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Abstract
Objective - Addressing the challenges that come with identifying and delineating brain tumours in intraoperative ultrasound.
Our goal is to both qualitatively and quantitatively assess the interobserver variation, amongst experienced neuro-oncological
intraoperative ultrasound users (neurosurgeons and neuroradiologists), in detecting and segmenting brain tumours on ultra-
sound. We then propose that, due to the inherent challenges of this task, annotation by localisation of the entire tumour mass
with a bounding box could serve as an ancillary solution to segmentation for clinical training, encompassing margin uncer-
tainty and the curation of large datasets. Methods - 30 ultrasound images of brain lesions in 30 patients were annotated by 4
annotators - 1 neuroradiologist and 3 neurosurgeons. The annotation variation of the 3 neurosurgeons was first measured, and
then the annotations of each neurosurgeon were individually compared to the neuroradiologist’s, which served as a reference
standard as their segmentationswere further refined by cross-reference to the preoperativemagnetic resonance imaging (MRI).
The following statistical metrics were used: Intersection Over Union (IoU), Sørensen-Dice Similarity Coefficient (DSC) and
Hausdorff Distance (HD). These annotations were then converted into bounding boxes for the same evaluation. Results - There
was a moderate level of interobserver variance between the neurosurgeons [I oU : 0.789, DSC : 0.876, HD : 103.227] and
a larger level of variance when compared against the MRI-informed reference standard annotations by the neuroradiologist,
mean across annotators [I oU : 0.723, DSC : 0.813, HD : 115.675]. After converting the segments to bounding boxes, all
metrics improve, most significantly, the interquartile range drops by [I oU : 37%, DSC : 41%, HD : 54%]. Conclusion -
This study highlights the current challenges with detecting and defining tumour boundaries in neuro-oncological intraopera-
tive brain ultrasound. We then show that bounding box annotation could serve as a useful complementary approach for both
clinical and technical reasons.
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Introduction

Maximal-safe resection of brain tumours is a key pillar of
modern neuro-oncologymanagement, improving symptoms,
quality of life and overall survival [11]. Accurate delineation
of a lesion from surrounding normal functional brain tis-
sue remains challenging but is critical to ensure optimal
resection. Ultrasound (US) has been employed intraopera-
tively (intraoperative US iUS) in neurosurgery for 70 years
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[9]. Applied for surgical guidance, as it allows real-time
detection, characterisation and outlining of tumours. Unlike
Magnetic resonance imaging (MRI) - specifically intraop-
erative MRI (iMRI) - it integrates easily into the surgical
workflow and is relatively affordable. With the availability
of high-quality USmachines and navigated US co-registered
with preoperative MRI and computed tomography (CT) [5,
10, 13, 18, 19], its adoption has increased over the last two
decades.

However, factors associated with the quality of the modal-
ity aswell as standardisation of traininghas effected universal
adoption [4]. There remains a perceived steep learning curve
secondary to limited fields of view with unfamiliar topo-
graphical representation, artefacts, the unique visuo-tactile
task and the difficulty with gaining experience outside of the
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intraoperative setting. There are also concerns regarding the
imaging accuracy and granularity. These factors can make
learning iUS difficult, with the potential to impair tumour
and tumour boundary detection with the risk of leaving
unintended residuum or causing inadvertent damage. This
challenge is further compounded by the inherent great varia-
tion in types of brain lesions, their appearances, the degree of
infiltration and the intraoperative changes (such as oedema
and haemorrhage) which can further confound.

Presently, there have been only a few meta-analyses look-
ing at the impact of iUS in glioma surgery. One pooled
series reported an average 77% gross total resection rate
in 739 patients undergoing iUS-guided resection (71.9%
in HGG compared to 78.1% in LGG) which was compa-
rable to other forms of navigation. A recent meta-analysis
of 409 diffuse gliomas compared the accuracy of iUS to
the reference standard post-operative MRI. They found that
iUS was an effective technique in assessing diffuse glioma
resection, with a 72.2% pooled sensitivity and a 93.5%
pooled specificity [30]. Whilst these results are encourag-
ing the current evidence supports a need to improve iUS
accuracy if it is to become part of the standard of care in
brain tumour surgery. Trials assessing the role of US in
neurosurgery, such as the randomized controlled trial Func-
tional and Ultrasound-Guided Resection of Glioblastoma
(FUTURE-GB), and refining of US techniques are therefore
needed [23].

There are three aimsof this study. Firstly, to assesswhether
tumour boundary detection on iUS is challenging, we mea-
sure interobserver variation between regular iUS operators
in segmenting US images of brain lesions. Secondly, we
model the pixel intensities of the segmented tumour bound-
aries to mathematically model the clarity and blurriness -
factors relating to issues of low resolution and low signal-to-
noise ratio - of tumour boundaries. Finally, we evaluate the
interobserver variation of bounding boxes to assess whether
this annotation method has a role as an alternative, com-
plimentary simplified method for outlining lesion margins.
Additional evaluation is performed to determine if these
bounding boxes can be used as a guide to improve the accu-
racy of the segmentation.

