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Gaussian mixture models are classical but still popular machine learning models. An appealing feature
of Gaussian mixture models is their tractability, that is, they can be learned efficiently and exactly from
data, and also support efficient exact inference queries like soft clustering data points. Only seemingly
simple, Gaussian mixture models can be hard to understand. There are at least four aspects to
understanding Gaussian mixture models, namely, understanding the whole distribution, its individual
parts (mixture components), the relationships between the parts, and the interplay of the whole
and its parts. In a structured literature review of applications of Gaussian mixture models, we found
the need for supporting all four aspects. To identify candidate visualizations that effectively aid the
user needs, we structure the available design space along three different representations of Gaussian
mixture models, namely as functions, sets of parameters, and sampling processes. From the design
space, we implemented three design concepts that visualize the overall distribution together with its
components. Finally, we assessed the practical usefulness of the design concepts with respect to the
different user needs in expert interviews and an insight-based user study.

© 2024 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The work that we present here is motivated by our work on
visual analytics workflow for probabilistic programming (Klaus
t al., 2023). In this workflow, we synthesize a mixed-type prob-
bilistic program, that is, a program with categorical and contin-
ous variables, from data. The probabilistic program specifies a
ultivariate, typically high-dimensional probability distribution.
sers can iteratively change the distribution by modifying the
rogram and visually observing the effects of the modifications.
ince high-dimensional probability distributions cannot be vi-
ualized directly, we have adopted the well-established slicing
pproach for multivariate data visualization. In this approach,
wo operations, namely, projections and selections, are used to
ompute data slices that are smaller than the full data set and
hus are easier to directly visualize. Projections restrict the data
et to a subset of the variables, and selections only keep data
oints that satisfy a filter condition. Users can use the slicing op-
rations to visually explore the space of smaller data slices with,
ypically, up to five or six dimensions. A data slice is essentially an
ttributed point cloud, where the continuous dimensions specify
he coordinates of the points and the categorical dimensions
ttach attributes to the points. In the exploratory slicing ap-
roach, that was first implemented in some generality within the
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Polaris project (Stolte et al., 2002a,b), the user provides the filter
condition and specifies the variables of interest and how they
should be mapped to visual marks, such as points, lines, and areas,
and channels that specify the marks’ appearance. The continuous
part of a data slice is mostly mapped to points, as in scatter
plots (Friendly and Denis, 2005) and scatter plot matrices (Har-
tigan, 1975), or lines, as in parallel coordinate plots (Inselberg
and Dimsdale, 1990). The categorical part is mapped to identity
channels such as color or shape.

The key insight that makes it possible to adopt the slic-
ing approach also for multivariate probability distributions is a
non-trivial correspondence between the projection and selection
operations on multivariate data and the marginalization and con-
ditioning of a multivariate probability distribution. The key com-
ponent of a probabilistic programming language is its inference
engine that implements the marginalization and conditioning
operations. By marginalization and conditioning, a multivariate
probability distribution can be sliced into smaller probability
distributions that can be directly visualized. As in multivariate
data visualization, users can thus use the operations of marginal-
ization and conditioning to explore the space of smaller slices
of multivariate probability distributions. Furthermore, the direct
correspondence of the slicing operations on data and models
makes it possible to visualize model and data slices together in
one visualization. Therefore, users can visually explore probabilis-
tic models and changes to these models by exploring model slices

together with the corresponding data slices. The visualization of
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ata slices, that is, the mapping of data dimensions to visual
arks and channels, is a mainstay of visualization research,
hereas the visualization of model slices has not received much
ttention yet.
Here, we focus on the visualization of a specific type of model

lice, namely mixture slices, where a subset of the categorical
ariables have been marginalized out. Mixture slices are impor-
ant for the evaluation of probabilistic programs, because the
nferential power of probabilistic programs is exactly in the in-
eractions among the variables. Mixture slices bring these interac-
ions, especially interactions between categorical and continuous
ariables, to the forefront. To keep the discussion focused, we
estrict ourselves to a specific mixture model, namely a mixture
f Gaussians, which is the margin of a CG distribution (Olkin and
ate, 1961; Dempster, 1973), where the single categorical variable
as been marginalized out.
Gaussian mixture models are interesting in their own right.

hey are a staple of machine learning, see for example (Bishop,
007, Chapter 9), and are still in use, even in state-of-the-art deep
earning pipelines (Yang et al., 2019). A Gaussian mixture model
ith k components is formally given by the following probability
ensity function on Rd,

(x) =

k∑
i=1

wipi(x) with pi(x) ∼ N (µi, Σi)

nd non-negative weights wi that sum up to one. That is, the
hole density function p(x) is a weighted sum of its parts (com-
onents) pi(x). Here, the N (µi, Σi) are d-variate Gaussians with

mean vectors µi and covariance matrices Σi.
In this work, we investigate effective visual encodings that

support the understanding of multivariate Gaussian mixture mod-
els. Here, understanding has four aspects, namely, understanding
the whole density, understanding the different components of the
density, understanding interactions among the components, and
understanding the contributions of the components to the whole
distribution. These four aspects constitute four generic needs
that guide our design process of visual encodings of Gaussian
mixture models for supporting a qualitative understanding of the
encoded probability density functions, namely, the whole as well
as its parts. In a literature review of articles that use Gaussian
mixture models in application domains such as astronomy, epi-
demiology, or environmental science, we identified examples of
domain-specific tasks that can be mapped to the four domain-
independent user needs, proving that all four needs are indeed
relevant in applications. To meet the needs, the challenge from
a visualization perspective is to represent all the components in
such a way that it is clear how they relate to each other and how
they combine in a non-trivial way to form a whole.

We are not aware of previous work in visualization that has
addressed this problem, except for the much simpler problem of
visualizing proportions, for instance, by stacked bar charts (Talbot
et al., 2014), where simple components trivially combine into the
whole.

Before discussing our contributions, we would like to reiter-
ate that our motivation is the validation and improvement of
probabilistic programs by visually comparing data and model
slices. Since the visualization of multivariate data slices is well
understood, we focus on the visualization of model slices, here,
on the example of Gaussian mixture model slices. Specifically, our
model slice visualizations support asking parts-and-the-whole
type questions about the models, but do not support data tasks
like clustering or outlier detection. Data tasks are supported by
interactive visualizations of data slices. Furthermore, the model
slice visualizations alone do not support model validation tasks
like estimating a good number of components. However, as we
68
have pointed out already, visualizing model slices is an integral
component of the slicing-based approach for probabilistic model
visualization. Here, our specific contributions are:

• A first systematic study of a non-trivial parts-and-the-whole
type problem from a visualization point of view. Here, non-
trivial means that the whole is more than the sum of its
parts, for instance, in the sense that the number of modes
of the mixture can be very different from the number of its
components.

• A structuring of the design space of visual encodings for
Gaussian mixture models (Section 3).

• A discussion and evaluation by expert feedback on three
fairly different design concepts from the design space (Sec-
tions 4 to 6).

• A more extensive evaluation of the three design concepts
in an insight-based user study with non-expert users (Sec-
tion 7).

