
Vol.:(0123456789)

CEAS Space Journal 
https://doi.org/10.1007/s12567-025-00623-w

ORIGINAL PAPER

SMARTies: a software suite for flexible and fully automated control 
of multi‑sensor telescope stations

Christoph Bergmann1 · Johannes Herzog1 · Benjamin Hofmann1 · Marcel Prohaska2 · Yonathan Ascanio Hecker1 · 
Hauke Fiedler1 · Thomas Schildknecht2 · Lucia Kleint2

Received: 10 October 2024 / Revised: 9 April 2025 / Accepted: 29 April 2025 
© The Author(s) 2025

Abstract
We describe the SMARTnet Instrument Enhancing Software (SMARTies) package, which we developed from scratch for fully 
automated remote control of our telescope stations within the Small Aperture Robotic Telescope Network (SMARTnet). Since 
March 2024, we have been using SMARTies continually to operate our SMARTnet telescope station in Chile successfully. 
We include a detailed description of the system design and architecture including the SMARTies modules, which are written 
in pure Python and are kept rather abstract, as well as the bespoke device controllers, which facilitate the communication 
with the actual hardware devices used. SMARTies was designed to fulfil a number of different use cases, including satellite 
or space debris tracking, survey observations, and observations of astronomical objects, including light curve acquisitions, 
and is therefore useful for the Space Situational Awareness community and other observational astronomers alike. While 
a fully automated observing mode following a user-defined schedule was one of the driving factors in the development of 
SMARTies, it does allow for near real-time manipulations of the schedule and even completely manual operations of the 
telescope. Because of its object-oriented and modular approach, new SMARTies functionalities can easily be added and 
different hardware devices can easily be included by adding new device controllers. Therefore, we envision SMARTies to 
be an extremely useful asset for many telescope operators across the world.

Keywords Telescopes · Observational methods · Software · Space situational awareness

1 Introduction

As the number of both satellites and space debris objects in 
Earth’s orbit is rapidly increasing [1], more and more effort 
is put into monitoring and tracking this population of resi-
dent space objects (RSOs). One orbital region of particular 
interest is the one containing geosynchronous Earth orbits 
(GEOs) including the geostationary ring and its surround-
ings. This region is hardly accessible by radar observations 
but is usually monitored with passive-optical observations 
using telescopes. Its object density has also risen steeply 
over the past few years, as is the case for virtually all other 
orbital regions [1].

A number of satellite and space debris monitoring / track-
ing campaigns exist that are partially or mainly dedicated 
to the GEO region (e.g., [2–5]). In collaboration with the 
Astronomical Institute of the University of Bern (AIUB), 
the German Space Operations Center (GSOC) has set up the 
SMARTnet for detecting, tracking, and monitoring RSOs 
at high altitudes [6]. As part of SMARTnet, GSOC oper-
ates several passive-optical telescope stations, currently 
SMART-01-SUTH at Sutherland, South Africa, SMART-
02-KENT at Mt Kent, Australia, and SMART-03-ELSA at 
El Sauce, Chile, and will add more stations in the coming 
years. These are all robotic telescope stations at different 
time zones, and as such they need a reliable control software 
for fully automated operations without the need for a night 
observer.

Furthermore, the control software needs to satisfy all the 
different use cases we defined for our telescope stations, as 
further detailed in Sect. 2.2. For this reason, many obser-
vatories around the world use custom-made in-house soft-
ware to operate their respective telescopes and instruments. 

 * Christoph Bergmann 
 christoph.bergmann@dlr.de

1 German Space Operations Center, German Aerospace 
Center, Münchener Str. 20, 82234 Weßling, Germany

2 Astronomical Institute, University of Bern, Sidlerstr. 5, 
3012 Bern, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s12567-025-00623-w&domain=pdf


 C. Bergmann et al.

Unfortunately, this software often remains unpublished and 
near impossible to obtain and adapt, mainly because it is 
very hardware-specific. However, while there are a number 
of software suites available (e.g., [7–10]), they cannot be 
fully adapted to our purposes and/or lack one or more of the 
required functionalities. For example, the functionality to 
include multiple telescopes and/or sensors in the observa-
tion schedule, the ability to perform ephemeris tracking, or 
a dedicated high-cadence light curve acquisition mode is 
often missing.

We thus decided to build a new software system called 
SMARTies (SMARTnet Instrument Enhancing Software) 
completely from scratch, which is guaranteed to meet all 
requirements and satisfy all use cases we identified for our 
purposes, which can be lean as it does not have to carry a lot 
of legacy code, and which is made as simple as possible to 
use. At the same time, we aimed to make SMARTies a use-
ful asset for other users with a wide variety of desired appli-
cations, from space situational awareness (SSA) applications 
like satellite and space debris tracking with different tracking 
modes to general astronomical observations whether they are 
astrometric, photometric, or spectroscopic in nature. Due to 
its object-oriented and modular approach, SMARTies can 
easily be adapted to different mounts, telescopes, sensors, 
and other devices, as well as for applications that we have 
not yet foreseen.

We describe the design concept and structure of the 
SMARTies software in Sect. 2, together with an overview 
of the most important use cases, the network communica-
tion structure, the device controllers, and the error handling. 
The individual Python modules are explained in Sect. 3. 
In Sect. 4, we give some examples on how to use SMART-
ies. Finally, Sect. 5 gives a summary and a brief outlook on 
planned future activities.

2  Concept and structure

2.1  Software development

Over the past couple of decades, Python has become the 
de facto standard programming language in astronomy and 
related fields [11, 12], and many extremely useful librar-
ies are available to the scientific community, e.g., scipy, 
astropy, numpy. This makes software development 
significantly more convenient and efficient, although one 
aspect of our design philosophy was to use third party pack-
ages as little as possible for the sake of code transparency. 
Moreover, given its prevalence and the existing knowledge 
in our team of developers, we decided to choose Python as 
the programming language for SMARTies and to adhere to 
established software engineering guidelines. These include 
implementing unit tests wherever possible and applying a 

stringent code review policy, so that every line of code has 
passed through at least two pairs of eyes. For version control, 
issue tracking, mutual code review, and automated unit tests, 
we have been using GitLab. We also put considerable effort 
into various forms of documentation, including numerous 
in-code comments, verbose docstrings, and various interface 
control documents (ICDs).

For maximum flexibility, we decided to make SMARTies 
independent of the operating system used. Moreover, the 
vast majority of all source code in the SMARTies Python 
modules is written in an object-oriented manner and makes 
use of class inheritance. This fits well to the decision for a 
very modular approach, which we adopted in order to make 
any changes in hardware as simple as possible.

