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Abstract

Information spread on social media can lead to sudden, synchronized actions. If this affects electricity demands, it could result in
critical consequences for the power grid. With the rise of social media and fake news and the increasing adoption of power-intensive
devices, the risk of misinformation attacks by manipulating consumer behavior becomes more relevant. This paper presents a novel
approach for modeling the potential impact of social media dynamics on power systems. We present a conceptual monitoring
framework for the real-time detection of critical information propagation and the short-term prediction of electricity demand
peaks. Based on a social network graph, a stochastic epidemiological model, the Susceptible-Infectious-Recovered (SIR) model, is
employed to simulate the "viral" spread of information. To estimate model parameters from real data, an optimization algorithm is
developed. Twitter data of a past disaster event is acquired and used to create a generalized propagation dynamics model, which can
then be used to analyze the impact of altered power demands. Specifically, we simulate a demand response attack, where households
receive misinformation about reduced electricity prices, encouraging them to activate appliances. The results demonstrate that the
synchronized behavior of a minority of affected consumers can lead to sudden increases in the aggregated demand, significantly
surpassing usual demand levels. Furthermore, we examine the peak demand for electric vehicle (EV) charging at different adoption
rates, showing that the consequences of synchronized behavior are amplified. Our innovative approach opens up new possibilities
for power grid nowcasting and enhancing critical infrastructure resilience in a proactive manner, which can avoid load shedding.

Keywords: Power Grid Monitoring, Power System Resilience, Misinformation Attack, Demand Response, SIR Model, Social
Media Data

1. Introduction

Power systems are vulnerable to high-impact, low-probability (HILP) events, which can cause severe disruptions
with catastrophic societal consequences [1, 2]. In rare cases, collective human actions can result in synchronized power
demands, potentially leading to extreme load spikes in a short time [3, 4]. The COVID-19 pandemic highlighted how
unexpected synchronized consumer behavior, such as panic buying, can disrupt critical infrastructures, such as supply
chains [5, 6]. Social media can play a major role in such phenomenons, as information can disseminate rapidly and
influence users to alter their behavior [5, 7]. With the rise of misinformation and fake news in the recent years, new
scenarios and challenges emerge [8]. If a substantial number of people receives and forwards (mis-)information that

∗Corresponding author.
E-mail address: tobias.gebhard@dlr.de
Received 27 August 2024.

1

mailto:tobias.gebhard@dlr.de


Author / Energy Reports 00 (2024) 1–15 2

somehow relates to a change in power demand, the synchronized loads could exceed critical limits and the sudden
actions could endanger the stability of the power system, especially if the change is not expected. As resilience means
to consider possibly unprecedented HILP events, for future resilient power grids it is essential to understand and
anticipate such emerging scenarios and analyze potential consequences for supporting policymakers and implementing
countermeasures [9].

By manipulating consumer behavior with targeted misinformation, i.e. disinformation, social attacks on power
systems pose a new type of threat. For instance, demand response (DR) systems can create detrimental effects when
attacked. Malicious actors could spread misinformation about reduced electricity prices, which could encourage
a significant number of consumers to shift energy-intensive activities to a certain time window, when the grid is
actually stressed [10, 11]. According to a survey, a notable portion of the population would act on and forward a fake
message about an electricity rate discount [12], underscoring the danger of such attacks. With the increasing adoption
of participation in DR programs, the propensity to believe such information might increase [11, 12]. Beside such
misinformation attacks, the spread of true information could affect critical infrastructures as well, especially during
crisis situations [13, 14]. For example, in the case of an evacuation due to a disaster, such as a wildfire, residents might
charge their electric vehicles (EVs) immediately [2]. With the increasing adoption of EVs, the simultaneous charging
could create excessive power loads [2, 15].

Such "infection-like" spreads in user actions present new challenges for grid operators, who must be aware of
spontaneous demand changes to avoid localized or widespread outages. For ensuring grid stability, reliable short-
term load predictions are essential. Traditional forecasting approaches typically rely on autoregressive methods that
incorporate features with regular patterns, such as historical load, weather conditions, and calendar information [16, 17].
Most of these models operate on time resolutions of an hour or more. Intra-hourly trends, i.e. "very short term"
forecasting, are rarely considered [16]. To anticipate the impact of anomalous events, such as spontaneous collective
user behavior, new approaches are necessary.

There exist significant correlations between power demand and social media data [18, 19, 20] or search engine
trends [21]. It has been shown that large-scale textual and geospatial social media data can approximate electricity
utilization patterns well and even beat established forecasting models [18]. Using social media to anticipate changes in
demand patterns presents a new opportunity without the need for widespread physical hardware systems such as smart
meters. Moreover, the monitoring of activities beyond electrical systems enables the ability to detect critical trends
even before they become visible in the electrical domain. Epidemiological models can provide a novel perspective
by representing the "viral" propagation of misinformation in social networks [22, 23, 24]. Just as these models
trace infection patterns, they can be adapted to simulate how information and behavior spread could influence power
consumption.

