
Technische Universität Berlin

Bachelor Thesis

Applying DLR’s Software Engineering
Guidelines through an LLM for

CI Pipeline and Software Testing

Nicolas Alejandro Dahbar Miguez
11.11.2024

Review by
Prof. Dr. Michael Felderer

Prof. Dr. Manfred Hauswirth

Supervised by
Carina Haupt, Dr. Tobias Hecking

Abstract

This thesis explores the ability of Large Language Models, specifically GPT-4, to au-
tomate key tasks in software engineering: generating continuous integration pipelines
and software tests. Using the open-source GitLab-Calendar project from the German
Aerospace Center (DLR) as a case study, the generated outputs are evaluated for both
functionality and adherence to the DLR Software Engineering Guideline. Detailed
prompts were prepared to provide the necessary context, project structure, and guide-
line requirements to the LLM for generating accurate responses.

The results show that while GPT-4 can quickly generate CI pipelines and software
tests with proper structure, the outputs were not fully functional and did not meet
all guideline recommendations. The generated CI pipeline encountered errors due to
wrong assumptions about project dependencies, and the software tests were based on
a misunderstanding of the project’s code structure. However, GPT-4 demonstrated
an understanding of industry best practices, and under human oversight, it has the
potential to speed up the development process by automating boilerplate code and
configuration files.

This study highlights both the strengths and limitations of LLMs in software engi-
neering, showing the importance of iterative prompt refinement and human interven-
tion to correct errors and optimize results. Although LLMs can provide templates and
improve productivity, they are not yet capable of fully replacing human developers in
complex software projects. The thesis concludes by discussing the results of the study
and suggesting areas for further research.

Zusammenfassung

Diese Arbeit untersucht die Fähigkeiten von Large Language Models, insbesondere
GPT-4, zur Automatisierung von zwei Aufgaben im Software Engineering: der Gener-
ierung von Continuous Integration Pipelines und Softwaretests. Als Fallstudie dient
das Open Source Projekt GitLab-Calendar des Deutschen Zentrums für Luft- und
Raumfahrt (DLR), und die generierten Ergebnisse werden von ihrer Funktionalität
und ihrer Erfüllung der DLR Software Engineering Richtlinie bewertet. Ein detail-
lierter Eingabeprompt wurde erstellt, um dem LLM den notwendigen Kontext, die
Projektstruktur und die Richtlinienanforderungen bereitzustellen, damit es korrekte
Antworten generieren kann.

Die Ergebnisse zeigen, dass GPT-4 zwar in der Lage ist, CI-Pipelines und Soft-
waretests schnell zu generieren, die Ausgaben jedoch nicht vollständig funktionsfähig
waren und nicht vollständig den Richtlinien entsprachen. Die generierte CI-Pipeline
scheiterte aufgrund falscher Annahmen über die Projektabhängigkeiten, und die Soft-
waretests basierten auf einem Missverständnis der Projektstruktur. Dennoch zeigte
GPT-4 ein Verständnis für bewährte Branchenpraktiken, und unter menschlicher Auf-
sicht kann es den Entwicklungsprozess durch die Automatisierung von Boilerplate-
Code beschleunigen.

Die Studie hebt die Stärken und Schwächen von LLMs in der Softwareentwicklung
hervor und betont die Notwendigkeit iterativer Verbesserungen der Eingabeprompt
sowie menschlicher Aufsicht, um Fehler zu korrigieren und die Ausgaben zu optimieren.
Obwohl LLMs Aufgaben automatisieren und die Produktivität steigern können, sind
sie noch nicht in der Lage, menschliche Entwickler in komplexen Softwareprojekten
vollständig zu ersetzen. Die Arbeit schließt mit einer Diskussion über die zukünftigen
Einsatzmöglichkeiten von LLMs in der Softwareentwicklung und schlägt Richtungen
für weitere Forschung vor.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives of the Study . 1
1.3. Scope . 2
1.4. Outline . 3

2. State of the Art 4
2.1. Artificial Intelligence . 4

2.1.1. Natural Language Processing 4
2.1.2. Large Language Models . 5

2.2. Software Engineering . 8
2.2.1. Software Engineering in Research 9
2.2.2. Continuous Integration . 9
2.2.3. Software Testing . 10

3. Methodology 13
3.1. Overview . 13
3.2. Selection of Large Language Models 14
3.3. GitLab-Calendar . 14
3.4. Prompts . 15