To improve the utility of iUS in neurosurgery, the under-
standing of the limitations of tumour-margins delineation
capabilities needs to be understood andmeasured.With stan-
dardised training, new supporting techniques as well as the
development of new tools required to reduce uncertainty and
error. By formally addressing the issue of tumour segmenta-
tion error and uncertainty,wehope to highlight a fundamental
challenge with iUS that has hindered universal adoption.
Until now, this issue has largely been an implicit challenge
recognised by experienced iUS operators.

Materials andmethods

A preliminary study was conducted using 4 annotators (AN)
experienced with iUS - a neuroradiologist and 3 neuro-
surgeons - to determine the foundation of our hypothesis.
The neuroradiologist and the three neurosurgeons are all
post-training doctors. All clinicians involved have exten-
sive research backgrounds and familiarity with segmentation
tools and protocols. Specifically: Neuroradiologist - 10 years
ofUS and neuroimaging experience;An1 - 10 years of neuro-
oncology experience with 10 years of ≈ 2-3 cases per week
using iUS; An2 - 8 years of neuro-oncology experience with
6 years of ≈ 1 case per week using iUS; An3 - 9 years of
neuro-oncology experience with 9 years of ≈ 2 cases per
week using iUS. The order of the annotators has been ran-
domised.

Data

The dataset consists of 30 images, from 30 patients, taken
during brain surgery at Imperial College NHS Trust London.
The images were retrospectively selected by the neurora-
diologist from cine clips of US sweeps that captured the
entire tumour. Images with a field of view which covered
the boundaries of the tumour and at least 2cm of surrounding
normal brain were selectedwith reference to the preoperative
MRI (Magnetom Vera 3T, Siemens) to ensure accuracy. All
images were captured before tumour resection. For patient
information please see Table 1. Images were acquired using
a Canon i900 US machine (Canon Medical Systems, Japan)
with the 8MHz i8MCX1microconvex probe, andwere stored
using the Digital Imaging and Communications in Medicine
(DICOM) format. For all images, the dynamic range was
fixed at 70dB. The aperture was set to either 1 or 3. The
power level was set to either 5 or 7. The gain varied between
79 to 98. The maximum depth was varied between 5cm to
11cm, with the depth focus between 1.8cm to 8.1cm. All
images are of size 960 × 1280.

The study had full local ethical approval by the HRA
and Health and Care Research Wales (HCRW) authorities.
Study title -US-CNS:MultiparametricAdvancedUltrasound
Imaging of the Central Nervous System Intraoperatively
and Through Gaps in the Bone, IRAS project ID: 275556,
Protocol number: 22CX7609, REC reference: 22/WA/0259,
Sponsor: Research Governance and Integrity Team (RGIT).

Annotation protocol

The boundaries of tumours were annotated, for both seg-
mentations and bounding boxes, using 3D Slicer (5.4.0) [8].
The annotations provided by the neuroradiologist were made
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Table 1 Patient information.
KPS = Karnofsky Performance
Status, ASA = American
Society of Anesthesiologists
Grade, SCC = Squamous Cell
Carcinoma, SS = Supratentorial
Subependymoma, DNET =
Dysembryoplastic
Neuroepithelial Tumor, TB =
Tuberculosis, Lt = Left, Rt =
Right