In this paper, we present a novel approach to modeling and monitoring the impact of social media dynamics on
power systems. To represent the spread of misinformation, an epidemiological Susceptible-Infectious-Recovered (SIR)
model is employed. In contrast to [25], we use the SIR model in a graph-based and stochastic form. The propagation
model is connected to an underlying social network, for which a scale-free graph is used to approximate real-world
social connections. To demonstrate the impact of misinformation on power systems, we apply the model in a case
study using the scenario of a false pricing attack on DR. The results show that even with a small share of participants,
a massive and sudden increase in power demand occurs, which could surpass grid capacity limits. Additionally, we
examine the peak demand if EV charging is conducted at different adoption rates, showing to severely amplify the
impact of synchronized behavior. Even if the alteration of power demand is limited to household devices in residential
areas, the synchronized use and the unexpected action do turn out to be critical.

Unlike previous studies, we leverage real social media data to calibrate our information propagation model. Since
data on events related to misinformation propagation, especially with a connection to power systems, are rare, we
use a novel data-driven approach. By assuming universal patterns in the form of information propagation on social
media, data on a past disaster event is utilized to refine the propagation model. The dataset used for this work
contains keyword-filtered tweets related to a forest fire near Berlin [26]. An optimization algorithm is developed for
the estimation of model parameters from the number of social media posts over time to generate similar infection
progressions with the model. Thereby, we connect the graph-based SIR model with the system-level SIR model based
on differential equations. For the given dataset, the infection progress can be well reconstructed with the obtained
parameters, except for a drop during night. The calibrated propagation model can represent misinformation events in a
general way and be used for the analysis of potential scenarios, e.g. impact assessment of future technologies, as the
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Figure 1: Overview of the suggested monitoring framework

propagation model is decoupled from the power demand model. This can contribute to power system resilience by
enabling policy makers to prepare for various scenarios and formulate respective countermeasures.

1.1. Proposal for a Monitoring Framework

The ability to detect critical demand trends in advance is vital for mitigating the consequences and maintaining grid
stability. In the event of excessive power consumption, usually reactive measures such as load shedding are considered
to reduce the strain on the power system. However, load shedding is problematic due to its severe consequences [27]
and should be only the last resort to prevent the power grid from collapsing. Current research mostly focused on how to
minimize load shedding, but did not explore the detection of critical misinformation for power systems in advance.

With this work, we want to come to a paradigm shift by considering proactive methods. The timely detection of
critical consumer behavior would increase the time window for grid operators to take effective countermeasures before
an event affects the power grid in a critical way and therefore could mitigate the impact and prevent load shedding and
blackouts. Moreover, the early detection of an attack would dissuade attackers [11]. To the best of our knowledge, this
work is the first combining misinformation propagation modeling and real-time monitoring with social media data to
anticipate critical power loads in one framework, which is presented in the following.

The methodology developed in this paper can be integrated in a higher-level conceptual framework for monitoring
social media usage in real-time, detecting misinformation propagation events that are critical for power systems, and
predicting the short-term peak demand. The proposed framework is comprised of five main steps, with the basic
structure illustrated in Figure 1.

1. Social media posts are collected, evaluated, and filtered in real-time. If the impact for a specific geographic
region shall be assessed, the location of users may be relevant and needs to be extracted or estimated. Similarly,
other online data, e.g. search engine trends, can be acquired.

2. The collected data is analyzed to detect any information that could relate to a change in power demand. This can
be done for example by analyzing the semantic information of collected posts using keyword searches or natural
language processing. Potential scenarios related to power grids could be defined in advance and be detected
given the observations, e.g. by using Bayesian networks [28].

3. The SIR model needs to be initialized with parameters, for which we consider two options. In the online
estimation, the speed and progress of the ongoing information propagation can be inferred by estimating model
parameters with the collected social media data in real-time. The offline estimation refers to the use of universal
model parameters, fitted with social media data from past events related to information propagation.

4. Based on the identified scenario and the obtained parameters, a simulation of the information propagation and
power demand model is executed. As the model contains stochastic elements, multiple simulation runs can
provide a comprehensive assessment, considering uncertainty.

5. The simulation results are evaluated to determine the resulting time and amplitude of the aggregated load peak.
This "very short-term" prediction can provide stakeholders with useful information to anticipate irregular and
critical load deviations on the power system.