3.4.1. Project Overview . 15
3.4.2. Project Structure . 16
3.4.3. Relevant Files . 16
3.4.4. Guideline Overview . 16
3.4.5. Recommendations . 17
3.4.6. Task . 17

3.5. Generation of CI Pipelines and Software Tests 18

4. Results and Analysis 19
4.1. Functionality Testing . 19

4.1.1. Functionality Testing Results 19
4.2. Adherence to DLR Software Engineering Guideline 20

4.2.1. Adherence to Sections Release Management and Automation
and Dependency Management 21

4.2.2. Adherence to Section Software Test 22

iv

4.3. Comparison with Original Solutions . 23
4.3.1. Task 1: CI Pipeline . 23
4.3.2. Task 2: Software Tests . 24

5. Discussion 25
5.1. Evaluation of LLM Performance . 25

5.1.1. Strengths . 25
5.1.2. Weaknesses . 26

5.2. Challenges Encountered . 26
5.2.1. Prompt Engineering . 27
5.2.2. Environment and Testing Setup 27

5.3. Reflections and Insights . 27
5.3.1. Potential of LLMs . 28
5.3.2. Human Oversight . 28

5.4. Future Work . 28
5.4.1. Iterative Refinement . 28
5.4.2. Other Large Language Models 29
5.4.3. Different Domains . 29

6. Conclusion 30

List of Acronyms 32

List of Figures 33

Bibliography 34

Annex 39
A. CI Pipeline . 39
B. Software Tests . 44

1. Introduction

1.1. Motivation

This thesis aims to investigate whether LLMs can effectively generate CI pipelines and
software tests that adhere to the German Aerospace Center (DLR) Software Engineer-
ing Guideline [44], analyzing the key question of whether LLMs can reliably produce
CI pipelines and software tests that align with the DLR Software Engineering Guide-
line in an automated software development process. The DLR Guideline serves as a
set of recommendations and best practices to ensure quality and consistency within
software engineering.

In recent years, Generative Artificial Intelligence (AI) has emerged as a major topic
of discussion in computer science, driving significant advancements in the field. Large
Language Models (LLMs), in particular, are increasingly used across various software
engineering applications [35], making them a very important tool to study in this field.

LLMs are advanced artificial intelligence systems capable of understanding, gener-
ating human-like text, and even producing code based on extensive training data. Due
to their ability to interpret context, generate coherent responses, and even automate
certain coding tasks [35], these models have the potential to reduce the manual effort
required to develop and maintain many software engineering practices [3]. For instance
LLMs can be used to generate boilerplate code, and even suggest code fixes based on
identified bugs. This can reduce the time spent on tedious tasks, allowing developers
to focus on problem solving.

1.2. Objectives of the Study

While Large Language Models offer very strong capabilities in software development
[47], their use is not without challenges. LLMs, like any AI technology, can produce
errors or generate responses that don’t align with specific user requirements or may
simply fail to work correctly in certain contexts [20]. A key limitation is their "black
box" nature, meaning it is almost impossible to understand the reasoning behind their
generated responses [5].

These issues give importance to a detailed study to see their effectiveness and re-
liability in software engineering. This thesis will evaluate the correctness of Large

1

Nicolas Dahbar 1. Introduction

Language Models outputs in CI pipelines and software testing scenarios for a given
software engineering project, while also making sure it complies with the software en-
gineering guideline from the DLR. Here we focus on assisting researchers who may
not have extensive knowledge in software engineering, providing them with a tool that
could improve their development process by generating configurations and tests based
on established guidelines.

1.3. Scope

On this thesis we will focus on exploring the application of Large Language Models
in developing Continuous Integration pipelines and software tests for a given project.
This work will investigate the following aspects:

• The use of related sections from the DLR software engineering guideline as input
prompts for an LLM, with the goal of generating CI pipeline configurations and
software.

• The evaluation of the generated CI pipelines and software tests in terms of their
correctness, completeness, and adherence to the DLR guideline.

• An analysis of the potential benefits and challenges of integrating LLMs into the
software development process, including their impact on productivity and code
quality.

The DLR guideline establishes quality standards and best practices for DLR scien-
tists, aiming to improve the software they develop through good software development
and documentation practices. The sections of the guideline that we will be working
with are the following:

• 4.6 Software Test gives various testing strategies to identify software errors,
emphasizing the importance of test automation to ensure code quality.