As an example, if a telescope station operator has dif-
ferent cameras, possibly even from different manufactur-
ers, with different functionalities, they may need a separate 
Python class for each camera type to account for these 
differences, e.g., one might have a CCD (charge-coupled 
device) sensor with a mechanical iris shutter, whereas 
another one might have a sCMOS (scientific complemen-
tary metal-oxide-semiconductor) sensor with an electronic 
rolling shutter, but all of them are child classes of the same 
parent camera class. This way, the overlapping functionality 
is already covered without the need to implement it twice. If 
two hardware devices offer the same general functionalities 
but only differ in, for example, their allowed temperature 
range, range of motion, or number of pixels, there is no need 
for a separate Python class and it is enough to provide dif-
ferent settings in the respective ini-files (see below).

SMARTies is designed to be configured by a small num-
ber of ini-files, which provide hardware-specific settings and 
also tell SMARTies which devices are available. For the 
sake of simplicity, we use the standard Windows ini-file for-
mat, i.e., separated into sections each containing key-value 
pairs, so that users can easily adapt these files manually. 
In order to run SMARTies in automatic mode, a user must 
provide a schedule file in JSON (JavaScript Object Notation, 
[13]) format containing all tasks that are to be performed 
in a given observing night (see Sects. 3.1 and 4). We use a 
simple script to ensure the validity of these schedule files 
before feeding them into SMARTies. While it is noted that 
there are efforts by CEN/CENELEC to establish a standard-
ized scheduling file format, called Scheduling and Command 
message (SCM) [14], we decided to adopt the JSON format 
for the sake of simplicity, flexibility, human-readability, and 
its widespread use not only in the scientific community but 
also in software development and (software) engineering in 
general. Also, note that SMARTies will attempt to perform 
all tasks and will not assess the reasonability of the com-
manded actions. Indeed, this is the desired behaviour so as 
not to limit the users’ options. It is also worth pointing out 
that several telescopes and/or sensors can be controlled by 



SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

one instance of SMARTies by simply indicating the desired 
instrumentation for a given task in the schedule file.

Figure 1 shows a simplified high-level flowchart for 
SMARTies. After SMARTies is initialized using a num-
ber of input files, the main observation loop is started. The 
scheduler reads the schedule file and creates individual tasks. 
If a certain start epoch, possibly with tolerances, is requested 
in the task, SMARTies either performs the observations, 
waits until the requested epoch and then performs the obser-
vations, or, in case the requested time has already passed, 
moves on to the next task. If observations are performed, 
all corresponding metadata are collected and the data and 
metadata are written to a FITS (Flexible Image Transport 
System, [15]) file. The main observation loop continues 
until the end of the schedule file is reached, in which case 
SMARTies parks the telescope and shuts down properly. 
The three boxes in the shaded green area on the right side of 
the diagram indicate optional processing and pre-processing 
steps, which are not part of the SMARTies software. A user 
may perform such steps and, if, for example, the exposure 

time for a given object is found to be insufficient, may wish 
to adapt the schedule file.

In the absence of a hardware setup with which to test 
the source code, we found the concurrent development of 
the SMARTies python modules and the device controllers 
to be very challenging. Hence, in order to circumvent this 
problem to some extent during the early development stages 
of SMARTies, we worked with dummy device controllers, 
which simulate the network communication, and eventually 
allowed us to run mock end-to-end simulations of entire 
observing nights. This also helped us in ensuring that all 
output files (FITS files containing image data and metadata) 
are created correctly. After having put together a beta-version 
of SMARTies in mid-2023, we could eventually perform fur-
ther intensive testing of the software with the actual hard-
ware of SMART-03, which had been temporarily installed 
at Zimmerwald Observatory, Switzerland, by that time. This 
allowed us to test thoroughly all aspects of the SMARTies 
functionality. We began by testing all commands individu-
ally for each decoupled hardware device before eventually 

Fig. 1  Simplified flowchart 
showing the main aspects of 
running SMARTies



 C. Bergmann et al.

conducting observations in fully automated observing mode 
for several nights using schedule files. In particular, this 
included all tracking modes (azimuth-elevation (AZELE) 
tracking, sidereal tracking, angular-velocity tracking, and 
ephemeris tracking) and all different types of observation 
(bias frames, dark frames, flat fields, focus series, and science 
frames). We performed these scheduled observations with 
a multitude of combinations of the settings adjustable for a 
given task (see Sect. 4 for some examples). Please note that 
many of these settings, like exposure time, telescope pointing 
angles, or on-chip binning, can change from one exposure to 
the next within a given series. As might be expected, these 
tests under real-world conditions uncovered a number of 
issues and unexpected behaviour, especially in the network 
communication between the SMARTies modules, the inter-
mediary software we call device controllers (see Sect. 2.3.2), 
and the hardware devices, and thus was an important step in 
quickly pushing SMARTies towards a stable version.

We reached a fully operational version 1.0 of SMARTies 
in September 2023. Since then, our focus has shifted from 
developing and debugging towards implementing additional 
features that extend beyond the SMARTies core function-
alities. The most important additional feature, which we 
have added in v1.3.0 (July 2024), has been the ability to 
run SMARTies in light curve acquisition mode. We imple-
mented this new mode in order to unlock the full potential 
of sCMOS cameras, which usually have much higher frame 
rates compared to CCDs, therefore enabling high-cadence 
image acquisitions needed for light curve analyses of fast 
rotating objects. All settings that may vary for individual 
exposures within a given series in regular observing mode 
are kept fixed in light curve acquisition mode in order to 
maximize the image acquisition rate.

While there will be further developments and minor bug 
fixes as part of a continual development process, the reli-
ability of SMARTies has now been proven through many 
months of successful operations at SMART-03-ELSA, dur-
ing which SMARTies has not caused a single failure.

2.2  Use cases

Before we began the programming phase, we defined a num-
ber of use cases for SMARTies and derived software require-
ments from them. The use cases we defined for SMARTies 
are naturally tailored to SSA purposes, i.e., anything related 
to satellite and space debris tracking and survey observa-
tions, as this is our main line of work. They can be divided 
into three categories: taking calibration frames, survey 
observations, and follow-up observations of known RSOs. 
Firstly, use cases related to calibration frames include taking 
bias frames, dark frames, flat fields, focus series, and images 
used for creating mount pointing models or mapping mod-
els. Secondly, the survey-observation use cases comprise 

scanning fields fixed in azimuth (AZI) and elevation (ELE) 
and fixed stellar fields, i.e., with the mount performing side-
real tracking. Finally, the use cases for follow-up observa-
tions include ephemeris tracking of satellites, space debris 
objects (including fragmentation events), Solar System 
objects, as well as tracking objects with fixed rates in the 
angles used by the mount (either right ascension (RA) and 
declination (DEC) or AZI and ELE). This includes a mode 
we call pseudo-ephemeris tracking, where the telescope fol-
lows any user-defined path on sky provided in the form of 
ephemerides, regardless of whether this corresponds to the 
motion of an object. On-sky observations may be performed 
in “standard” observation mode or in light curve mode, 
which is specifically designed to obtain high-cadence obser-
vations for photometry, including the use of different filters. 
However, please note that the applicability of SMARTies is 
by no means limited to these use cases and that use cases 
defined by other users may well be covered by the function-
ality of SMARTies already. In fact, we expect this to be the 
case for the majority of possible telescope operating modes 
an observer may wish to employ.

