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Abstract

In this paper we present an approach to check the plausibility of UAV positions based on independent distance
estimations between the nodes in a flying ad-hoc network (FANET) built up by the UAVs. To achieve this, we
define a set of data messages that are flooded throughout the network by each node and that are used to
derive a situational overview if received at a particular UAV. Based on the received data, distances between
the nodes within the FANET can be estimated both from GNSS position readings as well as from time of flight
information additionally provided in the data messages. The difference of both values can be used as an
indicator to thereby classify edges and nodes of the FANET as plausible or implausible. In our work, we derive
appropriate thresholds for the deviation of both measurements as well as a trust score for each node based
on the plausibility values of adjacent edges. To showcase our approach, we apply it to an air traffic scenario
based on drone package delivery in urban environments and simulate the data traffic in the resulting FANET
resulting from the data messages we defined. We show, that our approach yields reasonable results for the
evaluated scenario.
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1. Introduction
1.1 Motivation
In recent years more and more UAV applications (e.g. drone package delivery (1) (2), inspection or
monitoring) are being realized resulting in considerable traffic volumes in the very low-level airspace
especially in urban areas. The safe operation of vehicles in high traffic scenarios, however, requires
reliable communication, navigation and tracking of the vehicles (3). The navigation systems of the
UAVs in use, generally depend on GNSS as main navigation source. GNSS, however, is vulnerable to
various attacks like spoofing or jamming leading to undesirable situations, which can cause damage
to the vehicle or ground infrastructure or be harmful to people. Position verification is, therefore, an
important issue that needs to be addressed. Here communication plays a major role, as despite
ground-based surveillance methods exist, UAVs can actively provide their position information to
other vehicles or ground entities (e.g. via remote identification systems). In addition, flying ad-hoc
networks (FANETs) provide another solution to share position information and enable redundant
communication (4) between the UAVs and from the UAVs to ground stations. This in turn allows for
information sharing throughout the network enabling UAVs to locally construct a situational overview
and to verify the plausibility of the position data provided by other UAVs.

1.2 State of the art
In general, flying ad-hoc networks are subject to various security threats either from the outside (e.g.
GNSS spoofing or jamming, man in the middle attack) or from the inside of the network (e.g. worm-
hole attack or sybil attack), that intent to compromise a vehicle, falsify or extract data and more.
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Hence, the protection against cyber-attacks is an important topic in current FANET research. Be-
side cryptography, certificate management or secure communication protocols, trust management is
one approach to cope with these threats. (5) gives a good overview of the topic mainly addressing
UAV teams to perform specific collaborative tasks such as surveillance, monitoring or data collection.
Especially in the military domain security aspects are crucial. (6) presents a methodology combin-
ing authentication mechanisms with movement plausibility checks. Also, in the context of vehicular
ad-hoc networks (VANETS) and mobile ad-hoc networks (MANETS), the approach to use plausibility
checks is addressed (7). Such checks include among others the acceptance range threshold (ART),
mobility grade threshold (MGT), the sudden appearance warning (SAW), the simple speed check
(SSC) and the distance moved verifier (DMV). Of these approaches, ART and MGT have been ap-
plied to UAVs in (8), but with this approach, position verification cannot be performed for the entire
network, but is limited to a UAV’s direct neighbours. (9) explores the position verification between
a mobile station and several ground stations. The issue of false or inaccurate positions of UAVs
obtained through GNSS is also addressed in (10) and (11). Here, the authors use additional data
sources, such as the inertial navigation system or received signal strength from known transmitters
to verify their own position. Nevertheless, this cannot be applied to verify the position of other UAVs.