• 4.7 Release Management defines release planning, the creation of release
packages (including licensing) and gives importance to automating the release
process in general.

• 4.8 Automation and Dependency Management explains the necessity of
automation recurring tasks in software development, using build tools and scripts
to improve efficiency and also addressing the importance of dependency manage-
ment.

The scope of this thesis is limited, and does not attempt a full comprehensive evalua-
tion of LLMs in further areas of software development. The project used for this study
will be the DLR software project GitLab-Calendar1, which provided by the DLR, serves

1https://github.com/DLR-SC/GitLab-Calendar

Technische Universität Berlin 2

Nicolas Dahbar 1. Introduction

as a case study for demonstrating the feasibility and effectiveness of LLM-generated
CI pipelines and software tests.

1.4. Outline

The structure of the thesis is as follows:

• Chapter 2 - State of the Art: An examination of existing research involv-
ing the use of LLMs within software development, with particular attention to
CI/CD practices and software testing. This chapter will establish the context
for the study and identify current knowledge base.

• Chapter 3 - Methodology: A detailed description of the methods used in this
thesis.

• Chapter 4 - Results and Analysis: Presentation of findings of the study,
including an evaluation of the LLM-generated solutions.

• Chapter 5 - Discussion: A reflection on the implications of the results, dis-
cussing the benefits and challenges of the work.

• Chapter 6 - Conclusion: Summary of key findings and contributions of this
thesis.

Technische Universität Berlin 3

2. State of the Art

The State of the Art chapter provides a foundation into Large Language Models and
Software Engineering, while also going into detail for Continuous Integration and Soft-
ware Testing, as both practices are a key aspect of this thesis. By examining existing
literature, we aim to contextualize the research question of this thesis within the
broader field.

2.1. Artificial Intelligence

Artificial Intelligence is a broad field of computer science with a wide range of def-
initions [29]. Historically, researchers have offered different interpretations, ranging
from systems that think and act rationally to those that simply mimic specific parts
of human intelligence [41]. In the context of this thesis, we will focus on AI as the
development of computer systems that can perform tasks that typically use human
intelligence, such as learning, reasoning, problem solving, perception, and language
understanding [41, 11].

Artificial Intelligence has several subfields, each focusing on different aspects of
creating intelligent systems [41]. Some of the major subfields include:

• Machine Learning uses algorithms that enable computers to learn from and make
predictions based on data [17].

• Computer Vision deals with enabling machines to interpret and understand vi-
sual information from the world [49].

• Robotics focuses on the design and operation of robots, physically situated in
the "real world", capable of performing physical tasks autonomously [29].

• Natural Language Processing is aimed to making computers understand the
statements or words written in human languages [23].

From all of these subfields, NLP is particularly relevant to this thesis, as it forms
the foundation of Large Language Models.

2.1.1. Natural Language Processing

Natural Language Processing emerged as an intersection between artificial intelligence
and linguistics [31]. Early applications of NLP focused on tasks such as information

4

Nicolas Dahbar 2. State of the Art

retrieval, information extraction, automatic language translation and knowledge ac-
quisition [11], laying the base for the sophisticated language models and applications
we see today. With advancements in machine learning, particularly deep learning
techniques, NLP has evolved to be able to tackle more complex language tasks like
sentiment analysis, which have improved the capability of NLP systems to understand
human language more effectively [19]. These advancements culminated in the devel-
opment of Large Language Models.

2.1.2. Large Language Models

Language Models use statistical techniques to predict the likelihood of word sequences,
generate new text based on a given input, and estimate word probabilities based on
the preceding context [9]. LLMs are LM’s trained on massive datasets with billions of
parameters, giving them exceptional language processing abilities and strong capaci-
ties to solve tasks via text generation [9, 58]. As the foundation for Large Language
Models, NLP plays an important role in advancing the capabilities of AI systems to
interact with humans in more natural ways.

Fundamental to most modern LLMs, such as GPT-3 [7] / GPT-4 [34], PaLM [1] and
LLaMA [51], is the transformer architecture, a neural network design introduced in
the paper "Attention Is All You Need" [52]. While transformers incorporate different
complex techniques, their core innovation is the self-attention module. Self-attention
enables the model to weigh the importance of different words in a sentence when
computing a representation, which allows complex relationships within the text to
be captured. This parallelized approach improves the efficiency of processing large
amounts of textual data [52].