ID G Age Lesion Location Histology KPS ASA

1 F 60-69 Metastasis Rt Parietal SCC - lung 80 3

2 M 30-39 Glioma Rt Frontal Astrocytoma 90 1

3 M 50-59 Glioma Rt Parietal Glioblastoma 80 2

4 F 40-49 Glioma Lt Frontal, Parietal Astrocytoma 90 2

5 M 20-29 Glioma Lt Parietal Astrocytoma 80 2

6 M 60-69 Glioma Lt Parietal Glioblastoma 70 2

7 M 50-59 Glioma Lt Frontal Oligodendroglioma 90 3

8 M 50-59 Glioma Rt Frontal Glioblastoma 90 2

9 M 60-69 Glioma Lt Parietal Glioblastoma 90 3

10 M 50-59 Glioma Rt Frontal Glioblastoma 90 2

11 M 40-49 Glioma Lt Parietal Glioblastoma 80 2

12 M 60-69 Glioma Rt Parietal Glioblastoma 70 3E

13 M 70-79 Glioma Rt Frontal Glioblastoma 70 2

14 M 10-19 Granuloma Lt Temporal Granuloma TB 100 1

15 F 60-69 Glioma Rt Parietal Glioblastoma 70 2

16 M 60-69 Glioma Rt Parietal Glioblastoma 80 2

17 M 40-49 Glioma Lt Temporal Glioblastoma 100 2

18 F 60-69 Glioma Lt Temporal Glioblastoma 70 2

19 M 40-49 Glioma Lt Frontal Glioblastoma 80 2

20 F 50-59 Ependymal Lt Temporal SS 90 2

21 M 30-39 Glioma Post Fossa Pilocytic astrocytoma 90 1

22 M 60-69 Glioma Rt Parietal, Occipital Glioblastoma 70 2

23 F 60-69 Glioma Lt Frontal Oligodendroglioma 90 2

24 M 30-39 Glioma Lt Parietal Glioblastoma 90 1

25 M 70-79 Glioma Rt Parietal Oligodendroglioma 90 2

26 F 20-29 Glioma Rt Frontal Astrocytoma 90 2

27 M 40-49 Glioma Rt Frontal Astrocytoma 90 2

28 F 10-19 Glioneuronal Lt Frontal DNET 90 1

29 F 40-49 Glioma Lt Temporal, Occipital Oligodendroglioma 90 2

30 F 30-39 Glioma Lt Parietal Astrocytoma 90 2

using the benefit of the full US dataset, cross-registration
with the preoperative MRI and patient metadata; and we
define these as the reference standard/ground truth for this
study. The other annotators were given only the individual
2D US images - these annotations were used to evaluate the
consistency and accuracy of the annotation capability, com-
paring inter-neurosurgeon variation and dissimilarity against
the annotations of the neuroradiologist. Whilst this is unlike
normal clinical practice (where theMRI and full real-timeUS
would be available and employed by the operator) the aim of
this study is to assess the ability of B-mode US to delineate
brain lesion margins in isolation. The utility of bounding
boxes as a guide to refine tumour boundary segmentation
was then assessed by An1 repeating their segmentations 3
months later (to mitigate bias) with the reference standard
bounding boxes produced by the neuroradiologist overlaid.
Theboundingbox annotations are created by taking themaxi-

mum andminimum, x and y coordinates from the annotators’
segments, fitting a box around the outer limits of the segment
- as opposed to re-annotating.

Statistical analysis

Three statistical metrics were used to compare the similarity
between annotations. Within the mathematical framework,
let A and B represent two annotations from the same image
i.e. A could be the neuroradiologist’s annotation and B, one
of the neurosurgeon’s annotations. The first two metrics that
we define are methods to quantify the degree of overlap
- indirectly the degree of similarity in the shape and vol-
ume - between A and B. The intersection over union (IoU)
[26] I oU = |A∩B|

|A∪B| , which is defined as the set of image
coordinates occupied in the intersection of the two segmen-
tations, divided by the union of the two segmentations, the
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total set of image coordinates occupied by both segmenta-
tions. The Sørensen-Dice Similarity Coefficient (DSC) [12]
DSC = 2|A∩B|

|A|+|B| , which is defined as twice the intersection of
the two segmentations divided by the cardinalities of the two
segmentations. For both IoU and DSC, the closer the value
to 1 the better the score.

For evaluation of the uncertainty of the boundary delin-
eation, the contours of the segmentations were compared
using the Hausdorff Distance (HD) [14] ̂HD(Ac, Bc) =
maxac∈Ac minbc∈Bc ||ac − bc||, HD = max(̂HD(Ac, Bc),

̂HD(Bc, Ac)), which determines the maximum Euclidean
distance (pixels) between all closest point pairs between
the two contours sets - the subscript c denotes the contours
of the corresponding segmentations, where the contours are
the lines intersecting the endpoints of the segmentations. For
this metric, the closer the value is to 0 the better.

This analysis was performed using Python, pynrrd [7]
for reading the segmentation files and scikit-image [33] and
SciPy [34] for the quantitative analysis.

Tumour border pixel dispersion substudy

To assess the visible distinguishability of the tumour from the
surrounding normal tissue, the dispersion of pixel intensities

around the neuroradiologist’s tumour margins are evaluated.
By measuring the pixels along the segmentation’s contour
plus a 10 pixels border, perpendicular to, and on both sides
of the contour. To calculate the properties of the distributions,
a local maxima peak-finding method is implemented. Where
one peak = unimodal, two = bimodal and three or more =
other (could be either multimodal or uniform).