1.3 Our contribution
In the project VEREDUS funded by the German Ministry of Economic Affairs and Climate Action a
flying ad-hoc network is developed that ensures communication to the vehicles in case of a failure
in the primary link and additionally enables a plausibility check of the GNSS positions of all UAVs
participating in the network. This check is envisioned to be obtained by distance measurements in-
between the vehicles using the data link. All thereby collected independent distance measurements
and GNSS positions are broadcasted through the whole FANET, such that each UAV receives all
information and can construct a situational overview. This provides for checking the positions of other
UAVs in terms of plausibility using both measurements by calculating a position trust value for each
node (UAV) of the network graph. In this work, we present the basic assumptions taken to set up
such a system followed by the description of a methodology that can be used to perform the position
verification by calculating the corresponding trust values. Furthermore, we will show the suitability of
the algorithm in simulated scenarios including UAV mobility and data traffic.

2. Methods
2.1 Network model
The ad-hoc network that we assess in our work is represented by a two-dimensional graph G = (N,E)
that is given by the nodes N (airborne stations; AS) and edges E (data links between two AS).

2.1.1 Node distance
The distance between two nodes of the network graph Ni and N j at time t is denoted as dt

i j. For each
pair of two nodes Ni and N j in the network, a distance measurement can be obtained if they are within
radio range and a radio connection is established. As described in section 2.5, each node broadcasts
its position to its neighbours, which then adds the time of flight information to the data message that
is used to calculate the distance. The measurements for the distance between two nodes (CPRBA and
CPRAB) are treated independent of their direction. It is dt

i j = dt
ji. A measurement d̂i j of the distance is

given by the true distance di j and a normally distributed error term εd = N (0, σ2
d ). With σd being the

standard deviation for the distance measurement.

d̂i j = di j + εd (1)

For each edge Ei j between two nodes in the network graph a distance history D̂i j is stored locally
at the observing node and updated as new information is obtained. Old data can be deleted if
they surpass a certain time limit. Along with the distances the history of timestamps of when the
measurements were obtained TE,i j is stored. Here tn depicts the latest measurement. An edge
having at least one valid measurement in the time interval IR (see section 2.3) is considered an active
edge. Hence, also a list of active edges KE is stored at the observing node.
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D̂i j = (d̂tn
i j , d̂

tn−1
i j , d̂tn−2

i j , ...) TE,i j = (tn, tn−1, tn−2, ...) (2)

The distance d̃t0
i j between two nodes i and j is linearly extrapolated at the observing node for a

timestamp t0 using the applicable measurements A and B from D̂i j that are chosen by a specific
selection rule (see section 2.3)

d̃t0
i j = d̂tA

i j +(d̂tA
i j − d̂tB

i j ) ·κ
t0
di j

= dtA
i j +(dtA

i j −dtB
i j ) ·κ

t0
di j︸ ︷︷ ︸

dt0
i j

+εd̃t0
i j

(3)

Here κ
t0
di j

depicts the factor derived from two selected timestamps tA and tB obtained from the values
in TE,i j in relation to t0.

κ
t0
di j

=
(t0 − tA)
(tA − tB)

(4)

2.1.2 Node position
The position of a node Ni at time t is denoted as pt

i. The measured positions of a node are given by the
true positions of the node and a normally distributed error vector of the measurement εp = N (0, σ2

p).
With σp being the standard deviation for the position measurement.

p̂i = pi + εεε p (5)

Same as for distance measurements, each node N in the network propagates its own position p̂t

to all other network nodes. Each observing node can, therefore, store a history of positions P̂i for
each other known node Ni locally. Along with the positions the history of timestamps of when the
information was obtained TN,i is stored. Additionally, all nodes that are known to the observing node
are stored in a list KN .

P̂i = (p̂i
tn , p̂i

tn−1 , p̂i
tn−2 , ...) TN,i = (tn, tn−1, tn−2, ...) (6)

The position p̃t0
i of a node Ni is then linearly estimated for time t0 based on its history P̂i by

p̃t0
i = p̂tA

i +(p̂tA
i − p̂tB

i ) ·κ
t0
pi
= ptA

i +(ptA
i −ptB

i ) ·κ
t0
pi︸ ︷︷ ︸

pt0
i

+εεε p̃t0
i

(7)