This novel monitoring concept could be utilized by grid operators or other relevant authorities to better anticipate
and react to critical power demand shifts in a timely manner, mitigating the impact of such events. The active monitoring
of social networks and online trends can assist power grid operations in supplementing traditional load forecasting and
improving situational awareness, giving grid operators the chance for effective countermeasures. For example, the
generation reserve can be activated early enough or precise smart meter curtailments can be planned. This can avoid
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load shedding and reduce economic costs associated with such events. Moreover, when critical information is detected,
the operators of social networks could be warned to slow down or prevent the dissemination before reaching critical
levels.

This paper focuses on the modeling of information propagation and power demand (step 4 and 5) and the offline
estimation of model parameters (step 3). We do not cover the collection of social media posts and scenario detection in
real-time.

The remainder of the paper is structured as follows. In Section 2, the background and related work are outlined.
Section 3 presents our model for information propagation on social media and its impact on power demand. In Section 4,
an optimization algorithm is derived to estimate model parameters with data. A case study is presented in Section 5,
where the proposed model is simulated and the effects on the power system are analyzed. Additionally, the parameter
estimation is applied using a dataset of social media posts. Section 6 provides a discussion on the approach and a
comparison with other works. Conclusions are drawn in Section 7.

2. Related Work

In this section, we provide an overview of the theoretical background for this work and related research that
connects social media and power systems.

Social networks are often modeled using random graphs. Online social networks tend to exhibit scale-free
characteristics, small-world properties, and a high clustering coefficient [29]. A variety of random graph models have
been developed with the objective of reproducing these characteristics. Notable examples include the Watts–Strogatz
graph [30] and the Barabási–Albert graph [31]. Both were also used in the analysis of the spread of information
[22, 12, 24].

The spread of information and misinformation in social networks can be modeled with epidemiological models
[22], where the "viral" propagation of information can be seen as an infection that spreads through a social network. A
commonly used epidemiological model is the Susceptible-Infectious-Recovered (SIR) model. In its compartmental
set-up, entities are assigned to three different states, representing the stages of the infection process [22]. The behavior
of each entity is contingent upon its state. In the context of modeling information propagation processes, the states
refer to the following meaning:

• Susceptible (S) entities are unaware of the information being spread and are receptive to the information.

• Infected (I) entities know and act on the information, sharing it with their acquaintances.

• Recovered (R) entities know of the information, but do not act on it.

There exist several extensions of the SIR model that refine the states which entities can assume during the infection
process. Notable examples include the Susceptible-Infected-Recovered-Susceptible (SIRS) model, the Susceptible-
Exposed-Infected-Recovered (SEIR) model [22], and the Susceptible-Exposed-Infected-Skeptic (SEIZ) model [23].

Most SIR models are based on differential equations dS
dt ,

dI
dt ,

dR
dt , and represent the total number of entities in each

state S , I,R in the system at a given time t. These models provide a top-down (system-level) view of the infection
process and do not model entities individually. In contrast, graph-based SIR models consider a graph, representing the
possible connections where information can flow, and compute the state of each individual entity given their neighbors’
states, constituting a bottom-up approach. These models can incorporate stochastic state equations, which often yields
more realistic results compared to deterministic models [32].

In the field of (mis-)information propagation, the potential impact on power systems has recently been in focus, most
commonly considering false pricing attacks [33, 34, 10, 11, 12, 25]. The information propagation models employed in
the studies cover independent cascade models [33, 34, 12], threshold-based influence models [10, 12], and the SIR
model in its system-level form [25, 14]. Graph-based SIR models have rarely been applied in the context of critical
infrastructures yet, for example to model the spreading of computer viruses [35].

As the change in power demand induced by the social media (mis-)information highly depends on the concrete
type of situation, the power demand model needs to consider the specific scenario. For the false pricing attack, an
increase in demand by a constant factor [33] or a dedicated additional power demand on top to a regular demand [10]
was assumed.
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However, none of the aforementioned studies calibrated or validated their models by using real social media data.
This is due to the fact that data on such events is rarely available. In this work, we aim for using social media data from
similar propagation events to enhance information propagation models.

As a countermeasure for such situations, previous work mostly considered reactive measures, such as load shedding
[33, 10, 34, 25]. The minimization of load shedding can be formulated as a mixed integer program (MIP) if the power
system is represented as a balanced network flow model [25, 10]. Preventive methods, e.g. real-time monitoring to
predict demand peaks before their occurrence, have not been considered.

A game-theoretic analysis of a strategic demand response attack against an electric utility operator as defender has
shown that the time of detection plays a significant role in dissuading the attacker to reduce the impact or prevent the
attack [11], underscoring the need for the timely detection of such events.

3. Information Propagation and Power Demand Model

This section presents our model of information propagation in social networks and its impacts on power demand.
The simulation of the model corresponds to part 4 of the monitoring framework (see Figure 1).