Results

Inter-Neurosurgeon annotation variance

All results are presented in the following format - Met-
ric[Mean:interquartile range (IQR)]. The similarity measure
between the neurosurgeons’ annotations is as follows -
IoU[0.789:0.115], DSC[0.876:0.072], HD[103.227:73.071].
Although the overlap scores indicate general similarity
between the annotations, there are still inconsistencies,which
when considering the precision required for tumour resec-
tion, this marginal difference can be considered impactful.
The average HD, on the other hand, is a significant result.
Showing that there is frequent disagreement on at least one
point along the tumour boundary. Figure 4 highlights 3 exam-

Fig. 1 The top row/example shows the effect on the boundary of a
binary circle when Gaussian blurring is applied - using a kernel density
estimate plot. The bottom row/example shows the same but using a box

filter, where the circle also now has protrusions, unaffecting the defined
boundary represented by the yellow mask
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ples of the annotation variance. All figures show cases with
minor and severe variance, to visually highlight the features
and general causes of uncertainty.

Tumour border pixel dispersion substudy

First, we provide a simplified example to illustrate how
smoothing affects pixel distributions along a binary bound-
ary (perfect separability). In Fig. 1 a binary circle is created
and both Gaussian and box filters are applied with increas-
ing amplification. For the case of the binary circle without
smoothing, the boundary is perfectly defined and as such
the pixel distribution is bimodal. However, as the smoothing

factor increases, the distribution tends towards uniformity or
multimodal and under severe blurring, becomes unimodal.

From evaluating the tumour boundaries, from the 30
images, 27 were classified as unimodal and 3 as other Fig. 2.
This result is strong evidence of the severity of the pixel
intensity variation along the tumour boundary, which pro-
vides mathematical evidence for the ambiguity in defining
the discrete, definite boundary points.

Neuroradiologist-Neurosurgeon annotation
variance

The results of the similarity comparison between the refer-
ence standard annotations produced by the neuroradiologist

Fig. 2 Top is a plot of all tumour boundary pixel intensities distributions. Blue highlights unimodal distributions and red highlights other. Bottom
is an example of tumour boundary is shown using ID 009. ID is the image index
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Table 2 Shown are the IoU and DSC similarity results. The closer the value to 1 the more similar the annotations are. IoU is Intersection Over
Union, DSC is Sørensen-Dice Similarity Coefficient

Image An1 An2 An3
Seg BBox Seg BBox Seg BBox
IoU DSC IoU DSC IoU DSC IoU DSC IoU DSC IoU DSC