Here κ t0
pi

depicts the factor derived from the two selected timestamps tA and tB obtained from the
values in TN,i in relation to t0 same as for the distance estimation (see eq. 4). The distance between
two nodes Ni and N j can be obtained from the the estimated positions p̃t0

i and p̃t0
j of the nodes

according to

δ̃
t0
i j =| p̃t0

i − p̃t0
j |= | pt0

i −pt0
j |︸ ︷︷ ︸

δ
t0
i j

+ε
δ̃

t0
i j

(8)

2.2 Verification
2.2.1 Edge plausibility check
Edges can be verified if two estimations for the length of an edge (one from distance measurements,
one from position information) exist at the observing node. The estimated distance deviation for edge
Ei j is then given by

∆̃
t0
i j = d̃t0

i j − δ̃
t0
i j (9)

While dt0
i j −δ

t0
i j representing the distance deviation without position and distance uncertainties denoted

as ∆
t0
i j. The plausibility µ

t0
i j of edge Ei j is considered to be true at time t0 if the distance deviation is

below a decider threshold ∆lim.
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µ
t0
i j =

{
1 i f | ∆̃

t0
i j |≤ ∆lim

0 else
(10)

Hence, the decider threshold ∆lim can be used to determine the required sensor performances σp and
σd . The other way around, given sensor performances determine the decider threshold and thereby
the accuracy of the plausibility check.

2.2.2 Node plausibility check
The plausibility information of the edges allow for the derivation of a plausibility value for nodes. If at
time t0 all predicted edges are given by Mt0

E (see section 2.4), for each node Ni the adjacent predicted
edges at time t0 are given by Bt0

i . The amount of predicted edges containing node Ni is depicted as
nt0

E,i. The amount of plausible edges containing node Ni is given by

nt0
E,pl,i = ∑µ

t0
i j ∀ Ei j ∈ Bt0

i (11)

Finally the trust score resulting from the edge plausibility check (SCE) at a specific node Ni and
timestamp t0 is then given by the fraction of plausible edges nt0

E,pl,i divided by total amount of adjacent
predicted edges nt0

E,i

SCEt0
i =

nt0
E,pl,i

nt0
E,i

(12)

As an example, Figure 1 shows a schematic network of 9 nodes and the corresponding edges estab-
lished by the network protocol in between them. If the position of one node is falsified (in this case
node A moves by the distance r f to the position of A′) and the falsified position is distributed within
the network, the length of the adjacent edges will yield deviations when predicted from the position
information if compared to the direct distance measurements. Hence, the trust score SCE for node A
as well as for the nodes neighbouring node A show SCE values < 1, while the SCE value for node A
itself is zero (numbers above the nodes).
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Figure 1 – Schematic of plausibility check and trust score (SCE) for falsified position of node A by r f

(note: it is assumed that all adjacent edges to node A are classified as implausible).

Same as for the edge plausibility, if the node trust score is below a threshold SCElim, the node can be
considered implausible.

ξ
t0
i =

{
1 i f SCEt0

i ≤ SCElim
0 else

(13)

In the example above, by setting SCElim = 0.5 node A would be flagged as implausible ξA = 0 and
mitigation measures might be put in place, while the other nodes would still be classified as plausible.
This of course is an ideal case, and it is assumed, that by shifting A to A′ all adjacent edges are
classified as implausible. However, this might not necessarily be the case in real life networks. It
depends on the constellation and number of edges whether a position shift will result in implausible
edges such that the SCE value is reduced sufficiently in order to classify the node as implausible.
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2.3 Timing constraints and prediction modes
As the extrapolation of the distances and positions is linear, not all values in D̂i j and P̂i j can be used
for extrapolation. On the one hand, the two values that are used should not be too close to each
other in order to reduce the prediction error. On the other hand, they should not exceed a certain
age, as then the assumption of linear movement cannot be anticipated any more. To account for
these constraints two factors tR and tC are introduced.

