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Abstract. Concept Activation Vectors (CAVs) offer insights into neu-
ral network decision-making by linking human friendly concepts to the
model’s internal feature extraction process. However, when a new set of
CAVs is discovered, they must still be translated into a human under-
standable description. For image-based neural networks, this is typically
done by visualizing the most relevant images of a CAV, while the deter-
mination of the concept is left to humans. In this work, we introduce an
approach to aid the interpretation of newly discovered concept sets by
suggesting textual descriptions for each CAV. This is done by mapping
the most relevant images representing a CAV into a text-image embed-
ding where a joint description of these relevant images can be computed.
We propose utilizing the most relevant receptive fields instead of full
images encoded. We demonstrate the capabilities of this approach in
multiple experiments with and without given CAV labels, showing that
the proposed approach provides accurate descriptions for the CAVs and
reduces the challenge of concept interpretation.

Keywords: XAI, Explainability, Concepts, Textual Description, Text-
Image-Embeddings

1 Introduction

One major challenge of deep neural networks is their black-box nature which
makes the interpretation of their behavior difficult. To mitigate this drawback,
multiple approaches have been proposed to highlight relevant parts of the input
data for a given prediction, for example, LIME [27], SHAP [19], GradCAM [29],
LRP [1] and Feature Visualization [24]. Another idea is to explain the internal
mechanism of a deep neural network in terms of concepts that are understandable
and easy to communicate to humans [4,14,26]. One attempt to identify such
concepts is with so-called Concept Activation Vectors (CAVs) [14]. A CAV is a
vector in the feature space of the activations of a specific network layer. It is
designed to point to the direction of activations that are connected to a specific
human understandable concept.
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(a) Top derived descriptions: underwater vs. blue

(b) Top derived descriptions: insects vs. verde

Fig. 1: Examples of two CAVs computed from the first residual block of a
ResNet50, trained on Animals with Attributes 2 [32]. The first row of each subfig-
ure shows the full representative images of the CAVs and the textual descriptions
generated based on the full images. The second row shows the representative re-
ceptive fields for the same CAVs and the textual descriptions are derived from
the receptive fields.

The idea behind CAVs is that a human defined concept that contributes to
the model decisions has a representation in the model’s embedding space. For
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example, the concept stripe pattern should have a corresponding representation
when the model uses it in the decision-making process to predict a zebra.

In the literature, approaches have been suggested to find CAVs in a super-
vised and an unsupervised manner: While for the supervised approaches example
images that contain the desired concepts are utilized [14,20,34], the unsupervised
approaches use, for example, network bottlenecks to extract CAVs [33,34].

We aim to describe the utilized concepts of a pretrained network without any
assumptions about the concepts and without the need for example images for
the concept. Hence, we focus on the description of an unsupervised discovered
set of CAVs. As the discovered CAVs are given as vectors in the feature space,
the encoded concepts need to be described for humans. A common way is to
show images of a given dataset, which are most similar to the respective CAV in
the hidden representation. However, this introduces the need for interpretation
to derive a compact and communicable meaning from the given images.

To avoid the need for human interpretation, we propose to determine a rank-
ing of textual descriptions for each concept. Depending on the CAV, the textual
descriptions to be ranked, and the fine granularity of the text embedding, the
highest ranked descriptions can be highly redundant. Therefore, we further de-
rive a single common description based on the k highest ranked descriptions.
Depending on the ranking, this common description can differ from the highest
ranked description.

We build up on existing approaches to describe the information filtered by
individual neurons in a textual way, for example, [23]. In this approach a neuron
is described by generating a textual description for the relevant images of a
neuron for which the neuron has the highest activation. The textual description is
chosen as the best fitting one out of multiple candidates. In contrast to individual
neurons, a major advantage of CAVs is that they represent vectors in the feature
space and not only individual scalar neuron outputs. The total number of CAVs
is usually significantly lower than the number of neurons in the corresponding
layer.