1 0.952 0.976 0.954 0.976 0.875 0.933 0.862 0.926 0.941 0.970 0.971 0.985

2 0.908 0.952 0.962 0.981 0.911 0.954 0.957 0.978 0.880 0.936 0.847 0.917

3 0.888 0.941 0.907 0.951 0.906 0.951 0.914 0.955 0.891 0.943 0.955 0.977

4 0.902 0.948 0.926 0.962 0.848 0.918 0.886 0.940 0.389 0.560 0.230 0.374

5 0.905 0.950 0.940 0.969 0.856 0.923 0.912 0.954 0.893 0.943 0.856 0.922

6 0.570 0.726 0.536 0.698 0.811 0.895 0.854 0.921 0.876 0.934 0.893 0.943

7 0.578 0.733 0.734 0.846 0.781 0.877 0.916 0.956 0.819 0.901 0.940 0.969

8 0.889 0.941 0.863 0.927 0.957 0.978 0.954 0.977 0.965 0.982 0.971 0.985

9 0.591 0.743 0.830 0.907 0.693 0.819 0.746 0.854 0.679 0.809 0.724 0.840

10 0.902 0.948 0.960 0.980 0.788 0.881 0.733 0.846 0.913 0.955 0.943 0.971

11 0.644 0.783 0.581 0.735 0.800 0.889 0.919 0.958 0.670 0.803 0.777 0.875

12 0.833 0.909 0.776 0.874 0.872 0.932 0.887 0.940 0.923 0.960 0.976 0.988

13 0.823 0.903 0.816 0.899 0.809 0.895 0.843 0.915 0.865 0.928 0.870 0.931

14 0.265 0.419 0.217 0.357 0.219 0.359 0.199 0.332 0.206 0.342 0.199 0.333

15 0.130 0.230 0.148 0.257 0.125 0.221 0.159 0.275 0.129 0.228 0.143 0.251

16 0.885 0.939 0.903 0.949 0.809 0.894 0.855 0.922 0.802 0.890 0.763 0.865

17 0.706 0.828 0.702 0.825 0.548 0.708 0.649 0.787 0.616 0.762 0.780 0.876

18 0.168 0.287 0.139 0.245 0.167 0.286 0.172 0.293 0.083 0.154 0.078 0.145

19 0.901 0.948 0.875 0.933 0.790 0.883 0.805 0.892 0.835 0.910 0.616 0.762

20 0.956 0.977 0.943 0.971 0.870 0.930 0.819 0.901 0.839 0.912 0.747 0.855

21 0.873 0.932 0.902 0.948 0.452 0.623 0.475 0.644 0.853 0.920 0.881 0.937

22 0.849 0.918 0.850 0.919 0.854 0.921 0.888 0.940 0.876 0.934 0.877 0.934

23 0.402 0.573 0.208 0.345 0.624 0.769 0.746 0.854 0.534 0.696 0.233 0.378

24 0.743 0.853 0.785 0.880 0.632 0.775 0.723 0.839 0.694 0.820 0.740 0.850

25 0.838 0.912 0.883 0.938 0.904 0.950 0.919 0.958 0.751 0.858 0.744 0.853

26 0.619 0.765 0.773 0.872 0.561 0.718 0.698 0.822 0.572 0.728 0.707 0.829

27 0.873 0.932 0.857 0.923 0.813 0.897 0.764 0.866 0.804 0.891 0.836 0.911

28 0.803 0.891 0.874 0.933 0.773 0.872 0.832 0.908 0.756 0.861 0.908 0.952

29 0.791 0.883 0.867 0.929 0.620 0.766 0.754 0.859 0.622 0.767 0.807 0.893

30 0.821 0.902 0.810 0.895 0.878 0.935 0.816 0.899 0.832 0.908 0.879 0.936

Mean 0.734 0.821 0.751 0.827 0.719 0.812 0.755 0.837 0.717 0.807 0.730 0.808

(which benefited from correlation with the preoperativeMRI
and the full US dataset) and the neurosurgeons is tabulated
in Tables 2 and 3, and visualised using a box and whiskers
plot in Fig. 3. This showed a moderate interobserver vari-
ance between the reference standard segmentations’ and the
annotations performed by the neurosurgeon on the single
slice B-mode images alone, highlighting the potential limita-
tions and uncertainties of isolatedB-mode in defining tumour
boundaries.

With conversion of the segments to bounding boxes there
was a noticeable improvement in annotation similarity with a

sizable decrease in the IQR. For all annotators, the conversion
to a bounding box, overall, increases the annotation similar-
ity. The decrease in the IQR, as a percentage, for [IoU, DSC,
HD] are as follows - An1=[40%, 44%, 52%], An2=[37%,
42%, 49%], An3=[33%, 37%, 60%].

Further evaluation of the bounding box proposal is con-
ducted by measuring individually for each image, the per-
centage of the neuroradiologist’s segmentation contained
within the neurosurgeon’s corresponding bounding box.
The average results per annotator are - An1:98.387%,
An2:98.833%,An3:99.052%. From the results, it can be con-
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Table 3 Shown are the HD similarity results. The closer the value to 0 pixels the better aligned the annotation margins are. HD is Hausdorff
Distance

Image An1 An2 An3
Seg BBox Seg BBox Seg BBox

1 14.765 8.544 43.000 36.620 14.142 5.000

2 22.204 4.123 25.000 5.000 52.802 46.271

3 33.734 16.492 32.558 14.142 23.324 9.220

4 29.069 8.246 42.438 33.061 371.389 379.120

5 51.614 13.153 57.245 19.416 40.162 23.345

6 162.926 163.515 56.223 35.511 52.924 17.804

7 74.632 40.311 32.650 7.280 42.579 6.000

8 52.000 48.010 33.121 7.616 28.636 6.403

9 137.773 49.477 74.686 47.265 79.202 48.836

10 25.807 4.243 55.803 44.598 18.682 6.403

11 117.652 119.620 362.627 15.000 138.105 69.231

12 66.000 70.000 68.447 47.170 43.600 7.071

13 46.174 28.844 62.000 30.000 40.522 23.324

14 331.724 341.264 329.524 336.265 331.965 345.307

15 263.610 294.703 218.563 247.746 254.342 288.043

16 36.770 36.000 81.006 44.000 90.554 68.710

17 309.015 110.000 330.510 102.000 377.922 62.169

18 429.439 419.640 323.303 328.056 404.901 524.675

19 27.295 23.000 58.052 36.401 419.715 112.058

20 30.887 23.000 64.938 58.694 87.727 84.000

21 42.012 15.000 119.549 111.973 33.377 14.866

22 68.447 28.425 70.264 25.000 43.600 24.000

23 415.473 290.493 57.079 44.721 415.120 302.154

24 71.007 48.703 89.022 63.789 80.000 53.488

25 56.511 20.809 22.627 14.213 63.600 35.468

26 156.259 45.188 171.047 70.767 175.026 57.271

27 15.000 10.440 24.000 24.413 29.547 21.024

28 34.670 30.067 36.056 30.017 35.228 13.601

29 53.254 38.949 180.049 79.649 171.234 54.406

30 67.231 40.792 26.926 27.731 59.641 24.739

Mean 108.098 79.702 104.94 66.270 133.986 91.134

cluded that the boundingbox approach is usable for localising
the entire tumour mass, and (Fig. 4) is a suitable method for
reducing inter-observer annotation variance.