2.3  Communication

For each of the hardware-controlling modules described in 
Sect. 3.2, there is at least one corresponding device control-
ler, which acts as an intermediary between the hardware-
controlling module and the device firmware (see Sect. 2.3.2). 
The main reason for this additional abstraction layer is to 
make SMARTies independent of the hardware devices used. 
For example, some manufacturers require a specific operat-
ing system for their device drivers or software development 
kits (SDKs), so a device controller may run on a Windows 
computer while SMARTies runs on a Linux machine or vice 
versa. Note that these computers may be physically sepa-
rated, perhaps even in a different building, as is the case for 
our SMARTnet telescope stations. SMARTies only needs to 
take care of the network communication to the device con-
troller via TCP/IP (Transmission Control Protocol / Internet 
Protocol). When a hardware device is changed or replaced, 
a new device controller may become necessary as different 
hardware devices can have different functionalities and/or 
may use a different communication protocol (e.g., classic 
ASCOM [16, 17], ASCOM Alpaca [18], INDI1, or a manu-
facturer’s own protocol). Hence, in the example given in 
Sect. 2.1, each camera may require a separate device control-
ler. However, no changes to SMARTies would be required.

The interplay between the hardware-controlling modules, 
the corresponding device controllers, and the physical hard-
ware devices is illustrated in Fig. 2. The TCP/IP communication 

1 https:// indil ib. org/. last accessed 09 Sep 2024.

https://indilib.org/


SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

between the hardware-controlling module and the device con-
troller is handled by the communication-handling module smart-
ies_com using the AIUB protocol (see Sects. 2.3.1 and 3.3), 
and the communication between the device controller and the 
physical hardware device is handled by the device controller 
using the communication protocol dictated by the manufacturer 
(ASCOM in this example).

In summary, the modular approach and the abstraction of 
the communication between software and hardware mini-
mize the effort required to adapt SMARTies to new hard-
ware devices.

2.3.1  AIUB protocol

For network communications, we decided to use the AIUB 
protocol [19], which has been proven reliable over many 
years of telescope station operations. This decision saved 
us the time to develop a protocol of our own. The AIUB 
protocol defines a network-based exchange of requests and 
replies between a requester and an executor. Communication 
takes place in plain text and can be used for both synchro-
nous and asynchronous applications. The basic structure of 
a record is as follows:

$SOR,<length>,<number of messages>,<list 
of messages>,$EOR

where:
$SOR       Start of record.
<length>       The number of characters of the entire 

record.
<number of messages>       The number of mes-

sages contained in the record.
<list of messages>       The comma-separated list 

of all messages.
$EOR       End of record.
The message itself is constructed accordingly:

%$MESSAGE_ID,<length>,<number of param-
eters>, <parameters>,$EOM

where:
$MESSAGE_ID       The pre-defined identifier of the 

message.
<length>       The number of characters of the entire 

message.
<number of parameters>       The number of 

parameters contained in the message.
<parameters>       The comma-separated list of all per 

message pre-defined parameters.
$EOM       End of Message.

2.3.2  Device controllers

As mentioned above, for every hardware device used (e.g., 
mount, camera, focuser, weather station, filter wheel, derota-
tor,...) there is a device controller, which acts as an interme-
diary between the hardware-controlling SMARTies modules 
described in Sect. 3.2 and the device firmware. A device 
controller relays commands received from the SMART-
ies module to the hardware device itself and passes on any 
responses, outcomes, and results of the commanded actions 
to the commanding hardware-controlling SMARTies mod-
ule. Communication between the hardware-controlling 
SMARTies modules and the device controllers is achieved 
through the communication-handling smarties_com module 
by sending back and forth a byte stream via a TCP/IP con-
nection. For this, we adopted the use of the AIUB protocol 
described above. Please note that all users can add their own 
bespoke device controllers as long as they follow the well-
defined interface described in the SMARTies ICD.

Using the AIUB protocol, a generalized division of the 
tasks to be completed in the interaction between SMART-
ies and any device results can be summarized as shown in 
Fig. 3. Within SMARTies, the topmost box labeled is a 
hardware-controlling module like the camera module or the 
mount module. The other two boxes are part of the smart-
ies_com module, which handles the AIUB protocol syntax 
and the TCP/IP connection.

The structure plan for an entire example telescope station 
is shown in Fig. 4. This setup is very similar to the one at 
SMART-03-ELSA, although we have removed the second 
camera and focuser for simplicity. Here, the core hardware 
devices include a mount, a camera, and a focuser. For each 
of them there is a hardware-controlling module and a device 
controller. Note that a dome controller is not necessary in 
this setup, as this is controlled by a separate station monitor-
ing and control software. The mount module also communi-
cates with the flipflop device. In addition, there is a weather 
station providing meteorological data and a time card acting 
as an event recorder for precise timing. In this example, the 
communication between the mount and the focuser with their 
respective device controllers works via ASCOM Alpaca (cyan 
boxes), with an additional Alpaca server in between, which is 

Fig. 2  Abstract depiction of the communication scheme between 
hardware-controlling modules, device controllers, and hardware 
devices



 C. Bergmann et al.

provided by the manufacturer. In contrast, the manufacturers 
of the camera, weather station, and time card provide their 
own software communication protocol, indicated by the yel-
low boxes beneath the respective device controllers.

2.4  Error handling

In order to ensure smooth and stable operations of a tel-
escope station, it is imperative to handle any potential errors 
that may arise with great care. Thus, all SMARTies modules 
strictly adhere to the same error handling. Every function 
or method call always returns an outcome, even if no other 
values are returned. This outcome can either be “no error”, 
or one or several well-defined error codes, which are also 
logged. These error codes are always relayed up the calling 
hierarchy, sometimes through several layers, until eventually 
they are passed back to the main module. It is only at this 
stage that a decision is made on how to deal with a given 
error, depending on their severity. SMARTies may simply 

jump to the next exposure, e.g., when camera settings could 
not be set or the FITS file could not be written, or it may 
jump to the next task, e.g., when no connection could be 
established to the mount. Experience has taught us that it 
may pay to keep on trying in these cases. Only as a last 
resort is SMARTies terminated, which happens, for instance, 
if no camera is available upon initializing SMARTies.

3  SMARTies python modules

Almost all SMARTies modules are written in an object-
oriented way. This comes in particularly handy for the hard-
ware-controlling modules, in which we define an abstract 
base class, from which hardware-specific child classes 
inherit their core functionalities. Any modifications from or 
additions to the core functionalities can therefore easily be 
realized within the child class.