2. User needs analysis

In principle, applications and tasks on Gaussian mixture mod-
els can relate either to understanding the whole density (N1),
the different components (N2) and their relationships (N3), or
the relationship of the components to the whole density (N4).
It is, however, not directly obvious that all four needs actually
arise in practice. Therefore, we actively searched the literature
on applications of Gaussian mixture models for practical exam-
ples of tasks that relate to the four needs. That we were able
to find such examples is proof that all four needs are indeed
practical. We found tasks that relate to the four needs by a two-
stage literature search. In the first stage, we identified research
articles about applications of Gaussian mixture models that in-
volve a need for visualization. In the second stage, we extracted
application-specific tasks from the identified articles, which we
then associated with the four domain-independent user needs.

2.1. Identification of relevant articles

The body of work on Gaussian mixture models is vast, as
exemplified by the more than 1.3 million hits on Google Scholar
for the search phrase ‘‘application of Gaussian mixture model’’. An
exhaustive manual analysis of these hits is infeasible. Therefore,
we resorted to a limited, greedy strategy of searching and fil-
tering. We set an upfront limit of 100 articles to be considered
for our analysis and selected these 100 articles as follows: We
searched on Google Scholar with the search phrase ‘‘application
of Gaussian mixture model’’ and took the top-ranked articles as
starting points for a subsequent greedy search. In the greedy
search, we followed relevant hints like citations and keywords
from the top articles to refine our search on Google Scholar. This
way we selected 103 articles, slightly more than our limit, such
that we cover a broad range of applications. For these articles, we
checked whether tasks related to needs N1–N4 were indicated
in the abstracts. We only considered articles further in which
such tasks were indicated, which reduced the number to 42.
We then scanned the full texts of these remaining articles and
again only kept the relevant ones. Thereby, we finally found nine
articles (Mathur et al., 2018; Liu et al., 2012; Lee et al., 2012; Allili
et al., 2007; Kawabata, 2008; Aubert et al., 2016; Li et al., 2016;
Wang et al., 2010; Shin et al., 2009) from which we were able
to derive specific tasks that related to the abstract needs N1–N4.
All nine articles also describe a need for understanding Gaussian
mixture models, the need that was at least partially addressed by
visualizations.



J. Giesen, P. Lucas, L. Pfeiffer et al. Visual Informatics 8 (2024) 67–79

t
c
e
t
t
m
c
n
m

2

a
f
u
W
c

d
p
t
2
e
e
t
A
f
a

p
t
d
r
t
u
f
c
o
t
f
(
m

t
o
i
2
2
m
c
h
f

n
t
c
t
e
h
o
i
s
o

t

e
o
a
o
w
m
m
c
c
a
f

3

v
f
m

G
F
m

i
o
c
m
c
s
s

b
t
m

Articles that have been filtered out during the last two steps
ypically utilize Gaussian mixture models in some automatic ma-
hine learning pipelines. A good example is the work by Bernaille
t al. (2006) that uses mixture models for the automatic associa-
ion of software applications with network traffic. In such a work,
he goal is not data-driven knowledge discovery. Instead, the
odel serves a technical means, typically clustering or classifi-
ation, and is evaluated by simple performance scores. Therefore,
o attempt is made to understand the structure of the mixture
odel. Hence, there is also no need to visualize the model.

.2. Application-specific tasks and domain-independent needs

In the second stage of our literature analysis, we first identified
pplication specific tasks in each of the nine relevant articles, be-
ore we associated them to the four generic domain-independent
ser needs N1–N4 in two discussion sessions among the authors.
e consider the associated tasks as a proof of relevancy for the

orresponding needs.
N1 (Understanding single components). Users want to un-

erstand individual components. This involves identifying a com-
onent, assessing its location, its spatial extent, and also its orien-
ation. This need arises in seven out of nine articles (Mathur et al.,
018; Lee et al., 2012; Allili et al., 2007; Aubert et al., 2016; Li
t al., 2016; Wang et al., 2010; Shin et al., 2009). For example, Lee
t al. (2012) who model and classify pulsar distributions, notice
hat ‘‘the ellipse for high magnetic field pulsars is quite extended’’.
nd Li et al. (2016) who are interested in anomaly detection in
light operations, recognize ‘‘ten of the 35 mixture components [...]
s flight operations that are well known during approach phase’’.
N2 (Relating components). Users want to relate the com-

onents of a model to each other. This involves understanding
heir relative location, shape and orientation, as well as their
egree of overlap, the actual location of overlap, and also the
elative weight. We identified this need in the same seven articles
hat also exhibit need N1. It arises mostly from the task of
nderstanding the differences between components in order to
ind a domain-specific explanation for the existence of multiple
omponents. For example, Lee et al. (2012) notice the different
rientations of principal axes of two components, leading them
o the hypothesis that ‘‘the MSPs (millisecond pulsars) have two dif-
erent origins or evolutionary tracks’’. As another example, Li et al.
2016) note that the ‘‘touchdown [component] has significantly
ore observations than other clusters’’.
N3 (Understanding the whole distribution). Users also want

o assess the whole distribution. This involves an understanding
f its shape, its extent, and the identification of modes (local max-
ma). Six out of the nine articles feature this need (Mathur et al.,
018; Liu et al., 2012; Lee et al., 2012; Allili et al., 2007; Kawabata,
008; Aubert et al., 2016). For example, Mathur et al. (2018) who
odel the spread of dengue fever observe that while individual
omponents are of interest since they can be interpreted as ‘‘local
ot spots’’ the total spread can be used to ‘‘generate early warning
or dengue incidences’’ to control the virus.

N4 (Relating components to the whole distribution). Fi-
ally, users want to relate the components to the whole distribu-
ion, mostly because they need to understand how the whole is
omposed of its parts at different locations. Three out of nine ar-
icles express this need (Lee et al., 2012; Allili et al., 2007; Aubert
t al., 2016). For example, Lee et al. (2012) want to understand
ow four components jointly form and ‘‘explain’’ the distribution
f so called normal pulsars. Similarly, Aubert et al. (2016) who
nfer general hydrochemical rules from large environmental data
ets understand ‘‘the overall nitrate concentration as a composition
f three components’’.
In Section 6 we will relate the abstract user needs N1–N4 also

o domain-independent, actionable tasks that we elicited from
69
xperts, who are working with Gaussian mixture models in vari-
us contexts and applications. Finally, we would like to mention
nother frequent task in the literature, namely, the assignment
f semantics to the components of a mixture model. Analysts
ant to understand what a component represents and what it
eans. For example, Lee et al. (2012) assign semantics like ‘‘high
agnetic field pulsars’’ or ‘‘old pulsars close to death’’ to individual
omponents of the mixture, and Allili et al. (2007) identify one
omponent as representing ‘‘noise in the data’’. Important as such
task is, we cannot consider it a generic user need because it

undamentally depends on the application domain.

. Representing Gaussian mixture models

Gaussian mixture models have three very distinct, but indi-
idually complete, representations that make the design space
or their visualization interesting: First, d-dimensional Gaussian
ixture models are d-variate functions. Second, these functions

are completely specified by a finite set of parameters, namely,
the mean vectors and the covariance matrices of the components,
and their mixture coefficients. Third, Gaussian mixture models
define a hierarchical sampling processes, where we first sample
a component before we sample from the component. All three
representations can be used for visualizing the whole Gaussian
mixture model as well as its components. However, there is no
need to use the same representation for both, the whole and its
parts. Hence, the choice of representation for the whole and for
its parts is a relevant design decision.