Sample images are displayed in Figs. 5 and 6. An assort-
ment of different sources of boundary aleatoric uncertainty
are shown in Fig. 5. Including images containing fuzzy bor-
ders and continued hyperechogenicity extending beyond the
tumour. Shown in Fig. 6 are example cases where using
bounding boxes has substantially improved the annotation
similarity.

Improving segmentation accuracy using overlaid
bounding boxes as a guide

In the substudy looking at the impact of overlaid reference
bounding boxes on An1 segmentation accuracy, we found a
substantial improvement in segmentation similarity between
the neurosurgeon and reference standard. The previous
results compared to the new results are as follows - without
bounding box [IoU:0.734, DSC:0.821, HD:108.098], with
bounding box [IoU:0.858, DSC:0.922, HD:52.072]. This
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Fig. 3 Box and Whisker plots of the annotators IoU, DSC and HD
scores on the 30 images - red = segmentation, black = bounding box.
What is highlighted is the greatly reduced median score and IQR when
using the bounding box method. IoU is Intersection Over Union, DSC
is Sørensen-Dice Similarity Coefficient, HD is Hausdorff Distance and
IQR is Interquartile Range

result shows that the bounding box can be used as a visual
anchor to minimise the uncertainty when segmenting.

Discussion

Historical background and clinical landscape

Several intraoperative imaging devices have been developed
to help neurosurgeons localizing the tumour during surgery.
Aside from CT scan and MRI scans, introduced in clinical
practice during the ’70s and in the ’80s, neuro-navigation
frameless devices were introduced during the ’90s, and they
were the first tools allowing intraoperative localization of the
tumour [6] , although they rely on pre-operative images rather
than real time acquisition. The challenging problem of hav-
ing a real time tool for tumour location and visualization has
been partially sorted by the gradual introduction of iUS in
the armoury of neurosurgical equipment [5] . Interestingly,
in several cases the signal obtained from iUS was different

when compared to that obtained using traditional imaging
technologies (CT or MRI scan), thus sparking attention on
the fact that the iUS could be used not only as an intraoper-
ative aid, but also as a complementary tool for those lesions
of unclear nature or margins [5] . Moreover, coupling of the
iUS with MRI based neuro-navigation has greatly improved
the possibility of midline shift adjustment during surgery
[16, 17, 19] and has been proven useful to improve tumour
demarcation when close to eloquent areas [25] . In more
recent years, further technological advancement has led to
the development of 3D iUS [2, 28, 31, 32] . The 3D recon-
struction is automatically generated by the neuro-navigation
software after an intraoperative acquisition through a sin-
gle spatial plane. The images can be integrated with doppler
angiography when required, so that vessel encasement by an
intra-cranial mass or aneurysm can also be detected [24, 29]
. Recent research has also been focusing on the possibility of
integrating iUS with contrast [1, 36].

Findings, challenges, and future perspectives

In this study, we highlight the specific challenge of tumour
detection and tumour boundary delineation in cranial iUS.
Here we demonstrate that there remains moderate to high
interobserver variation in the identification and segmenta-
tion of tumours on B-mode images acquired on a modern,
current-generation US scanner, between four individuals
with experience in iUS-guided brain surgery. Three broad
elements likely contribute to this variance, 1) the specific
qualities of brain tumours, 2) technical ultrasound factors
and 3) operator influences.

Firstly, there are inherent features of brain tumours them-
selveswhich canmake themdifficult to delineate.Gliomas, in
particular, arewell-known to be infiltrative tumours,meaning
that they spread cancer cells beyond their obvious radiolog-
ical margins [20, 27]. Moreover, both high-grade gliomas
and low-grade gliomas often show a degree of surround-
ing oedema which is, to this day, challenging to interpret
in terms of differential diagnosis between reactive inflam-
matory tissue or actually infiltrated brain, even using more
established neuroimaging tools such as MRI. Moreover, the
intraoperative imaging quality varies based on the stage of
surgical resection [18, 32] . Superficial, small sized lesions
are typically very well visualized by the acquisition and dur-
ing resection. However, even modest to moderate amount
of bleeding causes a visible artifact that can hamper surgi-
cal view beyond the limits of resection. To detect residual
tumour, it is crucial to perform accurate haemostasis and
remove all haemostatic material to the surgical cavity.

One of the main points of discrepancy in the present series
was the definition of tumour margins. For example, in some
cases, the lack of clarity over whether the highlighted hyper-
echogenicity of the tissue was caused by a continuation of
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Fig. 4 Inter neurosurgeon annotation variance. From top to bottom - ID 14, ID 16, ID 18. ID is the image index

the tumour mass or just reactive oedema, introduces signifi-
cant heteroscedastic aleatoric uncertainty when defining the
exact margin. This challenge is further emphasised by how
there remains no reference standard imaging technique that
absolutely defines tumour extent, nor is it usually possible
to remove tumours en bloc in intra-axial neurosurgery, pre-
cluding accurate histological correlation of tumour margins.