The textual descriptions of the individual neurons in [23] are based on the full
images that are relevant for the considered neuron. However, when the variety of
images in a data set is not large enough, it is often not possible to separate highly
correlated concepts, especially concepts of different degrees of abstraction, purely
based on the full images. One example of the issue of highly correlated concepts
are the concepts insects and verde, see Figure 1a. An example of concepts of
different degrees of abstraction are the concepts underwater and blue, as in
many cases underwater is a specification of blue, see Figure 1b. To address this
limitation, we propose to use receptive fields instead of the full images for the
generation of the textual descriptions. By replacing the full images with receptive
fields, we can focus on the parts of the images, where an evaluated concept is
most present. This reduces the noise that can affect the textual description of
the concept.

In summary, the interpretation process of a neural network by ranking textual
descriptions of human understandable concepts is represented by CAVs. Further,
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we derive a single common textual description to decrease the redundancy. Our
main contributions are:

– We enhance the automatic concept discovery in a trained model by inter-
preting the visual CAVs with textual descriptions.

– We derive a common concept description from the top-k computed textual
descriptions to reduce redundancy.

– We propose using receptive fields to derive the textual descriptions and in-
troduce concept scores to measure the relevance of the receptive fields. By
that the textual descriptions focus on the relevant parts of the images, e.g.
only the parts of the image seen by the model up to that layer.

2 Related Work

Concepts. The idea that certain directions in a model’s latent representation
align with human-understandable concepts was initially proposed by Kim et al.
[14]. They propose to learn a hyperplane in the activation space of a neural net-
work layer that separates images, which include the concept, from other images.
The normal of the hyperplane in the direction of the images encoding the con-
cept is the Concept Activation Vector (CAV). Since then, a lot of effort was put
into the automatic discovery of such concepts activation vectors [8,9,22,33,36].
Interesting for our work is the novel concept discovery algorithm proposed by
Yeh et al. [33], which combines interpretability with a new notion of complete-
ness which measures how sufficient a set of CAVs is for the explanation of a
model’s prediction behavior. They also introduce a method to rank the found
CAVs by importance called ConceptSHAP which adapts Shapley values [28].
Shapley values assign importance to a feature by calculating its average contri-
bution in all possible combinations. One drawback of approaches for automatic
CAV discovery is that they rely on images as references for the explanation of a
CAV.

Network Dissection. The idea of dissecting a network is to inspect the function
of individual neurons in the network to get insights into the model. The first work
about network dissection provided a method to quantify the interpretability of
latent representations by comparing neuron activations with segmentation masks
from a concept dataset [2]. This approach aligns individual neuron activations
of a model with specific visual concepts given by the segmentation masks. One
major limitation of this approach is, that the masks needed to be annotated by
humans. Based on this, a segmentation model was proposed in [3] to annotate the
masks for each concept. MILAN [11] extends the labeling of neurons to open-
ended natural language descriptions: This approach generates descriptions of
neurons by finding language strings that maximize the mutual information of the
image regions where the neuron is active. To generate the language description,
an image-to-text model is required, trained on a labeled data set. To avoid the
need for labeled data, CLIP-Dissect [23] leverages the multimodal training of
CLIP [25], a method that embeds image and text data to a joint feature space.
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Joint Text-Image Embeddings. In recent years, there have been significant
advancements in learning joint text-image embeddings [12,18,25,35]. Text-image
embeddings can be utilized to perform various tasks, such as zero-shot classi-
fication. Contrastive learning based approaches, such as CLIP [25], are trained
to maximize the similarity between positive examples (e.g., images and match-
ing image captions) and to minimize the similarity to negative examples (e.g.,
non-matching image-caption pairs). Approaches such as CLIP have shown good
zero-shot image classification performance on multiple data sets by evaluating
the similarity between the feature embeddings of the class labels and the images.

