory), they can still deliver results for “simple” circuits. We
refer the interested reader here to the literature [138, 139, 140].

3.6.2 Quantum Annealing

Although quantum annealing (QA) is a different computational model and therefore
poses its own challenges, compiling in a certain sense is also needed here: quantum
annealers can only process a very specific optimization problem, in case of D-
Wave, a restricted version of the Ising problem [60]. Programming such devices
essentially means providing the problem-defining parameters. However, exemplary
applications from industry and research, cf. Sect. 3.3.2, show that there is in general
no trivial way of obtaining these parameters. Several transformation steps from the
original problem formulation to the native one of the device are required. A compiler
handling these different abstraction layers would make the technology available for
various users with different levels of expertise in QA.

From a mathematical point of view, the step from an arbitrary discrete opti-
mization problem to a general Ising problem is solved and can be done using a
set of standard methods. However, a complete software suite implementing this is
not yet available. Nevertheless, toolboxes like the D-Wave Ocean SDK [141] or
quark [142] already support users with utility methods. But further expansion
of the software suites and conceptual advances are necessary. For instance, the
recent research on the reduction of combinatorial optimization problems has
mainly focused on any kind of (polynomial) reduction and not on the optimal
one in a certain sense, e.g., in the number of resulting variables, which would be
advantageous regarding the limited resources of current quantum computational
devices. Furthermore, the actually implemented Ising problem is not a general one
but faces further restrictions, such as a specific non-complete hardware graph and a
limited parameter precision. This causes the reformulation of the original problem



Quantum Software Ecosystem Design 169

to be a nontrivial task and demands that a “compiler” implement all the necessary
steps and hide the complexity from the application-focused users.

The two main transformation steps are the graph embedding and the parameter
setting. Unfortunately, the first step, the embedding of the original problem graph
into the hardware graph, has appeared to be a computationally hard problem, in
particular, as hard as the problem D-Wave’s annealers are capable of solving [143].
Therefore, in practice, heuristic methods need to be applied to circumvent this
bottleneck [144, 145]. In the second step, the hardware-native Ising problem
has to be formulated based on the found embedding. If this step is not done
correctly, we will not be able to analyze the actual performance of the quantum
device itself, because the success probability might be suppressed due to a wrongly
formulated problem. Recently, a new formulation has been developed that provides
an embedded Ising problem which provably corresponds to the original problem and
meanwhile optimizes its parameters with respect to the machine precision [146].
Based on this recent and future theoretical work, the compilation software has to be
steadily improved and extended, and the full software ecosystem has to be able to
adapt to these changes.

3.7 Error Handling

It is essential that errors caused by imperfect hardware are considered in the software
stack, because the amplitudes and phases of the qubits are not discrete. Additional
steps or layers are necessary to protect the information against this unavoidable
noise introduced by the hardware. This section briefly sketches the main concepts
in this field of research and provides references to more in-depth introductions.

We distinguish three categories of error-handling strategies. First, techniques that
start directly at the hardware level and attempt to reduce the noise level [147]. This
includes, for example, dynamical decoupling [148], where special control pulse
sequences are used to eliminate the disturbing influence of the environment. Second,
techniques that encode the quantum information into subspaces that do not couple
to the environment and are therefore not affected by decoherence introduced by the
environment [149]. Third, taking the noise of the quantum computer into account
for the compilation can lead to circuits that are less prone to noise. For example,
we investigated which decompositions of a common multi-qubit gate introduce the
least amount of noise [150].

Furthermore, some post-processing steps on the classical measurement data are
aimed at removing the noise [151, 152]. For example, zero-noise extrapolation
[153] and readout error mitigation [154] have proven effective in some applications.
The term error mitigation has come to refer to these types of techniques. We
emphasize that they do not avoid errors, but try to eliminate the errors afterwards.
Finally, methods on the error correction codes are aimed to suppress the noise to
any degree [155, 156, 157]. We explain error mitigation and error correction in
more detail in the following sections.
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3.7.1 Error Models

Simple models for describing noise on quantum computers may only depend on
a single parameter or a few parameters. They can be found in any textbook on
quantum information, e.g., [10]. The depolarizing noise model is often used and
can be interpreted in such a way that with a certain probability (the parameter of the
model) the state of the system is replaced by white noise. Of course, this is a poor
representation of the real experiment. However, we have found that it is often very
suitable for a first qualitative picture of the effect of noise. Other simple models are
the bit-flip, phase-flip, and amplitude damping channels.