The SMARTies Python  modules can be divided 
into four categories: organizational (main, scheduler), 

Fig. 3  Basic principle of the 
collaboration between SMART-
ies, a device controller, and the 
associated device

Fig. 4  Structure plan for the 
interaction of SMARTies, some 
device controllers, and the 
associated devices based on an 
example of an entire telescope 
station



SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

hardware-controlling (camera, mount, focuser, timing, 
meteo), communication-handling (smarties_com), and aux-
iliary modules (conversion, format_checker, file_handler, 
series_evaluation_tool). Note that, depending on the setup 
of the telescope station, there may be additional hardware-
controlling modules, for example, for a filter wheel / stage, 
a derotator, or a dome with a slit. They are not explained 
here in detail as the existing SMARTnet stations do not have 
any additional hardware (yet), but they must at least have 
getter and setter methods in principle, similar to the focuser 
module.

3.1  Organizational modules

3.1.1  Scheduler

The scheduler module reads the user-provided schedule file 
and breaks it down into tasks, which are yielded to the main 
module for execution. These tasks are series of Nobs indi-
vidual exposures of a given exposure type (bias, dark, light), 
for which certain settings can be specified. As of SMARTies 
version 1.3.0, a task can also define a series of light curve 
observations consisting of Nobs individual exposures. The 
adjustable settings include general settings like the coor-
dinate system and tracking mode as well as sensor-specific 
settings like chip temperature including tolerances, exposure 
time, focus position, binning, sub-frame windows, etc. There 
are default settings for all exposure types, which include the 
number of exposures per series, the exposure time, and cam-
era settings like temperature, binning, or window size. They 
are overwritten for a given task by the user-defined settings if 
the specific keywords are present in the schedule file. Option-
ally, the user can also provide a specific start epoch includ-
ing tolerances, the time between consecutive observations 
including tolerances, and exclusion windows. After each task, 
the scheduler also checks whether a new schedule file has 
been created by the user, thereby allowing for dynamic, near 
real-time scheduling changes should the need arise.

3.1.2  Main module

The main workflow is handled by the main module. After 
SMARTies has been initialized, i.e., all housekeeping tasks 
are completed and all hardware-specific class instances are 
created according to their respective ini-files, the scheduler 
reads the user-provided schedule file and feeds tasks to the 
main module, which then delegates smaller work packages 
required to fulfil these tasks to the other modules. These 
work packages include applying a number of hardware set-
tings, performing coordinate transformations and starting 
tracking, handling exposure timing, acquiring and reading 
out an image, collecting all metadata, and saving all data 
and metadata to a file. Tasks are always conducted in the 

order in which they appear in the schedule file. However, it 
is possible to change the schedule in near real-time by pro-
viding a new schedule file. Once all tasks are completed, the 
telescope is parked and SMARTies is shut down.

3.2  Hardware‑controlling modules

The hardware-controlling modules are in charge of control-
ling the hardware devices. When a hardware-controlling 
module sends a command to perform some action or to read 
the status of a device, the corresponding device controller 
relays the command to the actual hardware device and also 
relays the hardware response, e.g., a temperature, a tracking 
status, or an error message, back to the hardware-controlling 
module. They are included as class instances within the main 
module and are configured with a hardware-specific ini-file 
upon instantiation. Note that there may be multiple hard-
ware devices of the same kind, e.g., two telescopes on a twin 
mount, and thus two cameras and two focusers, in which 
case one class instance is used for each hardware device. 
Communication with the device controllers is realized via a 
TCP/IP connection and is handled by a dedicated communi-
cation-handling module described in Sect. 3.3.

3.2.1  Camera module

The camera module is in charge of all camera-related activi-
ties. The main tasks of the camera module are setting and 
getting the camera temperature, selecting the region of the 
chip to be used for an exposure (full frame or sub-frame), 
changing the camera binning and/or read-out speed, and, 
of course, acquiring an image with a user-defined exposure 
time and reading out the camera buffer. We have imple-
mented two separate camera classes for CCD and sCMOS 
cameras, respectively, which both inherit their core function-
ality from a common parent camera class.

3.2.2  Mount module

The mount module handles commands related to mount and 
hence telescope movement. It is mainly used for moving 
the mount to a user-defined position (given as either RA / 
DEC or AZI / ELE) and starting tracking. Several tracking 
modes can be employed, namely AZELE tracking (i.e., point 
and hold), sidereal tracking, angular-velocity tracking (with 
constant user-defined angular velocities in the two reference 
angles, e.g., RA / DEC for equatorial mounts), and ephem-
eris tracking, which is realized by providing an external file 
containing ephemerides. In addition, the mount module also 
retrieves the current mount status and relays meteorological 
data to the mount, which is needed to calculate refraction 
in case the mount provides such functionality. The mete-
orological data itself is provided by the meteo module, see 



 C. Bergmann et al.

below. Finally, it retrieves information about the revolution 
the mount is currently in from a flipflop sensor, if present.

3.2.3  Focuser module

The sole purpose of the focuser module is to control the 
focuser, i.e., to set and get focus positions. Note that the 
determination of the optimal focus position is not handled 
by the focuser module but rather by the series_evalua-
tion_tool module.

3.2.4  Timing module

The timing module can serve as an event recorder for a 
specific timing solution, i.e., it can be used to retrieve the 
shutter opening and closing times to better than millisec-
ond accuracy based on a global navigation satellite system 
(GNSS) signal. For that to work, GNSS-synced time cards 
must be installed in the server computer(s) connected to 
the camera(s). In order to measure these epochs, an elec-
tronic implementation of detecting and reporting signal 
changes must be realized in the camera(s). The timing 
module sends a command to prepare the time cards before 
each observation and retrieves the recorded epochs after 
the exposure has finished.

3.2.5  Meteo module

Strictly speaking, the meteo module is not really control-
ling a hardware device, as it only has a getter function used 
to retrieve meteorological data from a weather station, if 
available.

3.3  Communication‑handling module

This module, called smarties_com, acts as the interme-
diary between the hardware-controlling modules and the 
corresponding device controllers. It handles the network 
communication via TCP/IP, translates the commands it 
receives from the hardware-controlling modules into the 
required syntax, and sends them to the respective device 
controllers. Upon receiving a reply from a device control-
ler, it parses this reply and breaks it down to the level 
that the respective hardware-controlling module can digest 
before passing it on. Finally, it also facilitates the transfer 
of the actual image data as a byte stream from the camera 
controller to the camera module.

3.4  Auxiliary modules

The auxiliary modules do not communicate with any 
devices controllers but provide additional functional-
ity and helper functions, which are used across multiple 
hardware-controlling modules and the main module.