Post-Hoc Concept-Bottleneck Models. An alternative approach to gener-
ating post-hoc concept explanations is to first create a set of known CAVs and
then find the subset of those CAVs that yield the best performance for a given
model [20,34]. Those approaches assume to have CAVs for all important concepts
and then select the CAVs that can describe the essence of what was learned by
the model. In our approach, the set of CAVs is discovered automatically by
inspecting the model in more detail like in [33], and then designated by textual
descriptions.

3 Method

We propose a method that derives textual descriptions for the concepts a neural
network utilizes to solve an image classification task. The method consists of
three steps, and each step represents a different level of concept description for
a given neural network:

1. The discovery of concepts by concept activation vectors (CAVs), repre-
sented as directions in the feature space,

2. the visual description of the concepts (encoded by the CAVs) with repre-
sentative images,

3. and the textual description of the concepts with words.

The steps are visualized in Figure 2. In the following, the inputs, the three steps
of the method, and the computed outputs are introduced in more detail.
Inputs. The method is based on a neural network trained on an image clas-
sification task, f , that maps input images to a K-dimensional output vector
representing class probabilities. For a given layer l, for which concepts shall be
extracted from the network, the network is decomposed into two functions hl

and ϕl, such that f = hl ◦ϕl. Further, let Dprobe = {x1, . . . , xn} be a probing set,
i.e., a set of n images that can be used for the visual description of the extracted
CAVs. The textual descriptions of the concepts are based on a predefined and
task dependent set of words T . For example, T can contain describing attributes
[2], or the top 20.000 words of the English language [13].

Concept Discovery. We describe the embedding of layer l with Concept Ac-
tivation Vectors (CAVs). A CAV is a vector that points in the direction of a
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Fig. 2: Overview of our approach to describe the layer l of a pretrained model
f . The inputs are a concept discovery method, a probing set Dprobe, and a set
of textual descriptions T . We apply concept discovery methods to find a set of
CAVs, generate a set of visual concept descriptions Qj for each CAV cj , then
textual concept descriptions and finally output the top-k descriptions Tk ⊆ T .

concept learned by the model and is embedded in the feature space of the ac-
tivations of layer l. The concepts learned at layer l are then represented by a
set of m CAVs, Cl = {c1,l, . . . , cm,l}. We drop the index l in the following when
considering only one specific layer. While the proposed method is independent
of the underlying concept extraction approach, we follow the approach of Yeh et
al. [33] to derive all concepts utilized for a given image classification task.

Visual Concept Description. For the visual description of a given CAV cj ,
we follow the former work [33] to derive a set Qj ⊂ Dprobe of most relevant
images from the probing set. This approach is illustrated in Figure 3 and will be
described in the following. The relevance of an image xi ∈ Dprobe is determined
based on the similarity between the CAV cj ∈ Rk and its latent representation
at layer l. In detail, consider the latent representation of an image xi at layer l,
which is

ϕl(xi) =: (x̂1
i,l, . . . , x̂

F
i,l) ∈ RF×k.

The vectors x̂1
i,l, . . . , x̂

F
i,l are called local feature vectors of xi and correspond to

the activations of each channel of the convolutional neural network after layer l.
We will omit the index l when the connection to the specific layer is clear.
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Fig. 3: Selection of the visual representations for a given CAV cj , compare with
Figure 2 column Visual Concept Description. The vector (v1j (x̂

1
i ), . . . , v

F
j (x̂

F
i ))

represents the concept scores between each receptive field of xi and the CAV
cj . While [23] select full images based on the mean score of all receptive fields,
we also consider the receptive field with the highest concept score. Thus, we
improve the visual input of the joint vision-text embedding by cropping xi to
the respective receptive field. This creates a more truthful and more detailed
representation of the concepts learned in the hidden space.

For each local feature vector x̂f
i and each CAV cj a concept score, which measures

the similarity based on the scalar product, i.e.

vfj (x̂
f
i ) := x̂fT

i cj .