The model consists of three main components. First, we introduce the social network model representing the social
connections between the entities, e.g. individuals, as a graph. Second, we discuss the modeling of the information
propagation through the social network by using a modified version of the SIR model in a graph-based and stochastic
form. Third, the modeling of the resulting changes in the power demand of affected entities is described. A summary
of all model parameters is given in Table 1.

3.1. Social Network

We model the social network as a graph G = (V, E), where entities are defined as nodes V and social connections
between them are represented as edges E. Since the real social structures of a population are difficult to obtain, we use
random graphs with characteristics similar to real social networks.

In this work, we use the Barabási–Albert (BA) graph [31]. The graph BAN,k uses two parameters. N is the number
of nodes in the graph and k ∈ [1,N) is the number of edges which are generated when a new node is added to the graph.
Thus, k is an indicator for the connectivity of the social network.

3.2. Information Propagation

The social network graph resembles the possible routes where information can propagate. If the edge ei, j exists,
information can spread from an entity i to entity j with a probability p which is computed with the SIR model.

A graph-based SIR model, similar to [24] is used in this work to model the propagation of information. To represent
uncertainty in the stochastic process of information propagation, the model uses probabilistic state transitions. The
model differs from SIR models used for epidemiological analysis by the possibility to transition from Susceptible
directly to Recovered, representing people that are skeptical to the information right away. The state diagram of the
model is shown in Figure 2.

verify

verify

Figure 2: State chart of the modified information propagation model according to (1)
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The state of an entity i at the time step tn is defined as si(tn) =
[
sS

i (tn), sI
i (tn), sR

i (tn)
]
, where sX

i (tn) = 1 if i is in state
X, otherwise 0. An entity i may transition to another state X at time step tn+1 with the probability pX

i (tn+1) as

pS
i (tn+1) = (1 − fi(tn) − gi(tn)) sS

i (tn) (1a)

pI
i (tn+1) = fi(tn)sS

i (tn) + (1 − pverify)sI
i (tn) (1b)

pR
i (tn+1) = gi(tn)sS

i (tn) + pverifysI
i (t) + sR

i (tn) (1c)

with

fi(tn) =

0 if hI
i (tn) = hR

i (tn) = 0

β
(1+α)hI

i (tn)
(1+α)hI

i (tn)+(1−α)hR
i (tn) else

(2a)

gi(tn) =

0 if hI
i (tn) = hR

i (tn) = 0

β
(1−α)hR

i (tn)
(1+α)hI

i (tn)+(1−α)hR
i (tn) else

. (2b)

At the beginning of the infection process (n = 0), all entities are in the susceptible state, except for one or multiple
infected entities, which are considered the source of the misinformation. A susceptible entity i may change its state
to either infected or recovered depending on fi(tn) and gi(tn). fi describes the probability of infection regarding the
misinformation, while gi describes the probability of its debunking. They are defined in a way such that the number
of infected and recovered neighbors hI

i (tn) and hR
i (tn) of node i influences its transition probabilities as soon as the

information reaches a susceptible entity’s neighbor. Both probabilities depend on the parameters α and β. While β
determines the overall speed of the infection process, α describes the credibility of the information by weighting the
number of infected neighbors, implying that the misinformation is more convincing than its true opposite. Infected
entities may change their state to recovered if they receive the corresponding fact check given the probability pverify.
Recovered entities never change their state again. Thus, all entities will transition to the recovered state after a sufficient
number of iterations.

Table 1: Summary of the model parameters

Notation Description Range
Social Network Parameters

N Number of nodes in the social network graph [1,∞)
k Connectivity parameter of the BA graph [1,N)

Information Diffusion Parameters
α Credibility of the information (0, 1)
β Spreading rate (0, 1)

pverify Fact-checking probability (0, 1)

3.3. Power Demand
The entities may change their power demand behavior depending on the information that they receive through

social media. The change in power demand is modeled using a rule-based approach and depends only on the entities’
states and the specific scenario. This part of the model is therefore decoupled from the social network and information
propagation model. For a specific scenario under consideration, the rules need to be adjusted accordingly.

The model is based on several assumptions. Only infected entities are assumed to change their power demand, as
only changes due to misinformation on social media are considered. Since susceptible entities are not aware of the
misinformation and recovered entities do not believe in the information, these entities do not change their behavior and
follow regular demand patterns.

Since misinformation affects people’s behavior, which is mostly linked to power demand from household appliances
rather than power demand from public or industrial buildings, we focus on domestic power demand only. Each node
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in the social network graph represents a household, rather than an individual because household members can be
considered densely connected and household appliances and EVs can be modeled per household.

The actual power demand is determined at appliance level. Infected households are assumed to consume additional
power on top of their regular demand, as defined by the power consumption of the relevant appliances in each household
given the specific scenario. Each type of appliance is distributed over all households with a specified adoption rate.
If a household owns the appliance, it is assumed to be turned on when the household becomes "infected" and to be
turned off after a specified duration. To determine the overall load on the power system, the aggregated power demand
is calculated as the sum of each individual demand.