A more precise description of the noise is possible with a Pauli channel [10],
where every tensor product of Pauli operators can appear as an error. These errors
can occur with different probabilities. A complete description of the error channel
via Kraus operators [10] is also possible. The free parameters of this model
can be determined via process tomography in the experiment [158, 159]. It is
a complex procedure that does not scale well with the system size but obtains
complete information. It is worthwhile, for example, if one wants to obtain a very
precise picture of a single gate of a quantum computer. Instead of determining the
parameters experimentally, one can also use “realistic” noise models. In this case,
one tries to understand and model the physics of the process as well as possible.
Often the parameters of the model have a physical interpretation. This approach
is very hardware-specific and requires an exact fit of the model to the experiment.
However, it also offers the chance to draw conclusions about necessary hardware
improvements from model calculations, which is very helpful in the paradigm of
hardware–software co-design.

We follow yet another approach in which the noisy process is largely considered
as a black box, with few assumptions to be made about the noise [160]. In this
context, the assumption of Pauli noise and the assumption that the noise of a circuit
block are independent of the context. This means that the same gate causes the same
noise at different positions in the circuit. Of course, these assumptions might not be
fully satisfied in a real experiment. Instead of a description that is as complete as
possible, we obtain information regarding errors that affect operators in the stabilizer
elements, which we will discuss below.

3.7.2 Error Mitigation

Error mitigation is a form of post-processing in which one tries to infer the ideal
result from the noisy result [151, 152]. The techniques of error mitigation use addi-
tional measurements to extract information about the noise, which can be partially
removed from the outcome. They go beyond simply improving the measurement
statistics by increasing the number of runs. However, they are interesting for NISQ
computers because they do not require additional quantum resources. Prominent
examples are zero-noise extrapolation [153] and readout error mitigation [154].
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Furthermore, the method of [160] to model the noise above can be used as an
error mitigation technique. The parameters of the error model are determined via
a calibration measurement. It allows us to infer the ideal expected values from the
noisy ones of the stabilizer elements. The results are comparable to readout error
mitigation, while the method generates significantly less effort.

3.7.3 Error Correction

The topic of quantum error correction is vast and plays an important role. In this
subsection, we briefly sketch the relevant concepts and refer interested readers to
excellent introductions in [155, 156, 157]. Generally speaking, it is the extension of
classical error correction codes to correct not only bit-flip but also phase-flip errors,
and thus also general errors on a quantum system.

Quantum error correction codes encode k logical qubits into n physical qubits.
Many codes can be described via the stabilizer of this code space, i.e., via a subgroup
of the Pauli group whose elements leave the code words invariant. Small size
examples are the nine-qubit Shor code [161], the seven-qubit Steane code [162],
and the five-qubit code [163, 164]. A family of widely used codes is the surface
code [165]. The layout of the qubits follows a lattice structure with the stabilizer
generators acting locally, a fact that makes these codes a natural choice for hardware
platforms with a matching architecture, e.g., those based on superconducting qubits.

The capacity of a code to correct errors is described by distance d, the minimum
Hamming distance between two code words. The information about an error in the
system is determined via the syndrome measurements. Here, one measures a set of
observables that yield enough information to inform the correction operation. This
measurement result is called a syndrome.

The concept of fault tolerance is crucial in quantum computing [155]. It is
possible, with the help of quantum error correction codes and clever design of
circuits, to perform arbitrarily long calculations despite the noisy operations. One
can simply choose an arbitrarily large code, if it does not introduce too much noise
due to the overhead of the additional operations, and the existing faults cannot
propagate badly. It allows us to push the noise down to a desired level. The required
quality of operations that achieves this scaling is called the threshold of the error
correction scheme [166]. The additional complexity can be hidden in an abstract
layer of the stack, e.g., when focusing on higher layers. It allows us to develop an
ideal QC without having to consider the additional complexity of error correction at
all times.