One of the main ways in which users interact with LLMs is through conversational
interfaces known as chatbots [37]. While LLMs themselves are complex models op-
erating in the background, chatbots act as user-friendly front-ends, translating user
inputs into prompts that the LLM can understand and process. The main difference
between using a chatbot and sending a simple request to the LLM is that chatbots
can maintain the entire conversation as context, allowing it to keep and reference in-
formation throughout the interaction [28]. This accessibility has led to a surge in the
popularity and adoption of commercial LLMs across various domains. Figure 1 illus-
trates an interaction from the ChatGPT chatbot, showing how questions and answers
are managed within the chat interface.

Technische Universität Berlin 5

Nicolas Dahbar 2. State of the Art

Figure 1.: Chatbot conversation for generating a is_prime function in Python.

2.1.2.1. Categories of LLMs

Large Language Models cover a wide range of purposes, with models having a variety
of domains. These differences come from pre-training processes, where models are
exposed to different types of text data to learn facts and reasoning abilities in a self-
supervised manner [32]. Some of the most widely used LLMs include:

• General-Purpose LLMs: These models, such as GPT-3 [7] / GPT-4 [34], PaLM
[1], and LLaMA [51], are designed to handle a wide range of tasks across different
domains. They excel in tasks like text generation, translation, summarization,
and question answering.

• Coding LLMs: Models like CodeGen [33], Codex [10], and AlphaCode [26] are
specifically trained on code repositories and designed to assist with programming
tasks. They can generate code snippets and debug existing code, making them
useful tools for software developers.

• Scientific Knowledge LLMs: Galactica [50] is trained on scientific literature and
data, enabling them to answer scientific questions, create research summaries,
and assist in hypothesis formulation.

• Finance LLMs: BloombergGPT [56] is a specialized LLM trained on financial
data. It is designed to perform tasks specific to the financial domain.

Technische Universität Berlin 6

Nicolas Dahbar 2. State of the Art

Figure 2 shows a chronological display of LLM releases from the paper "A Com-
prehensive Overview of Large Language Models" [32]. Blue cards show pre-trained
models and orange cards "instruction-tuned" models. Models on the upper half have
open-source availability, while the ones on the lower half are closed-source models.

Figure 2.: Chronological display of LLM releases
Image from "A Comprehensive Overview of Large Language Models" [32]

The choice of LLM largely depends on the specific task and domain. As research in
this field progresses, we can expect to see even more specialized and powerful LLMs.
The paper "A Comprehensive Overview of Large Language Models" [32] by Naveed
et al. offers a more extensive and in-depth examination of existing LLMs.

2.1.2.2. Prompt Engineering

Prompt engineering refers to the process of developing and optimizing input queries
or prompts to use the capabilities of LLMs to produce specific, relevant, and accurate
responses. This practice is necessary because responses can vary widely based on how
the prompt is phrased. Effective prompt engineering can enhance the accuracy and
reliability of the generated text, making LLMs more useful in practical applications.
Given the potential of LLMs in various domains, prompt engineering has emerged as
a skill set that significantly impacts the performance and utility of these models [53].

There are different techniques to guide LLM responses effectively. These techniques
include [42]:

• Few-shot prompting provides the LLM demonstrations of the desired output to
steer the model to better performance.

• Chain-of-thought prompting encourages the LLM to generate a step-by-step rea-
soning process before reaching a conclusion.

Technische Universität Berlin 7

Nicolas Dahbar 2. State of the Art

• Prompt Chaining involves dividing the prompt into different subtasks, making
it easier for the LLM to tackle simpler tasks one by one.

2.1.2.3. Limitations of LLMs

Despite their impressive capabilities, Large Language Models face several limitations
that impact their reliability and usability. One of the primary concerns is their "black
box" nature, meaning it is almost impossible to understand the reasoning behind their
generated responses [5]. This opacity can lead to erroneous responses, as the models
may produce plausible but incorrect or nonsensical information. This is often called a
hallucination. A survey performed by Rawte et al. [39] dives deeper into the different
types of hallucinations and existing strategies to mitigate them.