Secondly, there are unique challenges that US presents.
There are numerous ways that an ultrasound image can be
altered, including changes in settings (such as gain and fre-
quency), ultrasound machine, probe type, probe contact and
probe angle. In most cases, several of these parameters need
to be intentionally tailored to the particular tumour being
imaged. For instance, using a low-frequency probe, which
has a trade-off in reduced spatial resolution, to visualise a
deep tumour versus a high-frequency probe, with high spatial
resolution, to image a superficial cortical tumour. This wide
range of US options can greatly alter the final image creating
another source of variance and in turn, aleatoric uncertainty
which is arguably greater than typically seenwith other estab-
lished imaging modalities such as CT and MRI.

US is also vulnerable to several unique artefacts, such as
acoustic shadowing [35] and acoustic enhancement, which
can alter and obscure the image creating a further source
of uncertainty. These issues could be mitigated somewhat
by the establishment of a standardised protocol for US set-
tings and image acquisition. However, even then, it would

be impossible to fully account for all scenarios due to the
wide spectrum of tumours and anatomical locations. The
potential for confounding artefacts and uncertainty regarding
tumour boundaries further increases as surgery progresses
due to increased deformation, oedema and potential obscur-
ing blood products. This uncertainty could also be reduced
with operator experience, which links to operator factors
which are the final source of variance. Currently, neurosur-
gical training in US is predominantly experiential based on
exposure to live cases in theatres. Whilst this is an essential
aspect of learning a new surgical skill this can greatly prolong
the learning phase due to a relatively low rate of exposure to
the imaging technique as it necessitates an intraoperative set-
ting with a craniotomy window. This is in contrast to CT and
MRI, which neurosurgeons are much more comfortable with
interpreting, owing, in part, to these being readily available
and performed regularly on most patients.

There are several complementary ways that iUS accuracy
could be improved and the steep learning curve could be
flattened and shortened. This includes the use of advanced
multimodal US (including contrast-enhanced US) and nav-
igated US. In addition, dedicated courses employing US
phantomswith brain tumourmodels can greatly help, by pro-
vidingboth applied formal training inUS theory in addition to
hands-on time with US scanning. In all cases, however, these
approaches still require significant time investment and train-
ing. In this context, automated, computer-assisted, detection
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Fig. 5 Uncertainty caused by unclear boundary. The left images are the original images, the middle from the neuroradiologist and the right from a
neurosurgeon. From top to bottom - ID 13 An3, ID 07 An3, ID 18 An2, ID 19 An2. ID is the image index

and segmentation of brain tumours on ultrasound would be
a desirable and useful additional tool. Automated segmenta-
tion of brain tumours on MRI has been well explored with
several robust and open source tools now available [21].
In contrast, development in automated segmentation of iUS
images is in its infancy with no applications yet available.
There are several reasons for this. As illustrated in this study
it is challenging to establish a ground truth dataset using
manual segmentation due to high interobserver variance -
especially as most published data usually contains only indi-
vidual frames or volumes. Furthermore, unlike MRI there
is a paucity of neuro-oncology iUS imaging datasets. This is
likely due to the relatively low number of iUS scans acquired,
the greater logistical challengeswith saving anddownloading

scans, the potentially large file sizes of video acquisitions, the
greater variation of iUS across sites and the need for highly
experienced annotators to perform the time-consuming seg-
mentations. Considering these many boundaries, we are far
off the realisation of a reliable system to rapidly automati-
cally and accurately segment iUS brain tumour images. To
bridge this gap, here we assess the utility of bounding boxes
as an additional complementary tool for simplified tumour
detection and delineation.

Unsurprisingly, we found much lower interobserver vari-
ation when using bounding boxes to define tumour location
and margins compared to segmentations. The advantage of
our proposed use of bounding boxes is a step in the direc-
tion of overcoming the above-mentioned challenges. From
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Fig. 6 Examples for where the segments have large dissimilarity whilst the bounding boxes don’t. The left images are the original images, the
middle from the neuroradiologist and the right from a neurosurgeon. From top to bottom - ID 11 AN 2, the bottom from ID 26 AN 1. ID is the
image index

a clinical perspective, the bounding box would be useful for
training purposes and immediate identification of the tumour
mass.While this system is expected to be lower in specificity,
the high sensitivity should assist inexperienced surgeons in
detecting tumours and providing an area to focus on. Further,
the whole signal change (fuzzy margin) would be included
in the bounding box, thus making sure that there is no miss-
ing tumour from the targeted area. The process of annotation
is also much quicker for bounding boxes although this will
be annotator-dependent, from our experience, bounding box
annotation may take as little as 1/3 of the time of segmenta-
tion, reducing the manual labour cost.