This leads to a vector vj(xi) ∈ RF of F concept scores,

vj(xi) =
(
v1j (x̂

1
i ), . . . , v

F
j (x̂

F
i )

)
∈ RF . (1)

Following [33], a larger concept score means a higher similarity of the corre-
sponding receptive field of x̂f

i to the concept encoded by the CAV cj .
While vj(xi) is a vector of similarities, the set of relevant images Qj is chosen
based on scalar values because they can be ordered. Former works such as [23]
select full images of Dprobe for the set Qj . To achieve this, they consider the
average over the individual concept scores of the local feature vectors,

vmean
j (xi) =

1
F

F∑
f=1

vfj (x̂
f
i ) ∈ R. (2)
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As we are more interested in the most representative part of an image for a
concept, we consider the maximum concept score of all local feature vectors:

vmax
j (xi) = max

f∈{1,..,F}
vfj (x̂

f
i ) ∈ R. (3)

Based on these two metrics, we introduce three different strategies to derive a
set of most relevant images Qj from Dprobe. Note that the subset Qj can either
contain the full image xi or a receptive field associated with a local feature vector
x̂f
i . We follow [22] and select the 100 most relevant images.

– Fmean : Select the images with the highest vmean
j (xi).

– Fmax : Consider those images with the highest vmax
j (xi) and choose the

respective receptive fields where the maximum is reached.
– Fmean→max : Select images like Fmean but choose the receptive field with

highest concept score vfj (x̂
f
i ).

We search for the parts of the images with the highest presence of the concept
encoded by the CAV. With Fmean we select the full images with the highest over-
all presence of the concept. As a result, the textual descriptions are calculated
based on the full images. However, often the model can only see parts of the
images at the layer where the CAVs were found. Due to this, and the fact that
concepts may be more present in single parts of an image, we apply strategies
to find the relevant receptive fields. Using Fmax we select the receptive field of
each image with the highest concept score. We propose Fmean→max to combine
the advantages of both strategies. This means that we find the images where
the concept is highly present in the full image and reduce the noise introduced
by other concepts by selecting the respective receptive field with the highest
concept score.
Textual Concept Description. To derive a textual description for the vi-
sual descriptions collected in Qj , we utilize joint text-image embeddings and
corresponding image and text encoders EI and ET which map from the space
of images, I, and the space of texts, T , respectively, to a joint feature space.
This is, for example, provided by the CLIP model [25]. We compute a similarity
matrix P based on the cosine similarity of the text and image embeddings of the
textual descriptions set T = {t1, . . . , ts} and images in Qj ,

Pij =
EI(xi)

TET (tj)
∥EI(xi)∥2∥ET (tj)∥2

.

Intuitively, we want to find the textual descriptions that have a high similarity
to all images in Qj . To do this, we utilize the Soft Weighted Pointwise Mutual
Information (SoftWPMI) [23], which indicates how well a word describes the
mutual information of the representative images. SoftWPMI requires a weighting
of the images in Qj , which is determined by the concept scores. In particular,
this vector qj is calculated depending on the strategy to derive the set of most
relevant images Qj :

qj =

{
(vmean

j (xi))xi∈Qj if Fmean

(vmax
j (xi))xi∈Qj if Fmax , Fmean→max

(4)
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Finally, we find the subset Tk with the top-k textual descriptions by:

Tk := argmax
T̂⊂T :|T̂ |=k

∑
t∈T̂

SoftWPMI(t, qj , P ) (5)

Note that, in practice, SoftWPMI(t, qj , P ) is computed for each t ∈ T separately,
and finally, we take the top-k textual descriptions. For the common textual
description, we compute the weighted average of the top-k descriptions in the
feature space, with the weighting based on the SoftWMPI values. The common
representation is then chosen as the textual description in T that is closest to
this weighted average. Please note that we set all negative SoftWMPI values in
T̂ to zero since we are only interested in positive similarities.
Output. The method returns the common description and the subset Tk from
the human understandable textual descriptions set T , which are most similar to
the concept represented by the CAV cj .