3.8 Verification and Benchmarking

Verification aims to ensure that software fulfills its requirements, e.g., that the output
is correct under certain preconditions for given inputs. Similar to conventional non-
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deterministic software, the stochastic nature of most quantum algorithms poses a
challenge to verification. That is, the same inputs can produce different results due
to the intrinsic properties of quantum measurements but also due to the high level of
noise on near-term hardware; see Sect. 3.2. A typical requirement that needs to be
verified is that one obtains a high-quality solution, e.g., a result close to the desired
result, with a sufficiently high probability. Here we focus on static verification, while
what is sometimes also referred to as dynamical verification is covered in Sect. 3.5.4.
The task of verification can be addressed from two sides. First, from a formal point
of view, given “working” hardware we need a theoretical proof that the quantum
algorithm is correct. Second, from a practical point of view, we need to ensure that
the algorithm is implemented correctly in code for the classical and quantum parts of
the program. Both parts need verification and the latter finally needs to be correctly
translated into the executable circuit; see also Sect. 3.6. The verification of quantum
algorithms gives rise to an interesting research question [167, 168, 126]: When
quantum computers outperform conventional computers, how can we ensure that
the algorithm is correct?

Benchmarking is the quantification of the performance of software and hardware.
Because in the current state of QC the question is not yet how fast we can get a result
but how good the results are that we get, benchmarking usually refers to assessing
the quality of hardware components. So in contrast to conventional computer
science, we do not yet compare different software or hardware with metrics like
time to solution. In this context, benchmarks are standardized, technology-agnostic
methods to evaluate quantum computers. The result of benchmarks are metrics
for the performance of a specific device. They should be treated with caution, as
they only cover single aspects of the machine, may struggle with the different
hardware approaches (see also Sect. 3.2), and only measure the current state of
the technology, not its future perspective. Also note that the score is affected by
software, in particular the compilation. Any good benchmark should fulfill a number
of requirements. It should be accepted by scientists and industry alike. The score of
the benchmark is a number or a yes/no answer. The metric allows for a meaningful
interpretation, which goes beyond that specific benchmark test. It should not give an
advantage to one specific technology by construction, but the values can and will be
better for some technologies than others, of course. The benchmarks should be well
defined and easy to understand. They should be efficiently implementable, which
poses a limitation on the information content in practice and therefore requires
them to focus on specific aspects of the performance. They should be reproducible,
which is a challenge given the non-deterministic character of quantum computers.
Finally, they need to be scalable so they can be applied to small and larger quantum
computers to enable tracking of the development progress.

The following quantities and methods are typically considered in the context of
benchmarking.

• The fidelity of state preparation, single and two-qubit gates, and measurements.
These numbers measure how close the implemented operation and the target
operation are.
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• Coherence times, which describe how long the coherence of a system, i.e., its
ability to interfere, is conserved. In particular, the number of gate operations
which can be performed in the coherence time indicates how long quantum
computations can be.

• Cross-talk, e.g., how strong idle qubits are affected by gates acting on other
qubits. Due to its non-local nature this noise can be difficult to handle.

• Hardware connectivity, i.e., how many qubits can directly interact.
• State and process tomography are methods that allow for a full characterization

of a quantum state and a quantum operation, respectively [169, 170, 171].
• Randomized benchmarking [172] is a method to find the average gate fidelity

of an important subset of gates, the so-called Clifford gates. It relies on the
Gottesman–Knill theorem, which shows that circuits only consisting of such
gates can be efficiently simulated on a conventional computer [10]. This then
allows for the random insertion of gates into a circuit and efficient inversion of
their net effect. Then the deviation from an identity operation is linked to the
average fidelity of the gates. One advantage of this method is that the metric is
not affected by state preparation and measurement errors.