IR

IC

NOVALUE
timetn t0

SINGLE
timetn t0

PREDICTED
timetn−3 tn−2 tn−1 tn t0

OVERLIMIT
timetn−1 tn t0

TOOCLOSE
timetn−1tn t0

Figure 2 – Prediction modes resulting from selection of measurements based on time limitations tR
and tC. (unused values: crossed, valid values: blue, predicted values: green).

The interval IR = [t0, t0 − tR] limits the total age of a measurement to be taken into account for the
prediction. Also, measurements falling in the interval IC = [tn, tn− tC] will not be considered as they are
to close to the latest measurement tn and thus yield large prediction errors. If more than two values
are applicable for the prediction the latest and the first value within IR are considered. Based on these
assumptions, five prediction modes for positions and distances at a time t0 can be distinguished as
presented in Table 1 and Figure 2.

mode description

NOVALUE no value lies within IR

SINGLE only one value is available and lies within IR

OVERLIMIT more values are available but only one lies within IR

TOOCLOSE more than one value lie within IR but they are within IC

PREDICTED more than one value lie within IR and not within IC

Table 1 – Overview over prediction modes.

Additionally, for distances another mode can be distinguished that occurs if a distance measurement
for an edge exists but information about the corresponding nodes is still missing.

2.4 Known nodes and edges
At a specific timestamp t0 a distinct set of edges and nodes is known by the observing node (see
sections 2.1.1and 2.1.2). Depending on the availability of data, only a fraction of these nodes and
edges can be properly predicted. At time t0 all predicted nodes and edges at the observing node Ni

are given by Mt0
N,i and Mt0

E,i. The known number of nodes and edges at node Ni at t0 is depicted as kt0
N,i

and kt0
E,i. If a node is known to the observing node and cannot be predicted, it poses a potential threat

and has to be treated as implausible in order to be on the safe side. Otherwise a node stopping
transmission of data would not be identified as potentially malicious or corrupted. Therefore, we
define the node prediction rate β

t0
N,i as the fraction of total predicted nodes mt0

N,i and the known nodes
from kN,i.

β
t0
N,i =

mt0
N,i

kt0
N,i

(14)
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Hence, βN = 1 means all positions of nodes known by the observing node can be properly predicted.
This implies, that the network needs to be designed in a way, that the prediction rate is permanently
close or equal to one. Otherwise false alarms will increase drastically. As a consequence, nodes
disconnecting from the network need to sign out allowing all other nodes to delete them from their list
of known nodes KN . The edge prediction rate βE can be defined equally. However, depending on the
network topology and protocols the edges might change over time if the positions of nodes change.
Therefore, known edges are limited to the interval IR.

2.5 Data model
2.5.1 Messages
To allow for the creation of a situational overview two basic messages are defined. This is on the one
hand the initial position report (IPR) and on the other hand the completed position report (CPR).

msg. data type variable description owner size

IPR POS-RAW POSs GNSS position of sending node self 10 Byte

ID IDs ID of sending node self 4 Byte

TS T Ss timestamp of sending message self 8 Byte

CPR POS-RAW POSs GNSS position sending node other 10 Byte

ID IDs ID of sending node other 4 Byte

TS T Ss timestamp of sending message other 8 Byte

TS T Sr timestamp of receiving message self 8 Byte

ID IDr ID of receiving node self 4 Byte

Table 2 – Message descriptions for position reports.

Table 2 summarizes both messages in terms of contained data and size. IPR messages contain
a timestamp, ID and position of the sending node. CPR messages contain the values of the IPR
message and additional information about the receiving timestamp and receiving node. The size of
all data is based on the MAVLINK common message set (12). The contained timestamps represent
the time when the first bit of a message is sent tsent and when the first bit of a message is received
trec. The distance between sender and receiver can then be calculated as

d̂ =
trec − tsent

c
(15)

where c is the speed of light. While the timestamps do not necessarily have to represent the real-
world time, they have to be synchronized within the network. This requires each UAV to perform a
synchronization procedure upon joining the network. To measure the distances between UAVs, a
time accuracy in the range of nanoseconds is required. Every inaccuracy in timing manifests itself as
an error in the distance measurement accordingly.