In computer vision and AI, segmentation methods will
typically define, assume that the segmentation task can be
framed as separating an image into sub-regions with defined
and complete boundaries. For example, explicitly through
the definition of a mathematical optimisation framework, or
implicitly by training a neural network on common datasets.
Because of this, the task of semantically segmenting brain
tumours in US becomes uniquely difficult. From an engi-
neering perspective, there are a large number of benefits to
using bounding boxes. First and foremost, the reduced anno-
tation complexity should facilitate the collection of large
datasets.Accelerating technical and clinical research into this
topic. For technical development, the primary benefit is the
reduced complexity of the estimation task, which should lead
to highly accurate systems. The bounding boxes can also be
used for different tasks such as: representing the segment as

a probabilistic heat map [22] to account for the tumour infil-
tration [20, 27], prompting large/powerful models such as
Segment Anything Model (SAM) [15], tracking algorithms
[3].

Conclusion

What has been highlighted in this paper is our thoughts
on the challenges of segmenting brain tumours in 2D US
images, with a preliminary study conducted to corroborate
our hypothesis. For futurework, larger curated and consensus
annotated datasets of iUS brain tumour images and vol-
umes are needed to develop more accurate computer assisted
boundary detection tools. This is likely to only be achieved
through multi-site collaboration and pooling of data.

There are a few limitations of this study which we hope to
be addressed in future work. Firstly, the number of annotated
cases was small which is why we have withheld from iden-
tifying correlates - such as whether certain tumour types are
more accurately segmented. Secondly, only single sliceswere
used for segmentation as opposed to volumes. This is unlike
the real-world use of iUS where assessment of boundaries is
based on live 3D sweeps of tumours and adjacent anatomy,
plus often cross-correlation with preoperative MRI, both of
whichwould help refine the accuracyof segmentations.How-
ever, we do comment that even though 3D information may
be available, decisions are still biased by what is visible,
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which invariably would still be a 2D slice. Extending from
this, there remains the recurring issue in neuro-oncology of
there not being an accepted gold-standard ground truth for
tumour boundaries and our use of integratedmultimodalMRI
and US to create the reference standard segmentations has to
be an accepted compromise. Finally, whilst bounding boxes
may serve as an efficient method to improve the detection
of tumours, this is at the expense of specificity, which is
important for the prevention of inadvertent removal of nor-
mal, functional brain tissue.
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3d-ultrasound power doppler and visualization of lenticulostriate
arteries during resections of insular gliomas. Brain & Spine 2

30. Trevisi G, Barbone P, Treglia G, Mattoli MV, Mangiola A
(2019) Reliability of intraoperative ultrasound in detecting tumor
residual after brain diffuse glioma surgery: a systematic review
and meta-analysis. Neurosurgical Rev 43:1221–1233. https://api.
semanticscholar.org/CorpusID:199551095

31. Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagel-
hus Hernes TA (2002) Neuronavigation by intraoperative three-

dimensional ultrasound: initial experience during brain tumor
resection. Neurosurgery 50(4):804–812

32. Unsgård G, Lindseth F (2019) 3d ultrasound-guided resection of
low-grade gliomas: principles and clinical examples. Neurosurgi-
cal Focus 47(6):E9

33. Van Der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F,
Warner JD, Yager N, Gouillart E, Yu T, the scikit-image con-
tributors (2014) scikit-image: image processing in Python. PeerJ,
2:e453, 6 ISSN 2167-8359. https://doi.org/10.7717/peerj.453

34. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P,WeckesserW, Bright J, van
der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson
ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore
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Comments

Dr. Weld and his colleagues presented an interesting study on a rele-
vant topic and important diagnostic tool what should not be missing in
the neurosurgical armamentarium. However, although the advantages
of the use of intraoperative ultrasound are obvious, the examinations
themselves are often challenging and their quality depends on many
different factors such as the anatomical and technical conditions, the
sonographic accessibility of the structures and the morphological char-
acteristics of the pathologies, and the skills and experiences of the
respective examiners. Furthermore, structured training and standard-
ized workflows are unusual and frequently considerable learning curves
must be considered. In the present study, the challenges of intraoperative
ultrasound examinations of brain tumors were addressed and potential
interobserver variations amongst ultrasound users assessed. Moreover,
bounding box annotation as a promising approach was evaluated and
proposed as a complementary both clinical and technical usefulmethod.
I congratulate the authors on this exciting study which results can con-
tribute to facilitate the application of intraoperative ultrasound and to
improve the quality of the examination.
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