LLMs often need enormous computational resources. Training these models de-
mands high-performance specialized hardware, such as GPUs or TPUs. State-of-
the-art models require substantial resources, which demands large amounts of energy
together with the associated financial and environmental costs [48]. This resource-
intensive nature limits their accessibility and scalability for many organizations on the
basis of finance.

Financial cost is only one aspect of the challenges posed by the resource demands of
LLMs. As mentioned before, training LLMs also has a significant environmental toll
due to the high energy consumption required. The carbon footprint associated with
both training and operational use of LLMs can be substantial, contributing to climate
change and raising significant sustainability concerns [55]. According to Patterson et
al. [36], training one large model is equivalent to 389.833 kilometers driven by an av-
erage passenger vehicle.

Another significant limitation is the inherent biases present in LLMs. These mod-
els are trained on datasets that include text from various sources, which can contain
biased or prejudiced information. As a result, LLMs can reproduce and amplify these
biases in their outputs, posing ethical and fairness concerns [5]. Using high-quality
and diverse datasets that are representative of the real world can help fight against
bias and prejudice in the outputs from the model.

2.2. Software Engineering

Software engineering is a disciplined approach to the design, development, operation,
and maintenance of software. It integrates principles from computer science and engi-
neering to create software systems that are reliable, efficient, maintainable, and scal-
able [46]. This section provides an overview of key concepts in software engineering,
focusing on methodologies and practices used today.

Technische Universität Berlin 8

Nicolas Dahbar 2. State of the Art

As society’s reliance on complex software systems continues to grow [2], software
engineering has become increasingly important in recent years. By following a struc-
tured approach, software engineering helps reduce development costs, mitigate risks,
and reduce errors [46].

2.2.1. Software Engineering in Research

Software engineering in research plays an important role in advancing scientific inves-
tigation and technological development. The integration of software engineering into
research can lead to significant improvements in the quality and impact of scientific
discoveries.

Software designed to support research activities is referred to as research software.
This includes software developed specifically for scientific purposes, such as simula-
tions, data analysis tools, and visualization applications. It can also include software
prototypes in engineering research or even general infrastructure software used for re-
search data [15].

Research Software Engineers bridge the gap between traditional research and soft-
ware development. Researchers often lack a proper computer science background or
the skills to develop and use specialised software for their research [54]. RSEs possess
expertise in both domains, allowing them to create and maintain software that aims
to answer research questions and meets the standards of scientific research [15]. RSEs
often have a multifaceted role with the combination of research, software engineering,
and data management. They collaborate with a diverse set of colleagues, including
other developers, support staff, and academics from various fields [18].

2.2.2. Continuous Integration

Continuous Integration is a software development practice where developers regularly
merge their code changes into a main repository, then perform automated builds and
tests [14, 16]. This practice helps to maintain a stable codebase, reduce integration
problems, and allow teams to develop cohesive software rapidly and with higher confi-
dence. By detecting errors early in the development cycle, CI reduces the risk of bugs
and enhances the overall quality of the software [14].

A typical CI pipeline consists of several key components:

• Version Control System manages and tracks changes to the source code. Tools
like Git and Subversion are commonly used.

• Build Automation is the process of compiling the source code into executable
files. Tools such as Maven, Gradle, and Ant are often utilized.

Technische Universität Berlin 9

Nicolas Dahbar 2. State of the Art

• Automated Testing runs unit, integration, and end-to-end tests to verify the
functionality of the code.

• Continuous Integration Server orchestrates the CI process by monitoring the Ver-
sion Control System for changes, triggering builds, and running tests. Popular
CI servers include Jenkins, Travis CI, and GitLab CI.

• Notification System alerts developers about build and test results, facilitating
a quick response to any issues. Notifications can be sent via email or in chat
applications like Slack.

2.2.2.1. Relation to other methodologies

Continuous Integration is closely related to Agile and DevOps methodologies, both of
which emphasize iterative development and close collaboration between team members.

Agile is a popular software engineering methodology that emphasizes iterative devel-
opment, collaboration, and flexibility throughout the life-cycle of a project [12]. The
Agile Manifesto [4], published in 2001 by a group of 17 software engineers, outlines a
set of values and principles that guide this approach. Continuous integration is one
of the core practices in agile methodologies, as it supports frequent integration and
testing, allowing teams to have continuous feedback and improvement [12].