2.5.2 Sequences
Figure 3 shows two exemplary sequence diagrams of message transmission. It can be seen, that
CPR messages are just passed through if received, whereas IPR messages are modified by the
nodes upon first reception. In the left example ASA broadcasts an initial position report to all neigh-
bours in range (IPR). If the IPR message is received by ASB the reception timestamp is attached to
the message creating a completed message (CPR). Now ASB starts broadcasting the CPR message
to all other nodes in the network including ASA.
Hence, a full network graph is obtained including all edges between AS within range of each other.
However, due to the inherent unreliability of wireless communication information might be lost or
arrive late influencing the prediction of positions and distances.
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CPRAB
CPRAB

(a) ASA as sender.

A
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IPRB

CPRBA
CPRBA

CPRBC
CPRBC

(b) ASB as sender.

Figure 3 – Sequence diagrams for situational awareness.

3. Simulation
To verify our approach, we perform the plausibility check and trust calculation on the data model
described in our paper using simulated mobility data for UAV traffic movements.
In the simulation we generate data traffic for each UAV based on our data model presented above
and flood all messages through the network using appropriate protocols. Messages on individual
nodes are recorded and the algorithm is applied on the corresponding recorded data.

UAV Traffic
Simulationscenario

Data Traffic
Simulationdata model

Application
of Algorithm

Statistical
Evaluation

mobility data

datatraffic data

Figure 4 – Simulation workflow.

First, based on an UAV traffic demand model as described in (13) we generate UAV mobility data
for package delivery service in urban areas. The movement of every UAV is simulated using an
agent based fast time simulation environment and the mobility data is then handed over to a network
simulation model, that simulates the network traffic using the data model as described in Section 2.5
. The network simulation is performed with a discrete-event simulator based on SimPy (14). Here
every UAV is equipped with an idealized transceiver that implements a collision-free time-division
multiple-access scheme. A unit disk radio is assumed with a communication range of 3km to ensure
good connectivity of the network. Considering that UAVs have mostly line-of-sight communication
and specialized antennas such ranges are achievable with modern communication technologies.
During the simulation, every UAV follows the trajectory described in the mobility data and generates
an IPR every 0.5 s which is then converted to CPR by neighbouring UAVs. The CPRs are flooded
through the entire network using Contention-Based Flooding (15). In Contention-Based Flooding, a
UAV receiving a CPR for forwarding calculates a timer inversely proportional to the distance to the
sender. If the UAV overhears the forwarding of the same CPR by another UAV, it cancels its timer.
Otherwise, it forwards the CPR after its timer has expired. In our simulation, this ensures efficient
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dissemination of CPRs throughout the network, nevertheless in congested scenarios, more efficient
flooding protocols such as Rate Decay Flooding (16) can be applied at the cost of higher delays.
In a next step during the data traffic modelling the data at a specific airborne station is recorded and
is then used to calculate the plausibility of the network as seen from that particular station. Here the
position and distance uncertainties are applied to the data so that the total resulting errors can be
estimated.
The simulation was run for 10 s and comprised 170 flights resulting in 2605 emitted IPRs and 20151
CPRs. The start time of the simulation was selected at 11:00 am of the scenario presented in (13),
representing one of the busiest times.

4. Results
4.1 Time series analysis

(a) Received information at AS1;
(total: gray, until t = 7s: coloured).

(b) Total known nodes and edges
(kt0

N,i, kt0
E,i) by AS (AS1, red).

Figure 5 – Received information and number of known nodes over simulation time t; note: y-axis
scales are not equal.

Received information
The information reception protocol as acquired from the simulation for a selected AS (in the following
denoted as AS1) is presented in Figure 5a. It can be seen, that after a ramp-up phase new infor-
mation for nodes and edges are continuously received, however, a wavy pattern can be observed.
This results from the distance measurement mechanism. Since every node that receives an IPR
completes it to a CPR and broadcasts it through the network, regions of the network with a high node
density cause many CPRs to propagate through the network at the same time. In general, more
information about edges is received than about nodes. This is due to the data messages defined in
section 2.5that lead to many duplicates for the position information. In Figure 5a the total received
information available in the simulation is shown in grey, whereas the relevant information received
until a specific timestamp (here t = 7s) is coloured.