In order to perform useful reproducible benchmarks, we need to define a suite
of standard problems, ideally reflecting interesting target applications (like SPEC
benchmarks [173] for different classical hardware) or, e.g., basic operations and
algorithms (like LINPACK [174]). Existing benchmark suites for QC include
SupermarQ [175] and Arline [130]. There are also benchmark suites tailored toward
specific applications, e.g., fermionic quantum simulation [176]. In addition, for
the special case of comparing quantum hardware and software, it might be helpful
to further specify some constraints on how those problems should be solved as
different approaches might not be comparable; e.g., hardcoding the solution is not
a fair comparison. This can be tricky to achieve in practice as different assumptions
or prior knowledge about the problem is often used in different solution approaches.

For comparison with classical computers, there exists a wide range of possible
implementations: we can plug in a classical computer at almost any stage from the
level of the original application problem, over a transformed formulation suitable
for a quantum algorithm, to the actual operations for a specific hardware (at
least for small problems or theoretical runtime considerations). And even on a
classical computer, software can be more or less optimized, which influences its
runtime by several orders of magnitudes (see, e.g., [177] for an example). So for
actual benchmarking results, one needs to provide many additional details on all
used implementations as well as on the hardware to actually allow an insightful
comparison and interpretation. We further suggest defining separate benchmarking
suites to address specific questions in the future:

• Quantum supremacy: These benchmarks compare the fastest implementation
on a quantum computer with the fastest, elaborated, existing software for
classical hardware for different key applications.



174 A. Basermann et al.

• Near-term practicability: These benchmarks compare the (estimated) costs
of solutions for interesting algorithms (with input data from applications) for
different quantum platforms and for classical hardware.

• Performance and correctness: These benchmarks assess the accuracy/quality
of solutions obtained with different quantum hardware and software stacks for
mathematical test problems with known solutions.

4 System Architecture and Implementation

In Sect. 3, we have described the conceptual workflow of quantum computers, from
application to actual hardware. The end users are typically ultimately interested in
solving their engineering problem, e.g., in simulating the airflow around an aircraft
or in finding some optimal resource scheduling. To this end, we aim to construct a
platform that allows end users to describe their domain-specific problem and find
solutions to it while having to think about the underlying hardware as little as
possible. This section describes the technical building blocks we use to construct
such a platform. An illustration of the individual components and their connections
is provided in Fig. 8.

We aim to construct this platform as domain-independently as possible. To guide
our description of the individual components, however, we use an artificial example
problem from the automotive domain using this platform. This example problem
serves to highlight many of the considerations to be made when constructing a
platform for quantum computing. While other use cases will require additional
considerations, we believe that this example already suffices to illustrate the most
pressing and general concerns platform engineers should consider for a wide swath
of use cases.

For our example, consider the goal of developing a new driving function for
autonomous vehicles. The engineers implementing this driving function want to
evaluate whether it behaves safely in a number of specified driving scenarios.
To this end, they specify sets of possible scenarios using traffic sequence charts
(TSC) [178]. They then instantiate scenarios that conform to solutions for the given
TSC problem and simulate the behavior of the implemented driving function in
that scenario [179]. Moreover, they implement a software monitor that observes
the simulation and reports unexpected behavior. This is also accompanied by a
visualization of the simulation. The full sequence of steps of the simulation shall
be automatized. To stay in the frame of a quantum software ecosystem, we further
assume that the TSC problem shall be solved using quantum computing hardware.
This can, for instance, be done by converting the TSC into a SAT formula and using
Grover’s algorithm to search for feasible solutions provided by a corresponding
quantum oracle gate.

Note that, in an actual application, the TSC is converted into an Satisfiability
Modulo Theory (SMT) formula instead of a SAT formula, where the former is
a strictly more general model than the latter. There is, however, currently not
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Fig. 8 A technical overview of the platform supporting quantum software developers

a straightforward way to generate solutions for an SMT formula using quantum
circuits. Hence, for the sake of example, we assume that the engineers instead
generate concrete scenarios via SAT formulas instead of SMT formulas.

