



# A Scalable Data-Driven Agent-Based Model for Simulating the COVID-19 Pandemic

Implementation and parallelization for an agent-based model with realistic reproduction of human mobility and contact behavior

Sascha Korf\*, David Kerkmann<sup>†</sup>, Khoa Nguyen<sup>†</sup>, Daniel Abele\*, Alain Schengen<sup>‡</sup>, Carlotta Gerstein\*, Jens-Henrik Göbbert<sup>§</sup>, Achim Basermann\*, Martin J. Kühn\*, Michael Meyer-Hermann<sup>†</sup>

\*Institute for Software Technology, Department of High-Performance Computing, German Aerospace Center, Cologne, Germany <sup>†</sup>Helmholtz Centre for Infection Research, Brunswick, Germany <sup>‡</sup>Institute of Transport Research, German Aerospace Center, Cologne, Germany <sup>§</sup>Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany



sascha.korf@dlr.de



# Background

- Agent-based models offer great customizability and can model a pandemic setting in great detail
- A fine time resolution and large populations can lead to computationally expensive simulations

## Methods

- Mobility-based agent-based model with households, schools, workplaces and other locations
- Shared memory parallelization for single simulation runs
- Shared and distributed memory parallelization for multiple simultaneous simulation runs

#### **Overview of the Model**

Algorithm 1: Trip-based agent-based simulation

- 1  $t \leftarrow t_0 \in \mathbb{R}$
- <sup>2</sup> while  $t \leq t_{\text{max}}$  do
- for each location [parallel] do 3
- Cache exposure rate of location 4



- for each agent [parallel] do 5
- **Execute individual interactions** 6
- for each agent [parallel with synchronization] do 7
- Perform individual movement 8
- $t \leftarrow t + \Delta t$ 9

### Results

- Benchmark results based on representative simulations for different amount of agents
- Left: Runtime and memory scaling with 8



- Multiple simulation runs were parallelized on an inter-node level in a recent preprint (in order to parametrize the model parameters to real-world data)
- For this we ran up to 2592 concurrent simulation runs on 27 nodes with each 128 cores
- This allowed us to run 85 536 simulation runs in under eight hours



Our Recent Preprint<sup>2</sup>

#### REFERENCES

1. Willem, L. et al. Optimizing agent-based transmission models for infectious diseases. *BMC Bioinformatics* **16** (June 2015).

2. Kerkmann, D. et al. Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease *spread.* 2024.