DevOps is a set of practices that combines software development and IT operations
to shorten the development lifecycle and deliver high-quality software continuously
[21]. The primary goals of DevOps are to improve collaboration between development
and operations teams, automate processes, and enhance the efficiency and reliability
of software delivery [24]. CI is a main practice in DevOps, as it ensures that code
changes are regularly tested and integrated, facilitating seamless deployment processes
and improved collaboration between development and operations teams.

2.2.3. Software Testing

Software testing is a critical component of the software development lifecycle, aimed at
ensuring that software systems function correctly and meet specified requirements. It
involves the systematic identification of defects, verification of functionality, and vali-
dation of the software’s performance under various conditions [30]. Software testing is
a main component of quality assurance in any software system [6]. Many studies have
shown that software testing utilizes approximately 50% of the total cost of software
development [38, 25].

Most of software testing can be divided into two basic categories: Manual Testing
and automated Testing. Manual software testing is performed statically by a per-
son going through the application, trying different input combinations and recording

Technische Universität Berlin 10

Nicolas Dahbar 2. State of the Art

observations [43]. On the other hand automated software testing involves the develop-
ment and execution of test scripts and the use of automated test tools [13]. It is a very
useful approach to replace the time consuming manual testing. Automated tests can
be executed quickly and repeatedly, ensuring that software updates do not introduce
new defects. Automation enhances test coverage by enabling the execution of a large
number of test cases across various configurations [25]. It also allows for continuous
testing in CI pipelines, facilitating faster feedback and shorter development cycles [8].

2.2.3.1. Types of Software Tests

There are different ways to classify a specific test. The following test types can be
distinguished [44]:

• Unit testing involves testing individual components or units of a software appli-
cation to ensure they perform as expected. Developers usually write unit tests
to verify that each module of the codebase operates correctly in isolation [40].

• Integration testing focuses on verifying the interactions between integrated units
or components. The goal is to identify issues that arise when modules are com-
bined, ensuring they work together. Integration tests are very important for
detecting interface errors and inconsistencies between components [22].

• System testing involves evaluating the complete and integrated software system
to verify that it meets the specified requirements [44]. This type of testing
encompasses functional and non-functional aspects, including performance and
usability [27].

• Acceptance testing is performed to determine whether the software is ready for
delivery and meets the acceptance criteria set by the customers or stakeholders.
It is evaluated in real world scenarios by actual users [27].

Figure 3.: Software Testing Pyramid

Technische Universität Berlin 11

Nicolas Dahbar 2. State of the Art

The distribution of these types of tests is commonly represented by the testing
pyramid, as shown in Figure 3. The testing pyramid emphasizes that unit tests should
form the base of the pyramid, being the most numerous. Integration tests should be
fewer in number and sit above unit tests in the pyramid. System tests, which are more
comprehensive and costly to run, should be fewer than integration tests and lie above
them. At the top of the pyramid, acceptance tests are the least numerous but crucial
for validating the software in real-world scenarios. This structure ensures a balanced
approach to testing, maximizing coverage and efficiency while minimizing the cost and
complexity of testing efforts.

Technische Universität Berlin 12

3. Methodology

3.1. Overview

A structured methodology was used to look into how well LLMs can make CI pipelines
and software tests that adhere to the DLR Software Engineering Guideline. This chap-
ter details the selection process of the chosen LLM, the development of appropriate
prompts for the specific tasks, and the project utilized in this thesis.

The approach followed in this study involves the following steps:

1. Selection of an appropriate Large Language Model based on performance and
suitability for the task.

2. Selection of an appropriate software project from DLR to be the focus of this
study.

3. Preparation of detailed input prompts to guide the LLM in generating CI pipelines
and software tests.

a) Summarizing the project’s functionality to provide context.

b) Writing the project structure and the most relevant files into the prompt
to give an overview of the project.

c) Selecting the relevant parts and recommendations of the Software Engineer-
ing Guideline from each section.

d) Writing an explicit task for the LLM to perform.

4. Generation of CI pipelines and software tests using the selected LLM and pre-
pared prompts.

5. Evaluation of the generated outputs against predefined criteria to assess their cor-
rectness, completeness, and adherence to the DLR Software Engineering Guide-
line.

The full conversation with the LLM, including the input prompts and responses, is
documented and included in the Annex of this thesis.