Known nodes and edges
Figure 5b shows the total known number of nodes (kt0

N,i and edges kt0
E,i) for all AS in the scenario (AS1

is coloured in red). It can be observed, that after a certain time, while the network is connecting itself,
most of the nodes and edges are known to the majority of AS, as most of the values converge to-
wards a common level. However, some lines converging to lower levels, indicate, that from a network
perspective several clusters of AS exist that are not interconnected to each other.

Prediction modes
Based on the simulation results the algorithm can be applied to the data. In our case we considered
the first 10 seconds after the selected AS connects to the network and starts to receive messages.
Figure 6a shows the prediction modes for the nodes and edges known to AS1 over time. It can be
seen, that it takes more than five seconds for AS1 in order to receive values for all nodes and edges
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(a) Prediction modes at AS1; tR = 1s
(dotted); tR = 2.5s (solid).

(b) Prediction rates β
t0
E and β

t0
N for

different values of tR.

Figure 6 – Prediction modes and rates over simulation time t as seen from AS1; note: y-axis scales
are not equal.

in the network. During this period for a considerable amount of nodes and edges only one value is
available (SINGLE). Also, the wavy pattern can be observed as in Figure 5a. The prediction status
strongly varies by tR. Figure 6a shows the curves for tR = 1s (dashed) and tR = 2.5s (solid). For tR = 1s
the number of OVERLIMIT nodes is very high stating, that information updates are not coming in in
time. It can be seen, that only if tR is large enough, all nodes can be properly predicted. However,
as stated above, tR should not exceed a certain limit, as then the linear extrapolation used might lose
validity.

Prediction rate
Figure 6b shows the prediction rates for different settings of tR. It can be seen, that for tR = 1s only
a fraction of the known edges and nodes can be predicted. For tR = 2.5s considerably higher rates
are achieved. In the interval I = (7s,8s) (shaded area) even a prediction rate of 1 is obtained for
both nodes and edges. For t ≥ 8s the rate decreases again indicating that nodes are disconnecting
from the network (e.g. UAVs are landing and shutting down) and edges are rearranging. Based on
this analysis it seems reasonable to select tR = 2.5s and the timestamp t = 7s for further detailed
evaluation, as here AS1 has knowledge of the majority of nodes and edges and all edges and nodes
can be predicted properly.

(a) Snapshot of network topology at
t = 7s. (AS1: red).

(b) Number of neighbours nE for all
nodes of the network at t = 7s.

Figure 7 – Network topology and number of neighbours as seen from AS1.
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4.2 Network status
The network state as seen from AS1 at timestamp t = 7s is shown in Figure 7a. The graph created by
distributing position and distance information using Contention-Based Flooding (CBF) as described
in section 3.is clearly visible. Figure 7b shows a histogram of nE . While some nodes are connected to
considerably many neighbours (up to 18), some nodes are only attached to the network by a single
node. In total 131 nodes and 660 edges are known to AS1 at this particular timestamp.

4.3 Errors and distributions
For the exemplary scenario and based on the assumptions made above, the values for the prediction
errors can be calculated for all predicted values based on point or distance information.

(a) Histograms for εd̃ (top) and ε
δ̃

(bottom).
(b) Histograms for ∆̃ (top) and ∆

(bottom).

Figure 8 – Distributions for t = 7s, σd = 1m, σp = 1m, tR = 2.5s; as seen from AS1.

Figure 8a shows the histograms of the resulting values for εd̃ and ε
δ̃

using σd = 1m and σp = 1m.
It can be observed, that the values are normally distributed around zero. However, the width of the
distribution is higher for the distance estimation by nodes as here a two-dimensional extrapolation
is applied resulting in larger uncertainties accordingly. Figure 8b shows the density function of the
resulting values for the distance deviations ∆̃ and ∆. As the errors of both distance estimations sum
up, the values for ∆̃ are higher than the errors observed in Figure 8a and the distribution is shifted
slightly towards positive values. The distribution of the prediction error ∆ shows, that even without
uncertainties in the measurements of position and distance, errors are introduced just by the linear
extrapolation.