In practice, the described simulation steps require heterogeneous hardware: the
transformation from TSC to SAT and the extraction of a concrete scenario from
a SAT solution can be executed on virtually any hardware without proprietary
software. In contrast, finding the solution of the SAT problem and the execution of
the simulation requires specialized software, namely SAT solvers, such as Z3 [180],
and traffic simulation software, such as CARLA [181], respectively. Moreover, the
visualization requires specialized hardware, e.g., graphics processing units (GPUs).
As, in this running example, we assume that the engineer wants to find solutions
to the SAT formula using some quantum circuit, we also interact with quantum
devices.

In order to construct and execute their experiments, the engineers require some
interface to the system. This interface provides the engineer with an integrated
development environment (IDE) and, once the engineer is satisfied with their
specification, passes the problem to some backend for execution. We describe the
requirements for that interface in Sect. 4.1. Once the end user has specified the
problem, the platform will have to schedule the use of the heterogeneous hardware
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systems described above. The major novelty of this platform lies in orchestrating the
cooperation between classical computing hardware on the one hand, including, e.g.,
classical workstations, HPC resources, and GPUs, and between QPUs on the other
hand. We describe the requirements for this orchestration in Sect. 4.2. The QPUs
used during the execution may be implemented in actual hardware or it may be
simulated using one of multiple quantum computing simulators. We have described
the constraints faced in using existing hardware platforms in Sect. 3.2. The trade-
offs to consider when using quantum simulators follow in Sect. 4.3.

4.1 User Interface

Quantum software developers require a straightforward interface for specifying their
problems. In our example, the end user must be able to specify the described loop
consisting of reading a TSC, calling external software, and performing computations
on a well-suited QPU. The end user is not likely to be interested in the specifics of
the underlying hardware but instead wants to have the choice of hardware handled
by the platform during execution. In contrast, the interface should also cater to
experts who are not interested in specifying domain-specific problems but are
working on developing novel quantum algorithms. To this end, they require more
direct access to the underlying hardware for, e.g., benchmarking.

The interface should allow the user to iterate rapidly on problem formulations
e.g., the typical interface of HPC hardware. When using HPC hardware for
solving a domain problem, the underlying algorithms and implementations are often
mature and well tested. In contrast, when using quantum computing hardware, the
underlying algorithms and implementations are constantly evolving and are often
adapted to the domain problem at hand. Hence, the platform should allow the end
user to rapidly iterate on the formulation of the domain-specific problem.

One approach to satisfy these requirements is allowing users to formulate their
problems using a service-oriented architecture. In such an architecture, multiple
independent software services collaborate to solve the specified problem. In our
example above, users could specify one service each for the following tasks:

• Transform a given TSC into an SAT formula
• Construct a quantum circuit that solves this formula.
• Execute the quantum circuit to obtain a solution.
• Transform the solution into a concrete scenario.
• Simulate and monitor the scenario using CARLA [181], obtaining a visualization

of the simulation.

The user needs to specify the software and hardware requirements for each service,
e.g., that they require a QPU for the third service and CARLA with GPUs for the
visualization of the fifth service. They do not necessarily have to implement all
services themselves but can rely on other services that users of the platform have
implemented and opted to share publicly. Finally, the user must specify the data
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flow between these services and ask the orchestration component to execute the
composed service.

Letting end users define composable services and publishing them to other users
has proven successful in the context of data analysis with Apache Nifi [182] and
in the context of preliminary design of airplanes, jet fuels, electrical grids, ships,
and other complex systems with RCE [183]. Moreover, a graphical user interface
that allows users to graphically connect relevant services has been employed
successfully for several decades in the field of data acquisition and analysis by
LabVIEW [184].

4.2 Orchestration and Data Management

Once the problem has been specified and is given to the orchestration component for
execution, that component has to reserve computation time on the initial required
computing resource. Our running example requires some computation time on
an off-the-shelf workstation which transforms the TSC into an SAT formula and
subsequently transforms this formula into a quantum circuit. The orchestration
component then has to reserve computation time on some QPU, either real hardware
or simulated, to execute the quantum circuit. Once the execution of the quantum
circuit has finished and resulted in a solution to the SAT problem, the orchestration
component needs to reserve some computation time on an off-the-shelf workstation
which transforms this solution into a scenario. Subsequently, the orchestration
component needs to reserve computation time on an HPC resource equipped with
GPUs to simulate the generated scenario, monitor the simulation, and visualize the
simulation if necessary. Finally, the orchestration component needs to repeat the
above steps until non-nominal behavior is observed during the simulation.