In the following we describe the three representations and dis-
cuss possible visual encodings, that is, mappings to visual marks
and channels. We start with the representation by a sampling
process. The sampling representation, however, is not well suited
for our overall goal of slicing-based model validation, where we
compare the model and corresponding model slices. A sampling
process represents the model, essentially, by another data set,
which means that the large body of work on visualizing mul-
ticlass data sets can be reused for the sampling-based model
visualization. Then, however, data and model visualization are
similar and difficult to distinguish. Furthermore, the sampling
process representation is the least accurate among the three rep-
resentations, because it is, by definition, only an approximation.
Therefore, after the brief discussion below, we will not consider
the sampling process representation further in the remainder of
this article.

3.1. Sampling process representation

We can draw samples from a Gaussian mixture model in a
two-stage sampling process: First, we draw one class label out
of the k labels for the components, where the class probabilities
are the weights wi. Second, we draw a sample point from the
aussian that corresponds to the class label from the first stage.
or any given Gaussian mixture model, we thus can generate
ulticlass data sets of arbitrary size.
The visualization of multiclass data sets has been widely stud-

ed. Sarikaya and Gleicher (2018) provide a thorough discussion
f the design space of multiclass scatter plots. Their paper dis-
usses common design challenges like visual complexity (too
any points) that are also relevant in our context. Here, we can
ontrol the total number of sample points, however, it is not
traightforward to define a perceptually good number as can be
een in Fig. 1.
Multidimensional multiclass data sets can also be visualized

y parallel coordinate plots or clustered parallel coordinate plots
hat aggregate the lines for the different classes. Similarly, as for
ulticlass scatter plots, color and hue preserving color blending
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Fig. 1. Two sample visualizations with different numbers of sample points. To-
gether, all the sample points represent the whole mixture distribution, whereas
sample points of the same color represent the component. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. A parallel coordinates plot that shows 1200 sample points drawn from a
ive-dimensional Gaussian mixture model with three components derived from
he weather data set (The National Climate Database, 2021).

Fig. 3. The parallel coordinate plots and the scatter plots of three Gaussians are
shown. The first and second Gaussian differ by a 45◦ rotation.

an be used to distinguish the different classes. An example is
hown in Fig. 2
However, parallel coordinate plots are not well suited to con-

ey the spatial extent and orientation of sampled Gaussians. To
llustrate these problems of parallel coordinates for visualizing
aussians, we defined the following three two-dimensional Gaus-
ian distributions: We set the mean to (0, 0) for all Gaussians and
et the covariance matrices to:

1 =

(
2 0
0 1

)
, Σ2 =

(
1.5 0.5
0.5 1.5

)
, Σ3 =

(
2 0
0 2

)
.

ote, that Σ2 results from a counter-clockwise 45◦ rotation of
he first Gaussian. From the individual Gaussians, we sampled
70
5,000 points and visualized them as shown in Fig. 3 by parallel
coordinates plots and also by scatter plots. Neither the rotation
nor the difference in spatial extent between the second and the
third Gaussian are clearly recognizable from the parallel coordi-
nate plots. That is, parallel coordinate plots can be helpful for
showing data points, but cannot help to understand the spatial
extent and orientation of the Gaussians, which is important for
needs N1 and N3.

3.2. Function representation

The most direct representation of a Gaussian mixture model
is as a function. The density of a Gaussian mixture model is
a positive function p : Rd

→ (0, ∞), and so are all of its
components pi : Rd

→ (0, ∞), that is, the mixture and its
components are scalar height fields.

Multivariate Gaussian mixture models have a particularly
nice property, namely, marginal distributions of these models
are just lower-dimensional Gaussian mixture models. This prop-
erty allows us to decompose a high-dimensional mixture model
into two-dimensional marginals that can be visualized directly.
That is, we can directly adopt the slicing approach also for
high-dimensional Gaussian mixture models by visualizing two-
dimensional slices, exactly as in scatter plot matrices for high-
dimensional data. In the function representation, two-dimensional
Gaussian mixture models are scalar fields over the Euclidean
plane. Such scalar fields are typically visualized by contour plots
or extensions thereof Mayorga and Gleicher (2013). Different
fields can be distinguished by color. We discuss a design concept
for the function representation using contour plots and color in
the next section. Another straightforward extension of contour
plots to several simultaneous scalar fields is a juxtaposition of
contour plots. In our case, we could use one contour plot for the
whole density function and one for each component. However,
due to the missing alignment of (at least one of) the axes in
the different contour plots, it becomes harder to compare them
intuitively and quickly. Also, multiple plots occupy more screen
space.

The ideas behind parallel coordinate plots are not directly
applicable to the function representation, because there is no
direct mapping from density values to coordinate lines.

3.3. Parameter representation

Finally, a Gaussian mixture model is also fully determined by
a set of parameter triples,{
(wi, µi, Σi) : i = 1, . . . , k

}
,

see Section 1. Location parameters on screen space can be derived
from projections of the mean vectors µi ∈ Rd, and the positive
definite covariance matrices Σi themselves can be represented
by their orthogonal eigenvectors (directions) and positive eigen-
values (scales). In Section 4 we derive a glyph and thus a design
concept from the latter representation of the covariance matrices.
Using symbols/glyphs on top of a map is a fairly common tech-
nique for displaying additional attributes. For instance, Brewer
and Campbell (1998) use superimposed pie charts for visualiz-
ing multivariate data on a map. We pursue this idea further in
Section 4.

Ideas from parallel coordinate plots could be adapted for use
with the parameter representation. The mean vectors µi can be
mapped directly to coordinate lines, and from the covariance
matrices we can compute d principal axes providing 2d more
points that can be mapped to coordinate lines. However, these
plots suffer from the same limitations as the plots in Fig. 3.
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Table 1
Visualization techniques and representations used in the design concepts.

Contours Principal axes Pie charts
Parts Whole Parts Whole Parts Whole

Visual
encoding

Color blending ✓ ✓
Glyphs ✓ ✓ ✓
Contour plots ✓ ✓ ✓ ✓

Representation Function ✓ ✓ ✓ ✓ ✓ ✓
Parameter ✓

4. Design concepts

The discussion in the previous section shows that the de-
ign space for the visualization of Gaussian mixture model is
tructured but vast and thus cannot be explored exhaustively.
herefore, we focus here only on a special but rich class of
isual representations, namely, the generalization of the slicing
pproach to Gaussian mixture models. As noted before, this gen-
ralization becomes possible because marginal distributions of
aussian mixture models are again Gaussian mixture models.
t the core of the slicing approach are visualizations of two-
imensional slices, that is, two-dimensional marginals. Neverthe-
ess, even in the two-dimensional case, the challenge to visually
epresent both the whole and its parts remains. In the following,
e describe three specific design concepts for two-dimensional
aussian mixture models and discuss how they relate to the four
ser needs (N1–N4) from Section 2. The concepts, namely, the
ontours, the principal axes, and the pie charts, can be compared
n the teaser on a simple Gaussian mixture model and in Fig. 9
n a more complex model. In Section 5 we show how to scale
hese concepts to higher dimensions by using the operation of
arginalization. In this section we also discuss that the slicing
pproach compares favorably to parallel coordinate plots that
irectly generalize to higher dimensions.
The three design concepts sample the design space along three

imensions of independent design decisions, namely represen-
ation (parameters, function, or process), object of visualization
(component or whole), and visual encoding. Table 1 summarizes
ow the concepts relate to these design choice dimensions. In
ection 4.4, we provide more information about design deci-
ions common to all three design concepts, including a detailed
escription of our color blending procedure.