13

Nicolas Dahbar 3. Methodology

3.2. Selection of Large Language Models

To conduct this thesis, we need to choose the LLMs that are most appropriate for
the goal of the investigation. After careful consideration and discussion, GPT-4 [34]
has been chosen as the most suitable LLM for this thesis. GPT-4 stands out as the
most advanced and well-trained model available. At the time of writing, it holds the
top ranking on the LLM leaderboard from LMSYS1. This ranking reflects the model’s
strong performance and reliability in various natural language processing tasks, fur-
ther justifying its suitability for this study.

Although code completion LLMs such as Codex or similar models would also be
suitable for generating code and configurations, the model used in this thesis must
also understand and interpret the DLR Software Engineering Guideline. GPT-4 has
extensive training on diverse datasets, excels not only in code generation but also in
understanding complex textual information, making it a more suitable choice for this
study.

Furthermore, using GPT-4 is more accessible and convenient for us, as it eliminates
the need to run open-source models on a local computer or server. The ability to use
GPT-4 through a simple web interface in the browser significantly reduces setup and
maintenance efforts, allowing us to focus on the investigation instead on the technical
overhead of managing LLM infrastructure. This ease of access and use supports the
decision to utilize GPT-4 for this thesis.

3.3. GitLab-Calendar

To demonstrate the feasibility of LLM-generated CI pipelines and software tests, this
study used the DLR’s open-source project GitLab-Calendar2. This project was se-
lected for several reasons. Its open-source availability ensures accessibility for the
study. The project is simple enough to demonstrate the abilities of the LLM in a
manageable context but complex enough to avoid triviality, ensuring a meaningful
evaluation of the LLM’s capabilities. Additionally, the GitLab-Calendar project, with
its existing CI pipeline and test cases, provides a way to compare the existing solutions
to those generated by the LLM, offering a useful method for assessing the results of
this study.

The GitLab-Calendar project is an extension for GitLab that generates ICS files
from a repository’s issues, milestones, and iterations which have a due date. This
functionality helps team members visualize and manage their tasks and milestones by
integrating GitLab’s issue tracking and milestone features into a calendar format. The

1https://chat.lmsys.org/?leaderboard
2https://github.com/DLR-SC/GitLab-Calendar

Technische Universität Berlin 14

Nicolas Dahbar 3. Methodology

project is implemented in Python and follows standard software engineering practices.

The project originally had a CI pipeline and software tests which were not included
in the prompts provided to the LLM. We will analyze the results by comparing the
generated CI pipelines and software tests with the original files that were already
present in the project.

3.4. Prompts

The preparation of the input prompts is an important part in using the LLM for the
goal of this investigation. As a general guideline for prompt design, the guide by
DAIR.AI [42] was used. This section details the steps taken to develop our prompts,
providing explanations for each part of the prompt and why they were included.

To provide the LLM with the proper context needed to solve the task at hand in
the best way possible, the following components were included in the prompt:

• Project Overview

• Project Structure

• Relevant Files

• Guideline Overview

• Recommendations

• Task

Each of these components plays a role in ensuring that the outputs generated are
accurate and relevant. The detailed explanation of each component is provided below.
The full prompt can be found in the Annex of this thesis.

3.4.1. Project Overview

The Project Overview provides the LLM with a general understanding of the project’s
functionality, which is especially useful when generating test cases. For the GitLab-
Calendar project, the overview included a brief description of the project’s purpose
and main functionality, coming from the project’s README3.

GitCalendar is a Python tool that generates an ICS file from issues, milestones
and iterations, of one or more GitLab projects. Only events with a due date are
considered.

3https://github.com/DLR-SC/GitLab-Calendar

Technische Universität Berlin 15

Nicolas Dahbar 3. Methodology

3.4.2. Project Structure

Outlining the project structure gives the LLM insight into the organization of the
project’s files, which is required for creating CI configurations and relevant test cases.
This is needed when referencing a specific file path, which is done in both tasks.

- src/
- gitcalendar/

- gitcalendar.py
...

3.4.3. Relevant Files

Including files like setup.py and gitcalendar.py ensures the LLM understands de-
pendencies, build requirements, and the logic of the application, which is necessary for
generating coherent and functional CI pipelines and test cases. Some files are more
important than others; for example, gitcalendar.py is needed for generating test
cases, while setup.py is essential for the CI pipeline. On the other hand, files like
license headers are not very important for the LLM and do not need to be explicitly
included in the prompt.