4 Experiments

Our experimental procedure consists of three stages. First, we utilize CAVs with
known concept labels to show that our approach is capable to yield meaning-
ful textual explanations of CAVs. Second, we compare the different mappings
Fmean , Fmax , Fmean→max for the generation of the set of best fitting textual
descriptions. And finally, we consider a more complex scenario and explain a set
of CAVs extracted from a model where we have no prior knowledge about the
underlying concepts.

Table 1: Each row shows the Top-5 textual descriptions of a CAV computed
with the proposed approach (ranked from left to right) and the derived common
concept description. Each CAV is supposed to represent one class of the CIFAR10
dataset [16]. Imagenet is utilized [6] as Dprobe and google20k as the set of textual
descriptions, T .

CAV-Label Common Description 1 2 3 4 5

airplane aircraft aircraft aviation plane airplanes planes
automobile vehicle vehicle vehicles car ambulance automobile
bird bird avian bird birding birds juvenile
cat cat cat kitts kitty kitten katz
deer deer grazing gnu deer female wildlife
dog dog puppy dog canine pundit dug
frog mating mating meal head emerging frog
horse horse equine horseback horse horses equestrian
ship sailing sailing yacht sail yachts sailors
truck trucks truck trailer trucks trailers movers
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4.1 Explaining a Set of CAVs with Known Concept Labels

To be able to validate general idea of our approach, we follow Kim et al. [14] and
design a set of CAVs where each CAV describes one class of a given data set. We
achieve this by generating a set of CAVs after the last convolutional layer of a
model and set the number of CAVs equal to the number of classes. It is important
to note that the suggested strategy is closely related to the performance of the
CLIP model. Hence, a bad classification performance of CLIP directly affects
our approach in a negative way.
Setup. To make sure that the CLIP model itself performs well in this valida-
tion example, we use the datasets CIFAR10 [16] and MNIST [7] which have a
zero-shot performance of 96.2% and 87.2%, with the vision encoder CLIP-ViT
L/14 from CLIP [25]. For CIFAR10 we adapted a pre-trained ResNet50 [10] and
finetuned it. The finetuned ResNet50 reaches an accuracy of 0.94. For MNIST
we finetuned a simple ConvNet with 3 layers reaching an accuracy of 0.98. In this
experiments we explain the the embedding after the last convolutional layer of
the models (ResNet50 and ConvNet). For the set of textual descriptions we use
google20k [13]. Details to the MNIST experiments can be found in the appendix.
Results. The results of this experiment for CIFAR10 are displayed in Table 1
(The table for MNIST can be found in the Appendix). The top-5 words, as well
as the concept closest to the centroid for each class, are shown. Our approach is
able to match each CAV which encodes a class as concept with fitting textual
descriptions from the 20.000 textual suggestions given. The exception is the CAV
encoding Frog. For MNIST our approach finds fitting textual descriptions for all
classes except the CAV encoding “one” which is described by makefile.

4.2 Concept Discovery and Description

Compared to the class-wise concepts in the previous sections, automatically dis-
covered CAVs usually describe more abstract concepts as colors and shapes. We
utilize the approach of [33] to discover a set of CAVs automatically. The final
set of CAVs is selected based on a hyper parameter search and the test accuracy
of the classification task. The hyper parameter search includes the number of
concepts,the threshold value β, and scalars λ1 > 0 and λ2 > 0. The parameters
λ1 and λ2 are needed for the utilized concept discovery approach of [33]. They
weight the similarity between the concepts and their most relevant images (λ1)
and the pairwise dissimilarity between the concepts (λ2). Further, we calculated
for each class the ConceptSHAP and explanation quality following [33]. The
ConceptSHAP gives us an importance value for each CAV with respect to the
class. The explanation quality serves as a measure how well a class is described
by the set of CAVs discovered. In the following, we first compare the different ap-
proaches to select the relevant images, i.e., the receptive field-based approaches
and the full image approaches.