.1. Contours concept

The contours concept directly visualizes the density functions,
hat is, the function representations of the whole and the parts
y contour plots. Each component is visualized by a filled contour
lot, where the color of the area between two adjacent isolines
ncodes the average density of the component in that area. The
ontour plots of the components are combined by blending the
olors of corresponding (overlaying) pixels, using the average
ensities of the components’ contour area at this pixel (location)
s weights. The whole density is visualized by a contour line
lot that is superimposed on the visualization of the components.
he contour lines are colored by mapping isovalues to gray scale
alues. Fig. 4 shows an example.

iscussion of the contours concept
A common approach to visualizing Gaussian mixture models

s superimposing independent visualizations of the components
y contour plots, that is, superimposing individual visualizations
or every Gaussian from the mixture. The contours concept im-
roves upon this naive approach in several ways. It adds a direct
isualization of the whole density, that is missing in the naive

pproach. By following Type-J multiplexing (Chen et al., 2014),

71
Fig. 4. Contours concept. On the top: Juxtaposition of contour plots for the
individual not-weighted components. At the bottom: Contour plots for the
weighted components and overlaid contour plot for the whole density.

it distinguishes clearly between the components (filled contour
plots) and the whole density (contour line plots). The overlapping
contour lines for the components in the naive approach easily
lead to visual clutter and make it hard to assess local composition.
Instead, the contours concept employs color mixing to eliminate
visual clutter and uses common scales to assure the effective
comparability of components.

Contour plots allow for a detailed understanding of the den-
sities’ extent in the two quantitative dimensions, and for an
assessment of density values at any point in the visualized region
of interest of the mixture. Both are important for the understand-
ing of the parts (N1) and the whole (N3), as well as for the spatial
relation between components (N2). However, the assessment of
density values is affected by the choice of the threshold below
which a component’s density function value is mapped to the
background color. Here, we decided to cut off each component
individually instead of using a global threshold. This ensures
an equitable representation of the individual components and
helps to understand their individual distributions (N1). A global
threshold, instead, would better support the comparison of the
components’ density values in regions of low density (N2). The
chosen color blending method of single-hue color schemes, see
Section 4.4 for technical details, helps to identify at any point the
component that contributes most to the whole distribution (N4).

Altogether, we expect this design to lead to more insights
relevant to user needs N1 (single components) and N3 (whole
distribution), since their spatial characteristics are clearly visible.
N1 may be slightly better supported than N3, since the use of
colored regions is more salient than using contour lines.

4.2. Principal axes concept

This concept combines a contour plot for the whole density
(like in the contours concept) with one colored, cross-shaped
glyph for each component. The glyphs are derived from the
parameter representation of the components and provide more
compact visualizations of their shape. They are constructed in

four steps; see also Fig. 5.
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Fig. 5. Construction of the glyphs for the principal axes concept. Left: Intersec-
tion of contour lines with the principal axes of two components centered at
their means. Middle: Rectangular subdivision of the strips that are computed
from the intersection of the principal axes with the contour lines. Right: Final
representation after color blending. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Effect of color blending on the iteratively computed intersections of
contour segments. Left: No blending (depth ordered). Middle: color blending for
intersecting regions only. Right: final result. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

First, the shape of the glyph is computed for each compo-
ent. We use the fact that for any positive definite (2 × 2)-

matrix Σ−1 (inverse covariance matrix) the solution to the equa-
tion x⊤Σ−1x = 1 is an ellipse centered at the origin. Let λ1 >

2 > 0 be the eigenvalues of Σ−1 and e1 and e2 be the corre-
sponding normalized eigenvectors, then e1√

λ1
is the minor axis and

e2√
λ2

the major axis of the ellipse. We thicken the line segments
µ ± e1)/

√
λ1 and (µ ± e1)/

√
λ2 into strips, where the width of

both strips is set to 1
10 ·

e1√
λ1
. Thus, the thickness of the glyphs

s proportional to the spatial extent of the respective Gaussians,
hat is, for peaked Gaussians the glyphs are less thick than for
on-peaked Gaussians since the spatial extent is larger for non-
eaked Gaussians than for peaked Gaussians. The strips define
he glyph’s shape. Second, we subdivide the strips into rectangles
contour segments) at the intersection points of the contour lines
or each component. To each contour segment, we can associate
he corresponding component and its assigned color (hue), as
ell as the isovalue of the corresponding contour line. Third,
e compute the arrangement of all contour segments, that is,
he arrangement of polygons that result from intersecting all
he contour segments. For each polygon in the arrangement, we
now all contour segments that cover it, that is, have contributed
o the intersection. Therefore, we can color each polygon by
lending the colors from all covering contour segments using the
ssociated isovalue and the components’ weights. The importance
f color blending on the intersections of the glyphs’ strips is
emonstrated in Fig. 6. Finally, a gray scale contour plot for the
verall density is overlaid on the combined glyphs.

iscussion of the principal axes concept
Compared to the contours concept, the use of glyphs for visu-

lizing the components reduces visual clutter. Thus, the overall
istribution is more salient, which could lead to more insights
elevant to user need N3 (whole distribution). Moreover, it sim-
lifies the augmentation of the visualization by additional layers
f information. Furthermore, the parameter representation elim-
nates the need for a threshold value below which density values
72
Fig. 7. Construction of the pie charts concept. Left: Pie chart glyphs for the
components at grid points. Right: Using the lightness channel for encoding the
whole density function.

Fig. 8. Alternative visual channels for the whole density function. Left: Size.
Right: Size and lightness.

are mapped to the background color, since the lengths of the
glyph’s axes are finite. Also, the explicit encoding of the compo-
nents’ means and orientations by the glyphs’ axes can improve
understanding of components (N1) and their relations (N2). How-
ever, the cognitive load for the user might increase, because of
the necessary mental expansion of glyphs to the shapes of their
components, which could impair the understanding of relations
(N2 Relating components, N4 Relating components to the whole
distribution).

4.3. Pie charts concept

Assessing the proportions of the components’ densities at a
single point is difficult with the contours and principal axes
concepts, because they use color blending that aggregates the
contributions from the different components. This motivated us
to directly encode the proportions visually. For that, we discretize
the region of interest into a grid and encode the proportions of
the components at the grid points using pie chart glyphs. Each
glyph encodes the relative density of the components at its loca-
tion (grid point) by the relative size of its circular segments. Note
that no color blending is required, as components are represented
by their assigned color (hue). The density of the whole Gaussian
mixture model is then visualized by mapping its density value
at a grid point to either a lightness or saturation channel for the
glyph’s color coding. Alternatively, the density values can also be
mapped to the size of the pie chart glyphs. The construction of
the pie charts concept is illustrated in Fig. 7 and alternative visual
channels for the whole density function are shown in Fig. 8.