3.4.1  Conversion modules

The conversion module is used to perform a variety 
of astronomical calculations. Most importantly, these 
include coordinate conversions between different refer-
ence systems (e.g., from J2000 to True of Date (TOD)), 
the conversion of a position on sky between different 
coordinate systems (e.g., from RA / DEC to AZI / ELE), 
the conversion of position vectors between Cartesian 
coordinates and geocentric/geodetic coordinates, and the 
calculation of diurnal and annual aberration corrections 
when converting between apparent and catalogue coor-
dinates. It also contains a small library of other low-level 
auxiliary routines that perform various often needed cal-
culations, such as an interpolation function or rotation 
matrices.

3.4.2  Format checker

The format_checker module is invoked by most higher-
level routines in order to screen their input arguments for 
any violations of the expected format. It thereby increases 
code stability, facilitates proper error handling and logging, 
and reduces boiler-plate code. Additionally, it also serves 
to distinguish between scalar and vectorized inputs, so that 
performance can be enhanced by running vectorized opera-
tions where applicable.

3.4.3  File handler

The file_handler module is tasked with saving the image 
data together with all collected metadata to disk. It deter-
mines the appropriate filename and directory and stores the 
observations in FITS format [15]. In regular observing mode 
with CCD cameras, one FITS file contains one 2-dimen-
sional image plus a single header. However, certain sCMOS 
cameras support multiple image channels with different 
gains, so a FITS file may contain multiple header data units 
(HDUs). Also, note that in light curve mode, all individual 
exposures constituting the light curve are stored as single 
HDUs within one large FITS file.



SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

3.4.4  Series evaluation tool

This module, called series_evaluation_tool, is invoked by the 
main module every time a focus series is conducted in order 
to perform the necessary steps to determine the optimal focus 
position automatically. A focus series is a series of exposures of 
a field of stars with sidereal tracking enabled and with variable 
focus values. For each exposure, a 2-dimensional Gaussian is 
fitted to all suitable stars in the field of view and their widths are 
recorded. Subsequently, the optimal focus position is determined 
as the one minimizing these widths.

4  How to use SMARTies

SMARTies can be started from a command line and the 
name of the main ini-file must be given as an input argu-
ment. The main ini-file contains, amongst other things, the 
station coordinates and lists the filenames and directories of 
all input and output files. In particular, it references all hard-
ware-specific ini-files, which define certain device properties 

and can be used to provide various settings, and the schedule 
file, which contains all tasks that have to be conducted in a 
given night.

In the following, we will give examples of some common 
tasks that can be performed with SMARTies, and how the 
respective tasks in the schedule file can be constructed.

{
”00001”: {

” o b j e c t ” : ” F l a t f i e l d ” ,
” s e r i e s ” : ”0001” ,
” e p o c h s t a r t ” : ”2024− 08− 29T21 : 3 0 : 0 0 . 0 0 0 ” ,
” coo rd sy s t em ” : ”AZELE” ,
” ang l e 1 d e g ” : 90 . 0 ,
” ang l e 2 d e g ” : 15 . 0 ,
” r e f f r ame ” : ”TOD” ,
” t r ack ing mode ” : ”AZELE” ,
” s e n s o r ” : {

”SMART− 03−B−ELSA” : {
” s e t t i n g s ” : ” F l a t ” ,
” n obs ” : ”9” ,
” e x p o s u r e t im e s e c ” : 0 . 5 ,
” coo l t emp ” : − 25.0 ,

}
}

} ,
”00002”: {

.

.

.
} ,
.
.
.

}

Listing 1 Example schedule file containing a series of flatfield frames as the first task

Listing 1 shows an excerpt from a schedule file, indicating 
how the schedule file is comprised of several tasks. In this 
example, the first task commands SMARTies to take a series 
of flatfield frames starting at 21:30 on 29 Aug 2024 (UTC). 
For this task, the mount tracking is set to AZELE tracking 
at an azimuth angle of 90◦ and an elevation angle of 15◦ . The 
series consists of 9 individual exposures with an exposure 
time of 0.5 s , and the camera temperature is set to −25 ◦C.

4.1  Take calibration frames



 C. Bergmann et al.

4.2  Take a series of survey observations

{
.
.
.
”00042”: {

” o b j e c t ” : ” Survey ” ,
” s e r i e s ” : ”0013” ,
” coo rd sy s t em ” : ”RADEC” ,
” ang l e 1 d e g ” : [ 1 2 0 . 0 , 122 .0 , 124 .0 , 126 .0 , 1 2 8 . 0 ] ,
” a ng l e 2 d e g ” : [ − 45.0 , − 44.0 , − 43.0 , − 42.0 , − 41.0] ,
” r e f f r am e ” : ” J2000 ” ,
” t r ack ing mode ” : ”AZELE” ,
” s e n s o r ” : {

”SMART−03−B−ELSA” : {
” s e t t i n g s ” : ” De f au l t ” ,
” e x p o s u r e t im e s e c ” : [ 8 . 0 , 10 . 0 , 12 . 0 , 14 . 0 , 1 6 . 0 ] ,
” d e l t a t s e c ” : 30 . 0 ,
” x b i n n i n g ” : 2 ,
” y b i n n i n g ” : 2 ,

}
}

} ,
.
.
.

}

Listing 2 Example schedule file containing a series of survey observations as the 42nd task

Another typical use case is to take a series of survey obser-
vations, as illustrated by Listing 2. While the settings used 
in this example might be questionable for a standard survey 
series, they highlight some of the flexibility that SMARTies 
offers its users. Here, the target coordinates are given as RA 
and DEC in the J2000 frame, AZELE tracking is performed 
rather than sidereal tracking. Here, the number of exposures 
is inferred from the length of the list of exposure times. Note 

that the target coordinates are also given as lists, so for each 
of the five individual exposures, the telescope will be point-
ing to a different location. Furthermore, all exposures will 
have a different exposure time as well, there will be 30 s 
between the starts of consecutive exposures, and the camera 
is set to a 2×2 binning mode.



SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

4.3  Take a light curve series of an object

{
.
.
.
”00127”: {

” o b j e c t ” : ”123ABC” ,
” s e r i e s ” : ”0001” ,
” t r ack ing mode ” : ” ephemer i s ” ,
” e p h em e r i d e s f i l e ” : ”123ABC. eph ” ,
” s e n s o r ” : {

”SMART−03−A−ELSA” : {
” s e t t i n g s ” : ” L i g h t c u r v e ” ,
” e x p o s u r e t im e s e c ” : 0 . 1 ,
” du r a t i o n ” : 120 ,
” l o w e r l e f t ” : [ 1848 , 1848 ] ,
” r e g i o n ” : [ 400 , 400 ]

}
}

} ,
.
.
.