Evaluation of Image Set Selection We consider concepts extracted from
early layers, where concepts are assumed to be more abstract than in later layers.
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(a) Most influencial CAV for the class “cat” (b) Second most influencial CAV for the
class “cat”

Fig. 4: Comparison of the approaches to generate textual descriptions. Shown
are the two most influential CAVs for the class “cat” after the first residual block
of a ConvMixer [31]. The model was trained on dark cats and light dogs, a
subset of the Cats vs. Dogs dataset [5]. The first approach uses the images with
the highest mean activation for the CAV, the second takes the highest receptive
fields of the images with the highest mean activation and the third takes the
most activated receptive fields of all receptive fields over the whole probing data
set. The probing dataset is the validation set from ImageNet [6] and the concept
set is google20k [13]

With this we can also evaluate the effect of Fmax and Fmean→max on highly
correlated concepts and concepts of different degree of abstraction. We further
introduce the abstract concept dark into the model by performing a classification
of cat and dog images, where the training samples consist of dark cats and the
bright dogs. We expect the trained model to mainly rely on those features due
to the simplicity bias of neural networks [30].
Setup. We trained our model on a modified Cats vs. Dogs (CvD) dataset [5].
The Cats vs Dogs dataset was developed by Kaggle [5] and, following [17,15], we
split it by color, such that it consists of dark cats and light dogs. We call this
dataset Dark Cats vs. Dogs (DCvD). In the following we refer to the original and
the modified dataset as unbiased and biased dataset. Since all cats are dark and
all dogs are light we make the assumption, that the color is a relevant concept for
models trained on this dataset. To validate this we train a ConvMixer [31] with
a depth of seven. The ConvMixer reaches an accurcay of 0.93 on the biased data
and only an accuracy of of 0.69 on the unbiased data (details in the appendix).
This difference in accuracy indicates that the model learned to associate the
color black with cats. We extract the set of CAVs after the first residual block
of the model. The derived set consists of 20 CAVs and the classification based
on the active and inactive CAVs yields an accuracy of 0.96 on the biased data.
The hyper parameters used to learn the set are λ1 = 0.2, λ2 = 0.2 and β = 0.18.
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After we filter the CAVs where the dot product is over 0.95 we are left with 15
relevant CAVs. As the set of textual descriptions, google20k is used.

Results. Figure 1 shows the two most important CAV from left to right for the
class cat. The CAVs are selected by the ConceptSHAP values. For each CAV
we display the three approaches to select relevant images based on the concept
scores. For each approach the textual descriptions and the top five images from
the set of most relevant images are shown. It can be seen for CAV 14 that
the approach Fmean returns as highest textual description nightlife and Fmax

returns ferries (See Figure 4a). Only Fmean→max returns a fitting highest textual
description with darkness. Looking at the other descriptions we see that Fmean

also yields similar textual descriptions in the top 5 descriptions. This results in
the central word of Fmean and Fmean→max , matching our expectations.

For the CAV 10 we can see that all approaches return different textual descrip-
tions (See Figure 4b). Fmean returns nightlife and Fmax returns facials which are
both complex concepts. The approaches recognize different concepts which are
relevant for the images. This is neither good nor bad. Only Fmean→max returns
a simple concept with brown.

(a) Description of the best represented
class: “cow”

(b) Description of the worst represented
class: ‘blue whale”

Fig. 5: For each class the textual descriptions and the most activated receptive
fields of the CAVs with the strongest influence are shown. The image set was
selected by Fmean→max . The set of CAVs describes the hidden representation
after the first residual bock of a ResNet50 finetuned on AwA2. The probing
dataset is the validation set from ImageNet and the concept set is google20k.