Discussion of the pie charts concept
By construction, the pie charts concept should allow for a

better comparison of the density values (N2 Relate components)
and the contribution of components to the whole distribution
(N4 Relate components to the whole distribution). While the dis-
cretization might make it more difficult to perceive the shape of a
distribution (N1 Single components, N3 Whole distribution), the
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Fig. 9. Comparison of all three design concepts (contours, pie charts, and principal axes) on an artificial Gaussian mixture model with 35 components. All means,
variances, and weights were drawn at random. The weights are drawn from a Dirichlet distribution with a large concentration parameter, resulting in a small variance
of the weights.
Gestalt principles of closure appear to provide a remedy at least
to some degree. Shape understanding with the pie charts concept
can benefit from interactively adjusting the level of discretization.

4.4. Common design decisions

In this section we discuss common design decisions regarding
he region of interest, color, color scheme quantization, and the
hoice of isovalues that we use for all three design concepts.
Since mixtures of Gaussians are probability density functions

ith unbounded support we need to define a region of interest,
hat is, a rectangular subset of the Euclidean plane, on which
e visualize the mixture model. The region of interest should
over the interesting regions of the whole distribution as well
s its parts. By default, we choose the region of interest as the
xes-parallel rectangle such that for all components the minimal
istance of the means to the boundary of the rectangle is at least
·
√
cov where cov is the covariance along an axis. For the pie

harts concept, the region of interest is covered by regular grids.
All three concepts map the data’s two quantitative dimen-

ions on the spatial x- and y-channels. Since hue is the most
fficient channel for encoding categorical variables except for
patial separation (Munzner, 2015), we decided to differentiate
etween the components by using different hues. In addition to
he categorical information about the components, we also want
o map quantitative information about density values to color.
his mapping problem boils down to choosing a color scheme for
ach component and to quantizing continuous density values.
Color schemes. For the choice of color schemes we have three

equirements, namely, (1) colors assigned to a single component
hould be sequentially ordered such that the naturally ordered
ensity values can be represented accordingly, (2) colors assigned
o different components should be clearly distinguishable, and
3) blending of colors for different components should not create
olors that are close to colors that are assigned to other com-
onents. These requirements can be satisfied by monochromatic
olor schemes, where a single hue is modified by changing its
ightness. For single-hue schemes, additionally, the saturation can
e modified. Therefore, we chose to use single-hue schemes from
he ColorBrewer Website (Brewer, 2013; Harrower and Brewer,
003).
Quantization of color schemes. Quantization means to choose

iscrete colors from the respective color schemes to encode the
verall density as well as the densities of the components. We
ave two requirements for the quantization: First, we want to
se the same number n of colors for every component of the
aussian mixture model, and second, we want to make density
alues for different components comparable. To achieve this, we
hoose color schemes that adapt to the local scales as well as to
73
Fig. 10. Adaptive color schemes for three components and quantization level
n = 5. Here we have pmax = p1max = 1 (blue component), p2max = 0.77 (red
component), and p3max = 0.25 (green component). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

the global scale. The local scale for the ith component is given
by its maximal density value pimax = sup{pi(x) : x ∈ R2

},
and the global scale is given by the overall maximum density
value pmax = maxi{pimax}. Fig. 10 shows an example for a set
of quantized color schemes that are locally as well as globally
adapted.

Threshold. In practice a small problem remains, namely, color
schemes that are quantized as described above never map to
the white (background) color, because the density function of a
Gaussian and thus a Gaussian mixture model always evaluates
to values larger than zero. Hence, we decided to introduce a
threshold of pimax · ε for some small ε > 0 and map density
values that are smaller than pimax · ε to the background color.
Such a threshold is, however, not necessary for the principal axes
concept, see Section 4.2.

Color blending. Color blending is done in some color space,
where the blending operation can be reduced to some arith-
metic operation in the color space. Here, we chose to work in
the perceptually uniform CIE L*a*b color space. Typical blending
operators, like alpha blending or the Porter-Duff-Source-Over
operator (Porter and Duff, 1984), take a set of colors c1, . . . , cn
(vectors in color space) that are depth ordered from back to
front together with weights (opacities) α1, . . . , αn ∈ [0, 1], and
recursively compute the blended color as a linear combination of
the given colors. The coefficients in the linear combination are
typically non-linear functions of the opacities. For instance, the
formula for basic alpha blending is given as

c =

n∑
i=1

( n∏
j=i+1

(1 − αj)
)

· αici,

which can be derived from the recursive scheme

ĉ1 = α1c1 and ĉi = (1 − αi)ĉi−1 + αici for n ≥ 2.

The blended color is then c = ĉn. We tried several modifications

of this simple scheme and tested them in different scenarios for
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ur design concepts. Finally, we settled on the following recursive
chemes for the coefficients

ˆ2 =
α1

α1 + α2
and α̂i =

α̂i−1

α̂i−1 + αi
for n ≥ 3,

and colors

ĉi = α̂iĉi−1 + (1 − α̂i)ci for n ≥ 2.

Again, the blended color is c = ĉn.
Choosing isovalues as quantiles of the density function. A

contour plot is a collection of contour lines that is determined
by the choice of isovalues. A contour line for a given function
and isovalue is the set of points at which the function takes the
isovalue. For scalar fields with a physical interpretation, isovalues
are often chosen such that the corresponding contour plot high-
lights geometric/topological information about the scalar field,
namely its critical points. Here, it is more important to pro-
vide a perceptual uniform representation of probability density
functions than to highlight their topological features. Therefore,
we decided to choose the isovalues uniformly. This still leaves
two options, namely, either choosing the isovalues uniformly in
the range of the density function, or corresponding to uniformly
spaced sublevel sets (percentiles) of the density function. In the
latter option, the integral over the areas between two consec-
utive isolines always gives the same probability. In our case,
the difference between the two options is usually not visually
significant. Hence, we decided to use percentiles, because of their
well-defined semantics in terms of probability.

4.5. Resolution parameters of the design concepts

All three design concepts are parameterized by one or more
resolution parameters that we summarize below.

Contours concept. 1. Number of isovalues: Always, the same
number of isovalues is used for all the components and for the
whole density function. 2. Sampling rate of the density function
along the two spatial dimensions in the region of interest.

Principal axes concept. 1. Number of isovalues: Always, the
same number of isovalues is for the all components and for the
whole density function. 2. Sampling rate of the density function
along the two spatial dimensions in the region of interest. 3.
Thickness of the principal axes strips: The thickness of a principal
axis strip is always set proportional to 1/

√
λ, where λ is the

igenvalue corresponding to the principal axis. As a default value
or the proportionality factor, we have used the value 1

10 .
Pie charts concept. 1. Grid size: The region of interest is

covered by a regular square grid. The density functions of the
components and the whole density function are sampled at the
grid’s vertices.