4. Parameter Estimation with Social Media Data

The model presented in the previous section can be used to simulate the effect of information propagation on power
demand for different scenarios and parameters. However, there are several model parameters which have to be set. If
the model shall create realistic progressions of information diffusion, the parameters have to be selected reasonably.

We aim to utilize social media data in order to obtain parameters such that the SIR model generates typical infection
progressions, resembling propagation dynamics observed in real-world examples. Similar to other works [23, 36], we
assume that during an extraordinary event, the spread of information is reflected in the use of social media, and that
the number of social media posts related to the event is proportional to the number of infections in the model over
time. While previous works that dealt with parameter estimation focused on differential equation based SIR models
[23, 36, 37], we will connect this system-level view with the stochastic graph-based representation from our model to
perform the estimation.

The parameter estimation is embedded in part 3 of the monitoring framework (see Figure 1). We differentiate
between online and offline estimation. The online estimation would extrapolate the ongoing propagation process for the
current situation. However, this would require to estimate model parameters during the information spread in real-time
only from the collected social media posts, which is challenging because the simulation should be finished before
the peak electricity demand is reached. Assuming universal model parameters enables the creation of a generalized
information propagation model in advance. Due to the universal nature of information propagation on social media,
regardless of the specific topic of the event, the model can be considered to generally represent propagation events once
the parameters have been fitted. The parameters can be determined with social media data from past events, which is
described in the following.

4.1. From Graph-based to System-level View
The SIR model used in this work is graph-based, i.e., the states of the nodes in the system are calculated individually

and depend on the node’s neighbors. In theory, the following optimization algorithm could be applied using the graph-
based model, but the increased computational burden for its simulation and the stochastic nature of the model would
complicate the estimation. Therefore, we transform the SIR model from the entity representation to the system-level
view.

The system behavior of the SIR model is approximated using mean-field theory. First, the total number of entities
in each state X at time step n can be written as Xn = pX

n ·N. Thus, in average, si(tn) =
[
pS

n , p
I
n, p

R
n

]
. Second, we simplify

the underlying graph structure by assuming that all nodes have the same mean degree 2k and the states are uniformly
distributed over the network. Then, we can generalize the neighboring functions fi, gi (2) to (3) for the affected nodes
by approximating the number of neighbors in state X as hX

i (tn) = 2k · pX
n :

fn = cβ
(1 + α)In

(1 + α)In + (1 − α)Rn
(3a)

gn = cβ
(1 − α)Rn

(1 + α)In + (1 − α)Rn
(3b)

The factor c accounts for the fact that not for all susceptible nodes fi(tn) > 0 and is set to c = k/N.
Consequently, the state equations (1) in time-discrete form can be simplified as the expected value of the number of

entities in each state:
7
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S n+1 = (1 − fn − gn) S n (4a)
In+1 = fn S n + (1 − pverify) In (4b)

Rn+1 = gn S n + pverify In + Rn (4c)

4.2. Optimization Problem

The optimal model parameters, which fit the social media data best, can be determined by solving an optimization
problem with the transformed SIR model (4). By extracting the social media posts related to an extraordinary event, the
number of posts can be obtained as a function of time, denoted as mposts(t).

The model parameters are fitted to the data by minimizing the mean squared error between mposts(t) and the number
of infected entities I(t) computed by the system-level SIR model. The resulting problem can be represented as an
optimization problem with non-linear difference equation constraints and is summarized as follows:

min
α,β,pverify

nend∑
n=0

(
mposts,n − In

)2
(5a)

s.t. (4) ∀n ∈ {0, . . . , nend} (5b)
S 0 = N − I0 (5c)
I0 = mposts,0 (5d)
R0 = 0 (5e)
α, β, pverify ∈ (0, 1) (5f)

In the optimization process, the parameters α, β, pverify are determined. The progression of S n, In,Rn is calculated
by solving the difference equations over all data points mposts,n.

5. Case Study: False Pricing Attack on Demand Response

In this section, we apply the proposed parameter estimation algorithm of Section 4 with social media data to fit
the parameters of the SIR model. With the refined information propagation and power demand model, presented in
Section 3, we investigate a false pricing attack and the resulting effects on the power load. Additionally, we analyze
the impact of EV charging on the results in the scenario. The evaluation of the model is concluded with a sensitivity
analysis.