Figure 9 – Contour plots for ∆lim and the 90th, 95th and 99th percentile of true negatives over the
position and distance measurement uncertainties σp and σd .
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4.4 Edge Classification
Based on the error distribution a classification of the edges can be obtained according to equation
10. Depending on the decision level ∆lim an edge is thereby classified as plausible or not.
Figure 9 shows the contour plots for ∆lim and the 90th, 95th and 99th percentile of the true negatives
over the position and distance measurement uncertainties σp and σd (derived for the interval I =
(7s,8s) as indicated in Figure 6b). It can can be observed, that as expected the threshold value ∆lim
increases if σd or σp increase. However, a stronger increase for σp can be observed, what seems
reasonable as the position uncertainty in the two dimensions adds up. The higher the desired trust
level, the larger ∆lim will turn out to be.

4.5 Node Classification and Manipulation
Since one node can exhibit several neighbours (see Figure 7b), it needs to be decided, when a node
is classified as implausible. Figure 1 indicates, that if a node position is altered by the distance r f ,
several edges might be affected in terms that they turn implausible. This depends on the constellation
of nodes. Another effect that occurs is that not only the falsified node obtains an altered SCE value,
also the nodes sharing the implausible edges are affected. Hence, only from the concrete situation a
falsified node position can be identified correctly. Here SCElim could be used to identify the severity
of the manipulation. For σp = 1m and σd = 1m we applied an additional offset r f to a randomly
selected node in a random direction (see Figure 1). The CDFs for the SCE values of the thus selected
manipulated nodes a variation of r f based on 750 samples is shown in Figure 10. Here ∆lim = 7.4m
was chosen as obtained from Figure 9 for σp = 1m and σd = 1m and the 99th percentile.

Figure 10 – CDFs of SCE score for t = 8s, σd = 1m, σp = 1m, tR = 2.5s, ∆lim = 7.4m; for changing
offsets r f as seen from AS1.

It can be seen, that while an offset r f = 5m yields a large amount of false positives (SCE = 1), offsets
r f ≥ 20m lead to all nodes being correctly classified as implausible. With other words, a falsified
position reading with r f ≥ 20m offset from the true node position will with very high probability be
identified as implausible.

5. Conclusion and Outlook
In this paper we presented a method to check the plausibility of positions in a flying ad-hoc network
based on separate position and distance measurements. In order to prove the applicability of this
method, we adapted a simulation environment and applied it to simulated drone traffic for an urban
package delivery scenario. The obtained mobility data was then used along with the data traffic gen-
erated by a set of defined data messages to enable the plausibility check. The received simulated
data traffic at a specific node was then analysed to assess the method. We showed, that depending
on the measurement uncertainties for position and distance an uncertainty of the distance deviation
occurs that among others depends on the timing of the received messages. Based on this data we
showed, that a threshold for the distance deviation can be identified at which edges can be classified
as implausible without having too many false positives. This threshold seems to be in reasonable
domains to enable a detection of nodes with improper position reports. Furthermore, we showed
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how to derive a trust score for nodes based on the plausibility of adjoining edges. The threshold for
this score, however, strongly depends on the local network topology.

Our work presents a first step toward the plausibility check based on independent distance mea-
surements, therefore, more studies are necessary to fully cover the parameter space and identify an
optimal parameter setting for the algorithm. Also, more advanced prediction models for the move-
ment of nodes might be feasible to implement in the future along with expanding the simulation from
two to three dimensions. As the method primarily is intended to address GNSS spoofing or mal-
functioning equipment, the possibility of malevolent parties necessitates a detailed threat modelling.
Finally, experiments with adequate communication and distance measurement technology will prove
the applicability of the method in real world applications.
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