}

Listing 3  Example schedule file containing a series of light curve observations as the 127th task

Listing 3 shows an example for a task commanding SMART-
ies to take a series of exposures in light curve mode. In this 
example, the mount performs ephemeris tracking according to 
a user-provided file containing the object’s ephemerides. The 
exposure times for all exposures are set to 0.1 s and SMARTies 
will take as many consecutive exposures as possible for a dura-
tion of 120 s . Also, only a 400×400 pixel sub-frame will be 
used, which has coordinates (x, y) = (1848, 1848) at its lower 
left corner. Using a sub-frame instead of the full frame speeds 
up the read-out process significantly and is therefore common 
practice for light curve observations of RSOs.

5  Summary and outlook

In order to fulfil all our needs and use cases for operating our 
telescope stations within SMARTnet, we have developed and 
implemented SMARTies. In particular, this software system 
allows for fully automated control of remote multi-sensor tel-
escope stations while offering a high degree of flexibility.

After the completion of the initial code development phase 
and several months of rigorous testing and debugging under 
real-life conditions with the telescope station hardware installed 
at Zimmerwald Observatory, Switzerland, SMARTies has been 
in continual use successfully at our telescope station SMART-
03-ELSA at El Sauce Observatory, Chile, since March 2024. 
Having performed many thousands of observations with 

SMARTies in different observing modes by now, we are very 
pleased with its performance and usability, allowing us both, to 
obtain standard observations in care-free automatic mode, as 
well as to perform special observations with a high degree of 
flexibility. Furthermore, the strict and fastidious error handling 
and logging has proven extremely valuable for code maintain-
ability and improvement whenever non-critical errors have 
occurred. Yet, perhaps the most outstanding property might 
be its code stability, as SMARTies has not crashed once. One 
of the lessons learnt is the fact that despite using an external 
syntax checker for the schedule files, it is still possible, albeit 
unlikely, for SMARTies to get stuck if a user provides certain 
nonsensical settings in and/or combinations of the tasks in the 
schedule file. Users should thus be extra careful when creating 
their schedule files.

In the near future, we envision a number of enhancements 
to the functionality of SMARTies. In addition to measuring 
the on-sky positions of RSOs, we want to obtain photometric 
measurements to study their brightness variations. By analys-
ing these brightness variations as a function of time, i.e., the 
objects’ light curves, information about their rotational periods 
and axes can be revealed. This is also an important precursor 
activity for future active debris removal missions. For this pur-
pose, we acquired an FLI Kepler KL4040 sCMOS camera, for 
which we have also developed a device controller, while our 
existing telescope stations are all equipped with FLI PL16803 
CCD cameras. We plan to install the new sCMOS camera at 



 C. Bergmann et al.

SMART-03-ELSA in the near future, so that we can obtain and 
analyse light curves of RSOs in the near future. Besides, any 
future telescope stations operated by GSOC will feature sCMOS 
cameras.

Furthermore, work has already commenced on designing and 
implementing a graphical user interface (GUI). While a GUI is 
not needed when SMARTies is run in fully automated mode, an 
interactive manual observing mode shall be possible, providing 
a high degree of convenience and flexibility.

In order to increase observing efficiency and minimize dead 
time, we are also working on an optimized workflow using asyn-
chronous commands that do not block each other while being 
executed. For example, there is no need to wait for the camera 
to finish reading out an image, which can take minutes for large 
CCD cameras, before slewing the telescope to the next desired 
position.

Another future functionality of SMARTies will help to 
maximize the efficacy and thus unleash the full potential of 
multi-sensor telescope stations by operating all telescopes 
and/or sensors simultaneously, which may or may not be 
done in a synchronized way. For example, with two or more 
telescopes installed on the same mount, one sensor could 
conduct wide-field survey observations measurements, while 
another sensor could perform high-cadence measurements 
of a single target in the field of view for light curve analyses.

As mentioned above, the first telescope station to be operated 
using SMARTies is GSOC’s third SMARTnet station SMART-
03-ELSA, which was installed and commissioned in Chile in 
early 2024. In the future, we successively plan to switch over our 
other telescope stations in South Africa and Australia to running 
with SMARTies as well. Any future SMARTnet stations will 
also be using SMARTies.

Please note that this work describes the current version of 
SMARTies, and while the overall design and core functionalities 
will likely not change much, we expect that some implemen-
tation details or minor structural changes will occur in future 
versions.

Acknowledgements We would like to acknowledge the valuable sup-
port received from HIFIS Software Services. This research has made 
use of NASA’s Astrophysics Data System. This work also made use 
of the following software packages: Python [20], astropy [11, 21, 
22], numpy [23], and scipy [24, 25]. Software citation information 
aggregated using The Softw are Citat ion Stati on [26, 27]. Finally, we 
would like to thank the anonymous referees, whose insightful com-
ments helped in improving this manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Not applicable.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. ESA: ESA Space Environment Report 2024. https:// www. esa. int/ 
Space_ Safety/ Space_ Debris/ ESA_ Space_ Envir onment_ Report_ 
2024 (2024)

 2. Boër, M., Klotz, A., Laugier, R., Richard, P., Dolado Perez, J.-C., 
Lapasset, L., Verzeni, A., Théron, S., Coward, D., Kennewell, 
J.A.: TAROT: A network for Space Surveillance and Tracking 
operations. In: 7th European Conference on Space Debris, p. 72 
(2017)

 3. Park, J.-H., Yim, H.-S., Choi, Y.-J., Jo, J.H., Moon, H.-K., Park, 
Y.-S., Bae, Y.-H., Park, S.-Y., Roh, D.-G., Cho, S., Choi, E.-J., 
Kim, M.-J., Choi, J.: OWL-Net: A global network of robotic tel-
escopes for satellite observation. Adv. Space Res. 62(1), 152–163 
(2018). https:// doi. org/ 10. 1016/j. asr. 2018. 04. 008

 4. Blake, J.A., Chote, P., Pollacco, D., Feline, W., Privett, G., Ash, 
A., Eves, S., Greenwood, A., Harwood, N., Marsh, T.R., Veras, 
D., Watson, C.: DebrisWatch I: A survey of faint geosynchronous 
debris. Adv. Space Res. 67(1), 360–370 (2021). https:// doi. org/ 10. 
1016/j. asr. 2020. 08. 008. arXiv: 2008. 12799 [astro-ph.EP]

 5. Luo, H., Mao, Y.-D., Yu, Y., Tang, Z.-H.: FocusGEO observations 
of space debris at Geosynchronous Earth Orbit. Adv. Space Res. 
64(2), 465–474 (2019). https:// doi. org/ 10. 1016/j. asr. 2019. 04. 006

 6. Fiedler, H., Herzog, J., Ploner, M., Prohaska, M., Schildknecht, 
T., Weigel, M., Klabl, M.: SMARTnet – First Results of the Tel-
escope Network. In: 7th European Conference on Space Debris, 
p. 97 (2017)

 7. Husser, T.-O., Hessman, F.V., Martens, S., Masur, T., Royen, 
K., Schäfer, S.: pyobs - An Observatory Control System for 
Robotic Telescopes. Frontiers in Astronomy and Space Sci-
ences 9, 891486 (2022) https:// doi. org/ 10. 3389/ fspas. 2022. 
891486arXiv: 2203. 12642 [astro-ph.IM]