5.1. Scenario

We investigate the scenario of a false pricing attack in which a demand response (DR) event is falsely announced to
incentivize consumers to increase their electricity demand at a given time. Malicious actors could create a fake social
media post (see Figure 3), impersonating an energy supplier and announcing a limited-time offer for reduced electricity
prices when the grid is at limit. According to a survey, it could be assumed that a significant percentage of customers
would believe the information, eventually forward it, and change their electricity usage, regardless whether they are
actually participating in a DR program [12].
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Figure 3: Fictive post of a user impersonating an energy supplier

5.2. Social Media Dataset and Parameter Estimation
As discussed in Section 4, the use of real social media data is desirable to apply the parameter estimation algorithm

for obtaining suitable parameters for the SIR model. As the method fits the data to the infection curve created by the
SIR model, the data should cover a period where a certain, extraordinary event led to increased information propagation
through social media. To capture only the dynamic of such an event, the social media posts may need to be filtered to
the specific event.

For this work, we used tweets in relation to a forest fire caused by an explosion in the Grunewald forest during
the night of August 3rd and 4th 2022, in Berlin, Germany [26]. 1759 tweets were collected between August 4, 2022
on 2:30 am and August 5, 2022 on 10:30 pm that contained the keyword "Grunewald" in combination with one or
more terms from a predefined list of disaster-related terms, such as "fire", "explosion", or "bomb". The tweets were
aggregated for every 30 minutes. Additionally, a moving average filter was applied to smooth the data.

The resulting time series of the number of posts mposts,n is used to estimate the parameters of the SIR model by
solving the optimization problem introduced in (5). The numerical implementation is conducted with the Python
package SciPy [38] by using the optimization method "Limited-memory BFGS". The algorithm yields the parameters
α = 0.609, β = 0.006, pverify = 0.036.
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Figure 4: Grunewald dataset and the estimated infection progress

Figure 4 shows the number of posts from the filtered data and the infection process for the estimated parameters
with the number of infected entities In over time. Beside apparent fluctuations in the use of social media, increased
activity related to the event throughout the two days is visible. The resulting infection curve demonstrates that the
estimated parameters can generate a similar infection process, especially for the first day of the event. The simulated
infection process reaches its peak at a time which is almost identical to the peak observed in the data. Given that the
event and the usage of social media both persist for more than a single day, a decline in activity during the night is
observed, which cannot be represented by the model.

5.3. False Pricing Attack Scenario Simulation
With the estimated parameters from the previous subsection, we simulate the model for the scenario to analyze the

altered power consumption and demand peaks.
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Figure 5: Simulation results for the demand response attack scenario

The dissemination of misinformation regarding reduced electricity prices is presumed to commence at 16:00, while
the infected entities begin to act in accordance with the announced time (19:00), activating household appliances. The
model parameters and appliances considered for this scenario are listed in Table 2. The adoption rate of the appliances
is chosen as the percentage of German households that possess the specific items, as provided by the Federal Statistical
Office of Germany [39]. The time step is set to 30 minutes. The regular power demand is modeled with standard load
profiles given by the German Federal Association of Energy and Water Management (BDEW).

Table 2: Model parameters for the simulation

Social Network Parameters
N 1000
k 50

Appliances
Type Duration Adoption Rate Power Usage

Washing machine 1.5 h 95 % 1 kW
Dryer 1 h 42.3 % 3 kW

Dishwasher 3 h 71.9 % 1.4 kW
Oven 1 h 80 % 2.6 kW

Electric stove 30 min 94 % 4 kW
EV charging 6 h 2 % 11 kW

Figure 5a shows the reference power demand and the simulated power consumption, altered due to the demand
response attack. The announced time at which the event shall start is marked. The simulation is run 100 times with
different seeds to assess the resulting output range of the stochastic model. The respective average, minimum, and
maximum values of the simulation results are shown.

The power consumption rapidly increases after the beginning of the event. The extremely steep increase happens
due to the fact that the spreading of the misinformation already started 3 hours earlier and a significant number of
entities is infected at 19:00, as can be seen in Figure 5b, showing the infection process. The peak demand occurs at
20:00 and is 3.42 times higher (in average) than the regular power demand. The power demand decreases after about 2
hours, which can be explained by the duration that most household appliances run. Nevertheless, the power demand
remains notably higher than the regular power demand for about 9 hours because of the delayed infections of other
entities. After 24 hours, the infection wave is almost over and remaining susceptible entities become directly recovered.

Remarkably, the number of infected entities is low compared to the number of susceptible and recovered entities,
with the maximum of 13.9 % (in average) at 22:30. Note, that the electricity load peak occurs 2.5 hours before the
infection peak. The load peak was created by only 11.4 % (in average) coincidentally infected entities.