Exploiting Text-Image Latent Spaces for the Description of Visual Concepts 13

Animals with Attributes The objective of this experiment is to explore the
performance of our approach for scenarios with increased complexity and to show
its potential. The experiment is based on the Animals with Attributes2 dataset
[32], which contains 37322 images from 50 different animals.
Setup. We finetuned a ResNet50 on the dataset AwA2 [32] that reaches a test
accuracy of 0.9. The concept discovery method found a set of 30 CAVs after the
first residual block. The found set of CAVs achieves an accuracy of 0.87 with the
hyper parameter λ1 = 3.1, λ2 = 3.1 and β = 0.02. After filtering all duplicates
15 CAVs are left, describing the concepts learned by the first residual block.
Results. The results of this experiment can be seen in Figure 5. Here, Figure 5a
shows the class which is best described by the set of CAVs and Figure 5b shows
the class which is worst described by the set of CAVs. Further, for each class the
most influential CAVs ranked by ConceptSHAP are displayed. The descriptions
are generated with the Fmean→max approach. It can be observed that the model
strongly connects the concept green with the class “cow” (See Figure 5a). The
class “blue whale” is connected to the concept blue (See Figure 5b). When in-
specting the descriptions of the CAVs 18 and 29 a mismatch becomes apparent.
The descriptions for those CAVs seem to be hardly related and are not matching
to the receptive fields.

5 Discussion

The experiments on the sets of CAVs with the known concept label show that
the approach is capable of matching CAVs with the corresponding textual de-
scriptions from a large set of general descriptions. This underlines that our ap-
proach is in general capable of identifying joint textual descriptions, even though
the performance highly depends on the quality of the utilized joint text-image
features space. For the experiment on CIFAR10, one can further see the redun-
dancy in the best-fitting descriptions which is successfully removed by selecting
a common concept description (Table 1). Further, one can see the approach’s
capabilities to detect biases in the training and/or probing images, e.g., the top
five descriptions of the class ship are all related to sailing.

For the different approaches to select representative images for given CAVs,
the ones using receptive fields help to correctly describe more abstract concepts
that especially occur in earlier layers of a neural network (Figure 1). Interestingly,
15 CAVs are detected as relevant, which is more than to separate the concepts
of dark and bright. This can be explained by the fact, that dark and bright
colors can also occur in the backgrounds of the images and hence the distinction
purely based on color concepts is not feasible. However, the relevance of the dark
concept shows that it is highly relevant to classify cats. The increased focus on
abstract concepts when utilizing the receptive fields can also be explained by
the nature of the CLIP model. CLIP was trained on images and corresponding
captions, where specific colors (e.g., green) might be less relevant than the overall
image description (e.g., insect). In Figure 5b, the CAVs 18 and 29, which are
relevant for the class “blue whale”, are examples where the approaches fail to
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generate matching textual descriptions. This can be attributed to limitations in
the utilized CLIP model. For example, CAV 18 seems to show the concept white
but the textual descriptions are inbox, incorporate, . . . . This could be improved
by applying a more fine-grained selection of the inputs for the joint text-image
model or by utilizing other text-image feature spaces.

6 Conclusion

In this work, we proposed an approach to assist the interpretation of CAVs by
suggesting textual descriptions and selecting common words for the individual
CAVs. To improve the textual descriptions of CAVs found for earlier layers, we
consider that for earlier layers of a model, the CAVs do not know the whole input
and propose to use receptive fields for the generation of the textual descriptions.
Through experiments on sets of CAVs where the underlying concepts are known,
we showed that our method is capable of yielding meaningful descriptions for
CAVs and that the usage of receptive fields improves the explanation quality for
earlier layers. While this research already offers insights into the concept discov-
ery process, further works on the computation of meaningful concepts as well as
an exploration of other image-to-text projections are planned. The evaluation of
the found textual descriptions regarding human understanding is also a topic for
further research. To better understand the behaviour of the model, it would be
interesting to extend the results of concept discovery methods with mismatched
data. For the description of specific concepts, further insights into the capabili-
ties of joint text-image feature spaces and the needed characteristics of probing
sets are interesting for us, as well as the consideration of explicitly fine-tuning
text-image embeddings to basic concepts.