 8. Zhang, C., Zhu, C.: CHES robotic observation software kit. 
Frontiers in Astronomy and Space Sciences 9, 896570 (2022). 
https:// doi. org/ 10. 3389/ fspas. 2022. 896570

 9. Kouprianov, V., Molotov, I.: FORTE: ISON Robotic Telescope 
Control Software. In: 7th European Conference on Space 
Debris, p. 112 (2017)

 10. Berg, S., N.I.N.A. contributors: N.I.N.A. - Nighttime Imaging ’N’ 
Astronomy. https:// night time- imagi ng. eu/ docs/ master/ site/ (2024)

 11. Astropy Collaboration, Price-Whelan, A.M., Lim, P.L., Earl, N., Stark-
man, N., Bradley, L., Shupe, D.L., Patil, A.A., Corrales, L., Brasseur, 
C.E., Nöthe, M., Donath, A., Tollerud, E., Morris, B.M., Ginsburg, 
A., Vaher, E., Weaver, B.A., Tocknell, J., Jamieson, W., van Kerk-
wijk, M.H., Robitaille, T.P., Merry, B., Bachetti, M., Günther, H.M., 
Aldcroft, T.L., Alvarado-Montes, J.A., Archibald, A.M., Bódi, A., 
Bapat, S., Barentsen, G., Bazán, J., Biswas, M., Boquien, M., Burke, 
D.J., Cara, D., Cara, M., Conroy, K.E., Conseil, S., Craig, M.W., 
Cross, R.M., Cruz, K.L., D’Eugenio, F., Dencheva, N., Devillepoix, 
H.A.R., Dietrich, J.P., Eigenbrot, A.D., Erben, T., Ferreira, L., Fore-
man-Mackey, D., Fox, R., Freij, N., Garg, S., Geda, R., Glattly, L., 
Gondhalekar, Y., Gordon, K.D., Grant, D., Greenfield, P., Groener, 

https://www.tomwagg.com/software-citation-station/
http://creativecommons.org/licenses/by/4.0/
https://www.esa.int/Space_Safety/Space_Debris/ESA_Space_Environment_Report_2024
https://www.esa.int/Space_Safety/Space_Debris/ESA_Space_Environment_Report_2024
https://www.esa.int/Space_Safety/Space_Debris/ESA_Space_Environment_Report_2024
https://doi.org/10.1016/j.asr.2018.04.008
https://doi.org/10.1016/j.asr.2020.08.008
https://doi.org/10.1016/j.asr.2020.08.008
http://arxiv.org/abs/2008.12799
https://doi.org/10.1016/j.asr.2019.04.006
https://doi.org/10.3389/fspas.2022.891486
https://doi.org/10.3389/fspas.2022.891486
http://arxiv.org/abs/2203.12642
https://doi.org/10.3389/fspas.2022.896570
https://nighttime-imaging.eu/docs/master/site/


SMARTies: a software suite for flexible and fully automated control of multi‑sensor telescope…

A.M., Guest, S., Gurovich, S., Handberg, R., Hart, A., Hatfield-Dodds, 
Z., Homeier, D., Hosseinzadeh, G., Jenness, T., Jones, C.K., Joseph, 
P., Kalmbach, J.B., Karamehmetoglu, E., Kałuszyński, M., Kelley, 
M.S.P., Kern, N., Kerzendorf, W.E., Koch, E.W., Kulumani, S., Lee, 
A., Ly, C., Ma, Z., MacBride, C., Maljaars, J.M., Muna, D., Murphy, 
N.A., Norman, H., O’Steen, R., Oman, K.A., Pacifici, C., Pascual, S., 
Pascual-Granado, J., Patil, R.R., Perren, G.I., Pickering, T.E., Rastogi, 
T., Roulston, B.R., Ryan, D.F., Rykoff, E.S., Sabater, J., Sakurikar, P., 
Salgado, J., Sanghi, A., Saunders, N., Savchenko, V., Schwardt, L., 
Seifert-Eckert, M., Shih, A.Y., Jain, A.S., Shukla, G., Sick, J., Simp-
son, C., Singanamalla, S., Singer, L.P., Singhal, J., Sinha, M., Sipőcz, 
B.M., Spitler, L.R., Stansby, D., Streicher, O., Šumak, J., Swinbank, 
J.D., Taranu, D.S., Tewary, N., Tremblay, G.R., Val-Borro, M.d., Van 
Kooten, S.J., Vasović, Z., Verma, S., de Miranda Cardoso, J.V., Wil-
liams, P.K.G., Wilson, T.J., Winkel, B., Wood-Vasey, W.M., Xue, R., 
Yoachim, P., Zhang, C., Zonca, A., Astropy Project Contributors: 
The Astropy Project: Sustaining and Growing a Community-oriented 
Open-source Project and the Latest Major Release (v5.0) of the Core 
Package. ApJ 935 (2), 167 (2022) https:// doi. org/ 10. 3847/ 1538- 4357/ 
ac7c74arXiv: 2206. 14220 [astro-ph.IM]

 12. Faes, D.M.: Use of Python programming language in astronomy 
and science. arXiv e-prints, 1807–04806 (2018) https:// doi. org/ 
10. 48550/ arXiv. 1807. 04806arXiv: 1807. 04806 [astro-ph.IM]

 13. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foun-
dations of json schema. In: Proceedings of the 25th International 
Conference on World Wide Web, pp. 263–273 (2016). Interna-
tional World Wide Web Conferences Steering Committee

 14. Białkowski, A., Duźniak, P., Santana-Ros, T., Adamczyk, A., 
Taberski, G., Pieniowska, K., Baksalary, J., Renk, R., Matysiak, 
J., Kwiatkowski, T., Kamiński, K., Bartczak, P.: Scheduling and 
Commanding Message Standard usage in telescope tasking activi-
ties for NEO and SST. In: 1st NEO and Debris Detection Confer-
ence (ESA), p. 32 (2019)

 15. Wells, D.C., Greisen, E.W., Harten, R.H.: FITS - a Flexible Image 
Transport System. A &AS 44, 363 (1981)

 16. George, D.B., Denny, R.: ASCOM - Progress In Technology And 
Applications. International Amateur-Professional Photoelectric 
Photometry Communications 84, 16 (2001)

 17. Denny, R.B.: Software Interoperation and Compatibility: ASCOM 
Update. Society for Astronomical Sciences Annual Symposium 
21, 39 (2002)

 18. Denny, R.: ASCOM - Not Just for Windows Any More. In: Buch-
heim, R.K., Gill, R.M., Green, W., Martin, J.C., Menke, J., Ste-
phens, R. (eds.) 38th Annual Conference of the Society for Astro-
nomical Sciences (SAS-2019), p. 31 (2019)