Beside the average values, the variation of the simulation runs can be analyzed. The peak load varies from 825
to 1510 kW, which equals 2.29 to 4.19 times the regular demand. Also, in the period of moderate increased demand
from 2 to 9 hours after the event, a load range of 150-250 kW is visible, which refers to 25-40 % deviation from the
average. The infection process shows some variance in the number of entities in each state over time, although the
overall progress dynamic remains similar.
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5.4. Impact of EV Charging
Next, the simulation model is applied to investigate the impact of increased EV adoption and home-charging,

especially for the synchronized occurrence of such significant loads. To analyze this effect, the simulation of the
demand response attack scenario was set up with different EV adoption rates, while keeping the other simulation
parameters (see Table 2) unchanged.
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Figure 6: Simulated altered power demand with different EV adoption rates

Figure 6 shows the simulation results for the scenario with EV charging for adoption rates ranging from 0 to 100 %.
Only the average results are shown here. The peak electricity demand increases by up to 85 % as the adoption rate
increases. In addition, the duration of the abnormal load condition is longer than in the previous simulation, as EV
charging is conducted for a longer period of time compared to household appliances.

5.5. Model Sensitivity Analysis
In contrast to the system-level SIR model, the graph-based SIR model employed in this work is based on stochastic

equations (1). This implies that each simulation run can yield different results for the infection process. Incorporating
randomness into a model is a viable approach to increase the variety of possible solutions, particularly in the case of
uncertainty. However, it is essential to understand and quantify the variability of the stochastic model. Moreover, we
want to analyze the influence of the parameters of the SIR model on the resulting infection process.

The sensitivity analysis is conducted by simulating the infection process by varying the model parameters α, β, pverify
separately while the other two parameters are fixed. The fixed values of the parameters are α = 0.4, β = 0.2, pverify =

0.2. To assess the variance of the results created by the randomness persistent in the SIR model, the simulation was
run 100 times with different seeds for each parameter variation. The average, minimum, and maximum outcomes are
determined.
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(b) Infection process for varying β
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Figure 7: Results of the sensitivity analysis

A comparison of the results across different parameter variations in Figure 7 shows that the model seems to be
insensitive to changes in α, while β and pverify have a significant impact on the infection curve. A higher β leads to a
higher and earlier peak of infections and faster decline, since β acts as a parameter for the speed of the infection process.
Conversely, a higher pverify leads to a smaller and shorter infection process because more entities recover faster. As the
effect of pverify comes into play at a later stage, the start of the infection curve is independent from its value.
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Moreover, the number of entities over time is robust over multiple simulation runs. During the infection process, a
certain amount of variance in the infection curve is visible.

6. Discussion

Although the investigated model includes multiple assumptions, the results of the case study demonstrate that a DR
attack could in general create a sudden and significant impact on the aggregated power demand. The synchronized
appliance usage triggered by a maliciously announced time window, combined with the high power consumption of
"infected" entities, could push the aggregated load to critical and unprecedented levels. This poses a serious threat to
power systems in three distinct ways.

• First, the significant power increase can exceed limits in distribution grids, leading to equipment damage, tripping,
and local blackouts. If the scale of the event is large, it could also exceed limits in transmission grids and lead to
load shedding.

• Second, the steep and sudden rise in demand within a short period could become critical for the frequency
control, especially if this occurs unexpectedly, thus endangering grid stability. If the resulting load spike is high
and rapid, in combination with the unexpected occurrence, a lack of generation reserve may result in voltage
instability, load shedding, or rolling blackouts. A sudden decrease could be critical for grid stability as well [3].

• Third, the positive intention of DR can be subverted to detrimental effects when maliciously announced,
potentially endangering power supply during periods of low energy availability.

The case study further demonstrates that the increasing adoption of EV home-charging severely increases the
impact of a DR attack. Because of the longer time of usage, here it is not only about reaching load capacity limits, but
also involves a significant amount of energy, depending on the affected scale. With the increasing electrification and the
trend to an "all-electric" society, the effects of such events might increase in future and become more relevant.

Given the potential consequences and the rising vulnerability to synchronized consumer behavior facilitated by
social media, such scenarios require consideration by policy makers for analyzing potential consequences and handling
such situations effectively. Besides DR attacks, related scenarios involving information propagation and altered power
demands could yield similar results. While grid capacity enhancements could avoid reaching limits, this solution is
costly and the challenge of grid balancing remains. As the outcomes can usually be mitigated with sufficient reaction
time, the early detection and load prediction for such anomalous events seems of vital importance.

Comparing with studies of similar scope, the results of our case study are qualitatively similar to other works that
investigated DR attacks. The differences, for example the higher load peak compared to [11], can mostly be attributed
to different participation rates and appliance parameters. While we considered solely the effect on the aggregated load
over time without making assumptions on load limits, some works used a simulated power network model, either
general reference grids [33, 34, 10] or artificially reconstructed grids [12, 25]. In that case, the failure of certain
elements of a specific network can be assessed, under the assumption of simplified failure limits [33, 10, 12]. However,
it is an open question, to which extent a network simulation would provide a benefit for non-localized demand trends.
Given the several uncertainties involved in the considered extraordinary events, the aggregated load could be sufficient
to assess whether the impact of a scenario is principally critical. Certainly, if detailed geo-referenced grid data are
available and capacity limits are known, the precision of assessments and analysis of spatial effects for the altered power
demand could be improved for a given case. Nevertheless, the challenge of mapping entities in the social network
geographically to the electrical grid remains.