Acknowledgements We thank Niklas Penzel for preparing the Dark Cats vs.
Dogs (DCvD) dataset and training the corresponding model.
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Appendix: Exploiting Text-Image Latent Spaces for the
Description of Visual Concepts

7 Additional Examples

7.1 Explaining a Set of CAVs with Known Concept Labels

Table 1: Top-5 closest descriptions are shown from left to right and joint concept
description for each CAV. The CAVs encode the classes from MNIST
CAV-Label Common Description 1 2 3 4 5

zero circular circular ring rings circle oval
one domains makefile hostname indices authored deprecated
two twenty twentieth two twenty second twelve
three three three tres thirds iii third
four four four fourth fourteen forty quad
five five five fifth sixth fifteen fifty
six sixty sixty om viii lev horns
seven seven seven seventh vii seventy hebrew
eight eight eight eighty infinite nine infinity
nine nine nine eight ninth ninety eighty

In Table 1 we present the results of our approach for MNIST [7]. It can be
seen, that the approach yields matching descriptions for all CAVs except one.

7.2 Evaluation of Image Set Selection

In Figure 1 we present additional CAVs which are important for the class “dog”.
For each CAV we show the different approaches to generation of the set of best
fitting textual descriptions.

7.3 Animals with Attributes

In Figure 2 we show more textual descriptions for different classes from the AwA
dataset [32].

8 Models

ConvNet. For the MNIST dataset, we trained a model with the following speci-
fications: The model included three convolutional layers with inner channel sizes
of 32, 64, and 128. We used cross-entropy as the loss function and Adam as the
optimizer, with a learning rate of 0.001 and a weight decay of 0.0005. During
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Fig. 1: Comparison of the approaches to generate textual descriptions. Shown are
influential CAVs for the class “dog” after the first residual block of a ConvMixer
[31]. The probing dataset is the validation set from ImageNet [6] and the concept
set is google20k [13]

training, we implemented early stopping. We monitored validation loss with a
patience of 10 epochs and training accuracy with a patience of 15 epochs. The
maximum number of epochs was set to 1000.
ConvMixer. For the Dark Cats vs Dogs dataset [5], we trained a ConvMixer
[31] model with the following specifications: The model had a dimension of 256,
a depth of 8, a kernel size of 7, and a patch size of 5. We used cross-entropy
as the loss function and AdamW as the optimizer, with a learning rate of 0.001
and a weight decay of 0.0005. We performed data transformations by resizing
the images to 128x128 pixels, using TrivialAugment [21] for augmentation, and
normalizing the images with mean values of 0.5, 0.5, 0.5, and standard deviation
values of 0.5, 0.5, 0.5. During training, we implemented early stopping. We mon-
itored validation loss with a patience of 10 epochs and training accuracy with a
patience of 15 epochs. The maximum number of epochs was set to 1000.
Finetuned ResNet50s. For the CIFAR-10 [10] and the Animals With At-
tributes dataset [32], we finetuned a ResNet50 model [16] with the following
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Fig. 2: Description of the classes “hamster”, “zebra”, “raccoon” and “rabbit” ac-
cording to a set of CAVs. For each class, the textual descriptions and the most
activated receptive fields of the CAVs with the strongest influence are shown.
The image set was selected by Fmean→max . The set of CAVs describes the hid-
den representation after the first residual block of a ResNet50 [16] finetuned on
AwA2 [32]. The probing dataset is the validation set from ImageNet [6] and the
concept set is google20k[13]

specifications: We used cross-entropy as the loss function and Adam as the opti-
mizer, with a learning rate of 0.001 and a weight decay of 0.0005. During training,
we implemented early stopping. We monitored validation loss with a patience of
10 epochs and training accuracy with a patience of 15 epochs. The maximum
number of epochs was set to 1000.
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