 19. Gurtner, W., Pop, E., Utzinger, J.: Automation and Remote Con-
trol of the Zimmerwald SLR Station. In: 11th International Work-
shop on Laser Ranging (1998)

 20. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA (2009)

 21. Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, 
P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, 
A., Price-Whelan, A.M., Kerzendorf, W.E., Conley, A., Crighton, 
N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, 
M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, 
S., Kramer, R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., 
Zabalza, V., Edwards, Z.I., Azalee Bostroem, K., Burke, D.J., 
Casey, A.R., Crawford, S.M., Dencheva, N., Ely, J., Jenness, T., 
Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., Ptak, A., Refs-
dal, B., Servillat, M., Streicher, O.: Astropy: A community Python 
package for astronomy. A &A 558, 33 (2013) https:// doi. org/ 10. 
1051/ 0004- 6361/ 20132 2068arXiv: 1307. 6212 [astro-ph.IM]

 22. Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M., Günther, 
H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, 
M.W., Dencheva, N., Ginsburg, A., VanderPlas, J.T., Bradley, L.D., 
Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., 

Robitaille, T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P., 
Bachetti, M., Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, 
P., Baumbach, A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, 
K.A., Bouma, L.G., Brammer, G.B., Bray, E.M., Breytenbach, H., 
Buddelmeijer, H., Burke, D.J., Calderone, G., Cano Rodríguez, J.L., 
Cara, M., Cardoso, J.V.M., Cheedella, S., Copin, Y., Corrales, L., 
Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J.P., Don-
ath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L.A., 
Finethy, T., Fox, R.T., Garrison, L.H., Gibbons, S.L.J., Goldstein, 
D.A., Gommers, R., Greco, J.P., Greenfield, P., Groener, A.M., Grol-
lier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A.J., Hosseinzadeh, 
G., Hu, L., Hunkeler, J.S., Ivezić, Ž., Jain, A., Jenness, T., Kanarek, 
G., Kendrew, S., Kern, N.S., Kerzendorf, W.E., Khvalko, A., King, J., 
Kirkby, D., Kulkarni, A.M., Kumar, A., Lee, A., Lenz, D., Littlefair, 
S.P., Ma, Z., Macleod, D.M., Mastropietro, M., McCully, C., Montag-
nac, S., Morris, B.M., Mueller, M., Mumford, S.J., Muna, D., Murphy, 
N.A., Nelson, S., Nguyen, G.H., Ninan, J.P., Nöthe, M., Ogaz, S., Oh, 
S., Parejko, J.K., Parley, N., Pascual, S., Patil, R., Patil, A.A., Plun-
kett, A.L., Prochaska, J.X., Rastogi, T., Reddy Janga, V., Sabater, J., 
Sakurikar, P., Seifert, M., Sherbert, L.E., Sherwood-Taylor, H., Shih, 
A.Y., Sick, J., Silbiger, M.T., Singanamalla, S., Singer, L.P., Sladen, 
P.H., Sooley, K.A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, 
S.W., Tremblay, G.R., Turner, J.E.H., Terrón, V., van Kerkwijk, M.H., 
de la Vega, A., Watkins, L.L., Weaver, B.A., Whitmore, J.B., Woillez, 
J., Zabalza, V., Astropy Contributors: The Astropy Project: Building 
an Open-science Project and Status of the v2.0 Core Package. AJ 156 
(3), 123 (2018) https:// doi. org/ 10. 3847/ 1538- 3881/ aabc4farXiv: 1801. 
02634 [astro-ph.IM]

 23. Harris, C.R., Millman, K.J., Walt, S.J., Gommers, R., Virtanen, P., 
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, 
R., Picus, M., Hoyer, S., Kerkwijk, M.H., Brett, M., Haldane, A., 
del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Shep-
pard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oli-
phant, T.E.: Array programming with NumPy. Nature 585(7825), 
357–362 (2020). https:// doi. org/ 10. 1038/ s41586- 020- 2649-2

 24. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, 
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., 
Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, 
K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, 
E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., 
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, 
E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., 
van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental 
Algorithms for Scientific Computing in Python. Nature Methods 
17, 261–272 (2020) https:// doi. org/ 10. 1038/ s41592- 019- 0686-2

 25. Gommers, R., Virtanen, P., Burovski, E., Haberland, M., 
Weckesser, W., Oliphant, T.E., Reddy, T., Cournapeau, D., alex-
brc, Nelson, A., Peterson, P., Roy, P., Wilson, J., Polat, I., endo-
lith, Mayorov, N., Walt, S., Brett, M., Laxalde, D., Eric Larson, 
E., Millman, J., Sakai, A., Lars, peterbell10, Mulbregt, P., Carey, 
C., eric-jones, McKibben, N., Kern, R., Kai: Scipy/scipy: SciPy 
1.11.0. https:// doi. org/ 10. 5281/ zenodo. 80798 89

 26. Wagg, T., Broekgaarden, F.S.: Streamlining and standardizing 
software citations with The Software Citation Station. arXiv 
e-prints, 2406–04405 (2024) arXiv: 2406. 04405 [astro-ph.IM]

 27. Wagg, T., Broekgaarden, F., Gültekin, K.: TomWagg/software-
citation-station: V1.2. https:// doi. org/ 10. 5281/ zenodo. 13225 824

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.3847/1538-4357/ac7c74
http://arxiv.org/abs/2206.14220
https://doi.org/10.48550/arXiv.1807.04806
https://doi.org/10.48550/arXiv.1807.04806
http://arxiv.org/abs/1807.04806
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
http://arxiv.org/abs/1307.6212
https://doi.org/10.3847/1538-3881/aabc4f
http://arxiv.org/abs/1801.02634
http://arxiv.org/abs/1801.02634
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.8079889
http://arxiv.org/abs/2406.04405
https://doi.org/10.5281/zenodo.13225824

	SMARTies: a software suite for flexible and fully automated control of multi-sensor telescope stations
	Abstract
	1 Introduction
	2 Concept and structure
	2.1 Software development
	2.2 Use cases
	2.3 Communication
	2.3.1 AIUB protocol
	2.3.2 Device controllers

	2.4 Error handling

	3 SMARTies python modules
	3.1 Organizational modules
	3.1.1 Scheduler
	3.1.2 Main module

	3.2 Hardware-controlling modules
	3.2.1 Camera module
	3.2.2 Mount module
	3.2.3 Focuser module
	3.2.4 Timing module
	3.2.5 Meteo module

	3.3 Communication-handling module
	3.4 Auxiliary modules
	3.4.1 Conversion modules
	3.4.2 Format checker
	3.4.3 File handler
	3.4.4 Series evaluation tool


	4 How to use SMARTies
	4.1 Take calibration frames
	4.2 Take a series of survey observations
	4.3 Take a light curve series of an object

	5 Summary and outlook
	Acknowledgements 
	References