Our example shows that it is infeasible for the orchestration component to reserve
all required computing resources prior to the execution of the initial service. The
requirements for the QPU, the available gates, and number of qubits required for
the execution of the quantum circuit only become available after the execution of
the initial service. Hence, the orchestration component needs to be able to reserve
computation time on the fly as results from earlier services become available.

Moreover, the orchestration component needs to take into account external
requirements for the chosen computational resources. The visualization of the
simulation in the final step of the computation described above may require large
maps, textures, or other large data artifacts to visualize the scenario with the required
fidelity. If these artifacts are only available to the visualization via a network
connection with low bandwidth, the execution time of the complete computation
will increase significantly. Hence, the orchestration component needs to be aware of
data-intensive parts of the computation and the locality of the required data.
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4.3 Use of QC Simulators

In the section Sect. 3.2, we have described the hardware platforms that are currently
available for executing quantum circuits. All these platforms are costly, only
available in low quantities, do not provide a large number of qubits, and produce
noisy results. Although these problems are being addressed in the production
of quantum computing hardware research, alternative solutions may tackle these
issues.

A promising alternative is the use of quantum computing simulators that adopt
classical hardware to simulate the execution of quantum circuits on actual hardware.
Simulating such an execution requires significant computing power that is usually
only provided by HPC systems. These systems are typically the same ones that
execute the classical part of the computation job. Hence, any platform for the
execution of quantum computing workloads using simulators must strike a balance
between using the HPC resources it has available for the simulation of quantum
circuits and using them for classical computation. Moreover, these HPC resources
are rarely available for exclusive use by the quantum computing platform. Instead,
the resources are also used for “classical” HPC applications. The owner of the
resources has to balance their availability between the use by the platform and by
the classical applications.

Although the results of the simulations produce data in the same order of
magnitude as actual quantum computers (namely a few kilobytes or megabytes),
they may offer additional diagnostic data which grows exponentially with the
number of simulated qubits. If this data is made available to end users, the platform
needs to provide data storage as well as bandwidth for transferring the data to the
end user.

5 Conclusion

Quantum computing represents a paradigm shift in computational capabilities, with
potential applications in various sectors. A key aspect to unlock its full potential is
the establishment of a robust software ecosystem. This ecosystem not only provides
the essential infrastructure for operating quantum devices but also serves as a bridge,
enabling a broad spectrum of researchers, scientists, and industry experts to explore,
use, and enhance the applications of these quantum systems.

Our chapter takes a research-driven approach toward constructing such an
ecosystem. We have bifurcated our exploration into two key dimensions. Firstly,
we present the conceptual design which encompasses considerations from com-
putational paradigms, applications like quantum simulation, over device-optimized
compiling to error handling, verification, and benchmarking. This underscores the
theoretical foundation, taking into account the unique challenges and attributes
of quantum computing. Secondly, we delve into the system architecture and



Quantum Software Ecosystem Design 179

implementation, focusing on aspects ranging from user interfaces to orchestration,
data management, and the critical role of quantum computing simulators. The fusion
of these two perspectives ensures a comprehensive understanding and a holistic
approach to developing a quantum software ecosystem.

As we step into the future, it is imperative to emphasize that this endeavor
is iterative. Practical evaluation and real-world implementation of the proposed
ecosystem will undoubtedly reveal areas for improvement. The scientific approach
allows the adaptation of the ecosystem, especially given the rapidly evolving quan-
tum hardware landscape. Monitoring these advancements and ensuring flexibility
in the response will be critical to remaining aligned with the dynamic nature of
quantum computing. By doing so, we pave the way for maximizing the potential of
quantum computing, fostering innovation, and moving the field forward.
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