5. Multivariate Gaussian mixture models

So far, we have only discussed the visualization of two-dimen-
sional (bivariate) Gaussian mixture models. Here, we argue that
the visualization of high-dimensional mixture models can be re-
duced to the two-dimensional case by standard techniques from
multidimensional data visualization. The probably best known
example of such a technique is a scatter plot matrix (SPLOM) (Har-
tigan, 1975) that facilitates the analysis of high-dimensional quan-
titative data by projections onto two-dimensional coordinate
planes. Mixtures of Gaussians also have natural projections onto
two-dimensional coordinate planes, namely their two-dimens-
ional marginals. These marginals can be derived analytically and
thus be computed efficiently. Furthermore, the marginals are
again Gaussian mixture models. Hence, two-dimensional
marginals can play exactly the same role in visualizing Gaussian
74
Fig. 11. A 5 × 5 matrix of all two-dimensional marginals of a five-dimensional
Gaussian mixture model with three components derived from the weather
data set (The National Climate Database, 2021) visualized using the contours
(lower triangular matrix) and principal axes concept (upper triangular matrix),
respectively. The model and the colors assigned to the mixture components are
aligned with Fig. 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

mixture models that projections onto two-dimensional coordi-
nate planes play for scatter plots and scatter plot matrices. An
example of a marginal plot matrix is shown in Fig. 11.

Like in SPLOMs, each two-dimensional marginal occurs twice
in the matrix layout. Here we can make use of this redundancy
and show two complementary design concepts at once, one in the
lower and one in the upper triangular matrix, respectively. If the
number of dimensions becomes too large to visualize all pairs,
then adapting techniques from the data domain like scagnos-
tics (Wilkinson et al., 2005) for choosing informative dimen-
sion pairs could be an interesting option and avenue for future
research.

Note, that for general probability distributions, it is often not
possible to analytically derive marginals or even approximate
them efficiently. Even worse, for more general multivariate func-
tions than probability distributions, no general projection tech-
nique like marginalization is known. Hence, completely different
techniques for their visual exploration have been developed, like,
for instance, the Sliceplorer technique (Torsney-Weir et al., 2017).

Parallel coordinates plots naturally scale to higher dimensions.
An example of the same data as for the marginal plot matrix
above is shown in Fig. 2 in Section 3.1. While some spatial sep-
aration between the different components of the mixture model
is visible in the parallel coordinate plots, the separation can be
seen more clearly in the marginal plot matrix. Also, the separation
can be interpreted more directly in the marginal plot matrix.
Furthermore, it is more difficult to estimate density values from
the parallel coordinates plot. The latter problem is likely to be
exacerbated when edge bundling is used.

6. Evaluating the design concepts

In this section, we report on semi-structured interviews that
we have conducted with five scientists and data analysts who
have worked with Gaussian mixture models. For the interviews,
we had two goals in mind: First, assessing the practical usefulness
of the three design concepts for the experts, and second, evalu-

ating how the design concepts contribute to the understanding
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f Gaussian mixture models with respect to the four domain
ndependent user needs N1–N4.

.1. Setup and analysis of the interviews

We solicited feedback from five researchers and data analysts
n the fields of statistical modeling, machine learning, visualiza-
ion, and air traffic services. In what follows, we refer to the
nterviewees as experts (for Gaussian mixture models). Their
xperience in working with Gaussian mixture models ranges from
wo to ten years. All five experts work not just with Gaussian
ixture models, but also with underlying data. We explained

o them how data and model slices can be combined for model
alidation, but here we are only interested in their feedback on
he visualizations of model slices, because the visualization of
ata slices is already well established.
The interviews were conducted using an online-conferencing

ool. For later analysis, we recorded the interviews on video,
xcept for one, where we took handwritten notes.
Within the interviews, we first asked the experts about their

wn work with Gaussian mixture models, before they gave us
ome general feedback on the design concepts that we presented
o them by always using the same two example models, namely,
he synthetic model with four components that is shown in the
easer, and a model that is derived from the Auto MPG data
et (Quinlan, 1993). The latter model is also used in the user
tudy that we describe in Section 7. We also discussed advantages
nd disadvantages of the different concepts in the experts’ work
ontext. Finally, we asked the experts to rank the design concepts.
After the interviews, we encoded and categorized the experts’

nswers using an open coding scheme. We also checked for
otential connections to the domain-independent user needs N1–
4 from Section 2. During the interviews, these needs were never
xplicitly mentioned or discussed with the experts.

.2. Use of and tasks on the mixture models

The experts use Gaussian mixture models for clustering, topic
odeling, density estimation, dimension reduction, and visual-

zation. Clustering is the use case most frequently mentioned,
amely, by four of the five experts. All the experts expressed the
eed to understand models without underlying data, especially
he expert from the area of machine learning, who is mostly
nterested in Gaussian mixture models, either as a baseline or
subroutine for other methods. Two of the experts who are
orking on statistical modeling and visualization, respectively,
re also interested in outliers, that is, data points that are not
epresentative for their assigned clusters, and in data points that
ie between clusters. However, they understood that clustering,
s well as outlier detection, are data tasks, but not model tasks.
In the analysis of the interviews, we categorized the experts’

nswers using an open coding scheme. From the codes, we ex-
racted a number of recurring tasks and the experts’ assessments
f the design concepts with respect to the tasks. Finally, we
apped the tasks to the needs N1–N4. The tasks, extracted as-
essments, and the mapping of tasks to needs are summarized in
able 2.

.3. Evaluating the design concepts

Three experts explicitly stated the usefulness of the simultane-
us representation of the components and the whole distribution,
hich underlines the practical relevance of the design problem
t hand. Furthermore, the tasks that we extracted from the in-
erviews cover all four user needs N1–N4, which supports the
oundness of our user needs analysis.
75
Table 2
Tasks that were reported by the experts together with a mapping to the
user needs N1–N4 and the extracted assessments of how well the design
concepts support the tasks. Here, + means positive sentiment, − means negative
sentiment, and ◦means neither positive nor negative sentiment.

Experts’ task Contours Pie Principal
Charts Axes

N1

Locate mean of component +◦ ++

Assess shape of component
(weight, variance)

+++− − +++

Assess probability that point
belongs to component

+++− +++++

N2

Contrast dense/narrow versus
spread components

++◦ +− ++

Identify overlap of
components

− +

N3
Identify global maximum ◦ − ◦
Assess overall probability of a
point

++◦ ◦− +

N4

Identify number of
components

+◦− − +

Identify regions of highest
influence

+− +− +

Fig. 12. Visual summarization of the experts’ assessments of the design con-
cepts. The horizontal bars encode the number of positive (blue), neutral (gray),
and negative (orange) assessments, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

All three design concepts are considered useful by the experts.
However, their usefulness depends strongly on the task, as can be
seen in Table 2 and Fig. 12.

Overall, that is, aggregated over all tasks, the principal axes
and the contours concepts were liked best. The principal axes
concept is the preferred concept for seven out of the nine tasks.
It’s main strength, as seen by three experts, is supporting the
assessment and comparison of the components’ features, while
its main weakness in comparison to the contours and especially
to the pie chart concepts is support for assessing the probability
that a point belongs to a component. The contours concept is
preferred for assessing the overall probability. The pie charts
concept is unanimously considered the best suited for assessing
the probability that a point belongs to a component, while it
received some critical feedback for tasks related to the shape of
a distribution.