Regarding the modeling of the information propagation, the graph-based SIR model used in our study can produce
various, robust infection progressions. In contrast to independent cascade models [33, 34, 12] and threshold-based
influence models [10, 12] used in previous works, the SIR model includes a recovery state, which represents the
debunking of misinformation, leading to the decrease in infections. Although the recovery state mostly comes into
play at a later stage, it was shown that the fact checking probability has a significant influence on the infection peak
(see Figure 7c). In addition, the SIR model can be easily extended with additional states to further refine the modeling
of rumor spreading [22]. As the considered scenarios are subject to uncertainties, stochastic modeling is essential
to provide a range of possible outcomes. While the independent cascade and threshold-based influence models are
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graph-based and stochastic models, the SIR model used in [25] is based on deterministic differential equations. The
developed SIR model of our study is graph-based and stochastic, thus can represent uncertainty and account for different
network structures.

Selecting the parameters of the propagation models is a crucial aspect. We developed an optimization algorithm to
fit the SIR model with social media data (see Section 4). In this regard, choosing the SIR model provides a further
benefit because we can connect the graph-based SIR model with the system dynamics representation, simplifying the
fitting from a top-down perspective. The case study showed that the parameter estimation can be used to obtain a fitted
model that can reproduce propagation dynamics observed in real data. Most of the other studies did not use any data to
estimate model parameters and displayed their results as a function of them [11, 12, 25]. Raman et al. [12] conducted a
survey for estimating the propensity of people to believe and forward misinformation related to a DR attack, although
the authors mentioned that the direct adoption of survey results into model parameters is challenging. While this can
be seen as fitting on the low level, our model fitting takes place at the level of the aggregated behavior. This has the
advantage that it ensures that the resulting model behavior is aligned with the real data.

Many of the studies considered the optimization of load shedding as a counter measure [33, 34, 10, 25]. As has
emerged from the beginning of this section, the unexpectedness of the synchronized demand changes plays a central
role in the criticality and the potential consequences. For this reason, the continuous monitoring of social media and
online trends, as suggested in Section 1.1, could provide operators with timely warnings and predictions. This would
increase the time window for effectively dealing with such critical situations, which would ultimately improve the
chance of avoiding load shedding. To implement the real-time monitoring, multiple challenges remain. For example,
in our model all entities can get in contact with misinformation. However, as not everyone might use social media
and receive the information in the relevant time period, the number of entities, i.e. N, would need to be inferred from
the amount of social media activity. Moreover, the SIR propagation parameters might be situation-specific. While we
showed that the offline estimation can be used to capture the patterns of a social media dataset, the real-time estimation
of model parameters during the propagation process could improve the prediction of the model.

7. Conclusion and Future Work

In this paper, we investigated the modeling and detection of social media induced impacts on domestic power
demand. We presented a graph-based model for the propagation of information over social networks based on the
epidemiological SIR model. Using the scenario of a misinformation attack, we demonstrated that sudden, unexpected
demand actions can lead to significant over-consumption and pose a threat for grid stability. The increasing adoption of
energy-intensive technologies in households, e.g. EV home-charging, amplifies the criticality of these scenarios. This
shows that more research for understanding, detecting, and handling such power demand synchronization events is
needed.

We presented the novel idea of a monitoring framework, providing a basis for analyzing the impact of potential
scenarios and predicting critical load shifts in real-time. We used social media data from a past crisis event to estimate
information propagation patterns for obtaining a realistic model. This approach extends current research, as mostly
reactive countermeasures, such as load shedding, are considered. A paradigm shift to proactive measures could mitigate
the negative consequences to power grid stability and prevent blackouts. Grid operators could use the monitoring
framework to anticipate critical power demand peaks in advance, allowing them to take effective countermeasures, thus
enhancing grid stability and resilience.

Future research could focus on the parts of the monitoring framework which were not considered in detail in this
work. The collection, filtering, and processing of social media data involves several conceptual and practical challenges
that require further investigation. In particular, the semantic information of social media posts and the potential effect
on power demand needs to be extracted. Advanced natural language processing techniques or large language models
could provide a solution for this task. For example, the language model CitEnergy [40], specifically designed to analyze
energy-related tweets, could be employed. Furthermore, methods to map social media posts to geographic locations
could be investigated to identify localized events [41]. With spatial information, social networks could be mapped
more accurately to the power grid infrastructure to assess potential impacts with a higher precision.
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