The experts’ direct ranking of the design concepts is sum-
marized in Table 3. The stated rankings correlate well with the
preferences for design concepts on tasks that we independently
derived from the coding scheme in Table 2. Scoring the design
concepts by counting the number of positive sentiments and
subtracting the number of negative sentiments ranks the prin-
cipal axes concept first (Score 11), the contours concept second
(Score 7), and the pie charts concept third (Score 1), whereas the
contours concept is slightly ahead of the principal axes concept
in the expert’s median ranking.

Three experts named a single best design concept, whereas
two experts ranked several concepts equally. Also, when asked
what concepts they would like to work with, four out of five
experts named both the contours and the pie charts concept.
Therefore, we conclude that there is indeed not a single best
concept, but all concepts jointly contribute to the understanding
of Gaussian mixture models. Fig. 11 shows a simple yet effective
approach to how different concepts can be combined for the
visualization of higher-dimensional Gaussian mixture models.
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Table 3
Preference ranking of the domain experts for the design concepts. If an expert
ranked multiple concepts equally, then we reported the mean of the collapsed
ranks. For instance, Expert 3 ranked all three concepts equally, and thus we
assigned the rank (1 + 2 + 3)/3 = 2 to all three concepts.

Median rank Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Contours 1.5 2 1.5 2 1 1
Pie charts 3 3 1.5 2 3 3
Principal axes 2 1 3 2 2 2

6.4. General feedback

All experts stated that they want an interactive tool. Specific
uggestions for such a tool include a facility for choosing the
umber and values of isolevels in contour plots, especially for
epresenting the whole distribution. This could improve the as-
essment of the shape of the whole distribution and how it is
nfluenced by the components. One expert suggested a flexible
ool that allows to choose the design for the whole model and its
omponents independently. Furthermore, one expert proposed to
ombine the positive aspects of the pie chart concept with one
f the other concepts by showing a pie chart at an interactively
hosen point.

. Insight-based user study

We complemented the expert interviews with an insight-
ased user study with non-expert users. Insight-based evaluation
ethods measure the understanding of data by counting the
umber of correct insights that participants gained from a certain
isualization. It avoids forcing participants to perform unnatu-
al benchmark tasks (North et al., 2011), that is, tasks that are
ell-defined and measurable but miss the point of the problem
t hand. Here, using these insight-based methods allows us to
easure how much a design concept encourages insights about
certain insight category (in our case N1–N4) as well as to

ind additional important categories, that might have not been
onsidered before (North et al., 2011). Hence, in our between-
ubjects empirical experiment, each participant was shown a
ingle visualization of the Gaussian mixture model and asked to
eport their insights about it. We analyzed

(A) the effect of a design concept on people’s ability to gain
correct insights, and

(B) the type of insight a concept encourages in the context of
understanding Gaussian mixture models.

xperimental setup
We recruited 79 students and researchers in science, engi-

eering, and mathematics for this experiment. This group of
articipants was chosen, because the task requires at least a basic
nderstanding of probability density functions. We removed the
nswers of ten participants from the analysis, because they did
nswer in another language or did not give any answers about
he model shown. This leaves us with 69 participants (48 male, 20
emale, 1 diverse), aged 21 to 38 years (mean: 25.4 years). 49.5%
f them reported to be at least somehow familiar with probability
ensity functions. All but three participants reported normal or
orrected to normal vision. Participation was voluntary without
eward, however, participants received a summary of the study’s
esults.

The overall study design, originally intended as a pure online
tudy, was improved by a pilot study with five of the authors’
olleagues who did not participate in the subsequent study. Be-
ides improvements in wording and format, we noted that most
f the researchers had a tough time remembering the concept of
robability density functions. Therefore, we decided to conduct
76
Fig. 13. The three stimuli used in our experiment. They visualize a Gaussian
mixture model derived from the Auto MPG data set (Quinlan, 1993). Each
participant received one of the stimuli, according to the assigned group.

a lab study so that we had the opportunity to briefly teach
the participants about probability density functions in general
and Gaussian mixture models in particular. Participants also had
the chance to ask questions. After the introduction, participants
individually performed the following tasks on a personal com-
puter: First, they had to complete an informed consent form
and calibrate their monitor to ensure uniform stimulus sizes.
Then, the participants received an explanation about the design
concept that was randomly assigned to them. Next, participants
were confronted with the corresponding stimulus (see Fig. 13 for
the stimuli we used in this experiment) and their task: ‘‘Please
describe the mixture distribution that is visualized here! We are
interested in everything you notice (all qualities, patterns, structures,
and anomalies). This is about your personal opinion and not about
right or wrong answers.’’

The time for completing the task was not limited as we wanted
the participants to invest as much effort as they considered
appropriate. The study ended with a post-experiment question-
naire asking the respondents for their age, gender, vision, usual
length of self-written texts, familiarity with probability density
functions, point of contact with these, and their familiarity with
the presented concepts.

Analysis
In order to evaluate the effects of the three design con-

cepts concerning their stimulation of correct insights and insights
about the user needs N1–N4, we encoded the participants’ in-
sights, computed 95% confidence intervals, and interpreted these.
We started by dividing the participants’ answers into insights,
that is, single observations about the model. Next, we encoded
the insights according to two code books. The first code book
categorized insights according to their correctness (true, false,
miscellany). The second codebook had the categories: insight
about components (Need N1), insight about the relation among
components (Need N2), insight about the whole distribution
(Need N3), insight about the relation of the components to the
whole (Need N4), insight about the visualization, and miscellany.
The miscellany category contains all insights that do not fit into
any of the other categories. In the first coding round, three of us
individually assigned categories to the insights, and we discussed
and resolved differing assignments in the second round. Then
we computed 95% confidence intervals using a bootstrapping
approach. We drew 10,000 bootstrap samples uniformly at ran-
dom from the available answers, computed their point estimates,
and identified the 95% confidence intervals by the percentile
method (Efron and Tibshirani, 1986). This way we computed the
point estimates and their confidence intervals for (1) the average
proportions of the correctness categories, (2) the average number
of correct insights for the user needs categories, and (3) the
corresponding differences between the design concepts.

If one of the difference confidence intervals does not contain
the value zero, then the difference between the two correspond-
ing concepts can be considered significant at a significance level
of α = 0.05. For instance, consider the confidence interval for
the difference A− B. If its lower bound is greater than 0 then the
difference is significant in favor of A.
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Fig. 14. Average proportion of the correctness categories in the overall response
nd the differences between the design concepts together with 95% confidence
ntervals based on 10000 bootstrap samples.

Fig. 15. Average number of correct insights per participant for each user needs
ategory together with 95% confidence intervals based on 10000 bootstrap
amples.

esults and discussion
Ability to gain correct insights. The minimum, average, and

aximum number of insights in the participants’ answers are
, 5.01, and 10, respectively, with 70% of them being correct,
1% being wrong, and 9% are comments that were not about the
nderlying model. The average number of insights varies only
arginally between the three design concepts (Contours: 5.15,
rincipal Axes: 5.22, Pie Charts: 4.72) without any significant
ifference.
Fig. 14 clearly shows that each design concept successfully

acilitates the understanding of a Gaussian mixture model, since
ll the point estimates for the proportion of correct insights in an
nswer are between 58% and 78%, which is significantly higher
han the proportion of non-correct answers. The proportion of
orrect insights in the answers was highest with the pie charts
nd lowest with the principal axes design concept. The difference
etween the principal axes and the pie chart concepts is even
ignificant, since the corresponding confidence interval does not
ontain the value 0.
The tendency of the principal axes concept to stimulate fewer

orrect answers and at the same time more wrong answers as
ell as more answers about the visualization indicates some
onfusion about this design concept. Remember, that the princi-
al axes concept encodes the parameters of the Gaussian com-
onents, instead of their density functions. Hence, it probably
equires a deeper understanding of the parameters represented
y the principal axes in order to stimulate proper insights about
he model. It seems the principal axes concept is not an ideal
hoice for non-expert users.
Type of insights. With each design concept there is a similar

umber of correct insights in each user needs category (see
ig. 15). Hence, each user need seems, in contrast to our expec-
ations, similarly well represented by the three design concepts.
77
The design concepts stimulate an average number of 3.65,
3.51, and 3.64 insights about the parts of a mixture model (N1 +
N2) and an average number of 0.96, 0.78, and 0.76 insights about
the whole distribution (N3 + N4) with highly overlapping confi-
dence intervals. This shows that all design concepts represent the
whole and the parts equally well. The larger number of insights
about the individual components and their relations can mostly
be explained by the number of probability density functions. It
seems logical that four probability density functions (the compo-
nents) stimulate more insights than a single function (the whole).
However, comments like ‘‘It is also not directly obvious to me why
‘green’ does not have circles around the color origin’’ and ‘‘I forgot
what the black rings meant in detail, . . . ’’ indicate that the concept
of the whole distribution or its visual representation remained
unclear to some of the participants.

Typical insights from the participants’ answers related to com-
ponents (Need N1) are about the components’ mean (‘‘Component
A has the highest density approximately at x = 6.5 and y =

0.15’’), the components’ overall density (‘‘The density in C is low
everywhere’’), and the components’ variance ( ‘‘A-blue is more
elongated in the x dimension.’’).

Typical insights about the relations among components (Need
N2) compare the components’ means (‘‘The mean value of pB(x)
is not as high pD(x) and pA(x).’’), their variances (‘‘The variance of
the single distributions seems to be similar for A, B, D, while it is
much larger for C.’’), and identified overlapping regions (‘‘Purple
and green are the most mixed.’’).

There are only a few insights about the whole distribution
(Need N3). These insights concern the number of modes (‘‘The
diagram has three ‘strong’ peaks.’’), their position (‘‘The peaks are
distributed approximately equally along the x-axis.’’), and their vari-
ance (‘‘The overall variance in the x-direction is much greater than
that in the y-direction.’’).

Insights from the participants’ answers that are about the
relation of the components to the whole (Need N4) are mostly
about the number of components (‘‘Mixture of four probability
densities’’) and about the contributions of individual components
to the whole density (‘‘B, D and A probably have a larger share in
the whole distribution’’).

Finally, typical insights about the visualization instead of the
model describe visual elements (‘‘The four probabilities are repre-
sented by differently colored circles.’’), complain about the read-
ability of the visualization and its colors ( ‘‘It is hard to read the
diagram.’’ ), and wondered about the meaning of specific visual
elements (‘‘I can no longer say what the orientation of the single
distributions should represent.’’). As mentioned before we consider
insights/comments like this as an indication that the visualiza-
tion is difficult to process and distracts from understanding the
visualized model.

In summary, the insight-based study found evidence that
(1) all design concepts successfully promote the understanding
of Gaussian mixture models and represent the whole and the
parts equally well, and that (2) the principal axes concept causes
some confusion for non-experts, while the pie charts concept
outperforms it.

8. Limitations and future work

Here, we have focused on the visual design space for Gaussian
mixture models and so far omitted interaction in order to keep
the concerns of visual design and interaction design separate.
However, we consider the transformation of the static design
concepts into an interactive tool as the main direction of the
future work. Based on the insights from the expert interviews in
Section 6 and the user study in Section 7 that the concepts have
complementary strengths and weaknesses, that is, they are far
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rom equal when it comes to specific tasks, we believe that a tool
hat combines multiple design concepts and adds interactivity
uch as zooming and panning as well as the interactive choice of
solevels/values and pie chart resolution will provide a real ben-
fit to practitioners. Any practically useful tool must also support
he simultaneous visualization of data that underlies the mixture
odel (Lawonn et al., 2022). Fortunately, this can be achieved
asily, because the slicing approach applies simultaneously to
oth multivariate models (marginalization) and multidimensional
ata (coordinate projections). Therefore, the problem basically
educes to finding a good way to overlay attributed scatter plots
ver two-dimensional marginal plots.
For Gaussian mixture models that exhibit regions with many,

ignificantly contributing (overlapping) components, the three
esign concepts may result in visual clutter. Interaction is an
bvious option to address this problem. However, regions with a
igh number of contributing components seem to be rare in real-
orld applications (Kawabata, 2008; Li et al., 2016; Shin et al.,
009).
Finally, we want to point out an interesting problem for high-

imensional models with many components, namely, how to
ssign a limited set of colors to the components such that the
omponents can be distinguished well in any two-dimensional
arginal plot. For a single, two-dimensional marginal plot, the
roblem can be addressed, for instance, by applying the four-
olor theorem to a Voronoi tessellation of the component’s mean
ectors, but the high-dimensional case still poses a challenge.

. Conclusions

The correspondence between the data slicing operations of
rojection and selection and the probabilistic model slicing op-
rations of marginalization and conditioning makes it possible to
dopt the slicing-based visual data exploration approach also for
robabilistic models. This, however, requires us to come up with a
isualization design for model slices. Here, we have explored the
esign space for a particular type of model slices, namely, mix-
ure model slices, or more specifically Gaussian mixture models.
ixture model slices are particularly interesting for model vali-
ation, because they showcase interactions between categorical
nd continuous variables. The design space for visualizations of
aussian mixture models is large and some guiding principles are
eeded for choosing a good design. Here, we derived such guiding
rinciples from four common, application-domain independent,
ractically relevant needs, namely, (N1) understanding the indi-
idual components of a Gaussian mixture model, (N2) relating the
omponents to each other, (N3) understanding the whole mixture
istribution, and (N4) relating the components to the whole
istribution. To address these needs, we have developed and
iscussed three design concepts for the visualization of Gaussian
ixture models. Our evaluation of the three design concepts by
n insight-based user study found that the three fairly different
esign concepts support the identified needs (N1–N4) and the
verall understanding of Gaussian mixture models similarly well.
his finding is backed by feedback from expert users. However,
he experts also provided the additional insight that the concepts
ave complementary strengths and weaknesses, that is, they are
ot equal, when it comes to specific tasks. Only tasks related to
1 are supported well by all three design concepts. However,
he contours design concept supports more tasks related to N1
qually well than the other two concepts. Tasks related to N2–N4
re not well supported by the pie chart design concept. The pie
harts concept, however, is best suited for the task of assessing
he probability that a point belongs to a component, which relates
o N1. It also triggered more correct and fewer false insights
han the other design concepts in our user study with non-
xpert users. The principal components design, which fared well
78
in the experts’ evaluation, triggered significantly fewer correct
and significantly more false insights. Therefore, we conclude that
there is not a single best design and recommend working with all
three concepts simultaneously.
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