3.4.4. Guideline Overview

Each section of the guideline includes an overview of one or two pages, followed by
a list of recommendations with more specific requirements. The overviews are longer
than needed for the prompt and could be more concise. LLMs are particularly good
at summarizing information while retaining all important details. Therefore, we used
GPT-4 to summarize the overview, focusing on the most relevant information while
omitting less critical details.

Section 4.8 - Automation and Dependency Management:

Automation and dependency management are critical for handling software
complexity, ensuring consistent builds, and reducing errors. Key components
include:

- Build Process Automation: Automates the transformation of source code into
executable programs, including testing and release packaging. Tools like Maven
and CMake facilitate this process.
...

Technische Universität Berlin 16

Nicolas Dahbar 3. Methodology

3.4.5. Recommendations

Each section of the DLR guideline contains ten recommendations with concrete re-
quirements for the project. However, some recommendations are out of scope for this
study as they focus on more complex topics or address elements not included in our
software project. The two best suited recommendations were chosen for each section.
To make this selection, we prompted the LLM to identify the most suitable recommen-
dations for each section. We then combined these suggestions with our own opinions
to finalize the recommendations used in the prompt for each section. This approach
ensures that the generated CI pipelines and test cases are not only functional but also
adhere to established best practices relevant to our specific context.

Recommendations from Release Management (4.7):
- ERM.6: All foreseen test activities are executed during release performance.
- ERM.7: Prior to the approval of the release, all foreseen tests passed successfully.

Recommendations from Automation and Dependency Management
(4.8):
- EAA.1: The simple build process is basically automated and necessary manual
steps are described. In addition, there is sufficient information available about
the operational and development environment.
- EAA.5: In the build process, the execution of tests, the determination of
metrics, the creation of the release package, and, if necessary, other steps are
performed automatically.

Recommendations from Software Test (4.6):
- EST.4: The basic functions and features of the software are tested in a
near-operational environment.
- EST.5: There is a test for every nontrivial error.

3.4.6. Task

Clearly stating the task instructs the LLM on what output is expected. The task
description includes specific instructions on how to use the information provided and
the specific goal to produce, ensuring that the generated outputs are aligned with the
study’s requirements.

Task:
Generate test cases and write their implementation for gitcalendar.py that adhere
to the DLR guideline’s recommendations provided above and the principles of test
automation.

Technische Universität Berlin 17

Nicolas Dahbar 3. Methodology

3.5. Generation of CI Pipelines and Software Tests

With the prepared input prompts, the selected LLMs were used to generate the out-
puts. The process involved inputting the prompts into the LLMs, and collecting and
storing the generated responses.

We will analyze the results of the initial responses from the LLM without attempt-
ing to correct any possible errors in subsequent prompts. This approach allows us to
evaluate the LLM’s effectiveness and reliability in generating accurate and complete
configurations and tests without human intervention.

By evaluating the first outputs, we can gain a clear understanding of the current
capabilities of LLMs and identify areas where they excel or need improvement. Ad-
ditionally, this method aligns with the objective of minimizing manual effort in the
software development process, as any iterative refinement would introduce a level of
human involvement contrary to the goal of automating CI pipeline and test generation.

The study aims to assist researchers who may not have extensive knowledge in soft-
ware engineering. Iterating to correct mistakes made by the LLM may require a deeper
understanding of the area, which may not be feasible for everyone.

Technische Universität Berlin 18

4. Results and Analysis

Presented below are the results and analysis of the study, including the evaluation
and examination of the generated CI pipelines and software tests. The results are
evaluated based on predefined criteria, and a detailed analysis is done to understand
the strengths and weaknesses of the LLM. We also provide explanations and context
to improve the readability and comprehension of the findings.

The full conversation with the LLM, including the input prompts and responses, is
documented and included in the Annex of this thesis.

4.1. Functionality Testing

We will execute the project for both of the tasks to evaluate whether the generated CI
pipeline and software tests work as expected and integrate smoothly with the project.
Running these generated outputs helps determine if they perform their intended func-
tions correctly and if there any syntactical or logical errors that would prevent their
operation. Manually reviewing the outputs without executing them, would not provide
the same level of insight into real-world functionality.

4.1.1. Functionality Testing Results

Task 1: CI Pipeline

The resulting CI pipeline did not execute due to fundamental issues with
the environment setup and dependencies. The first error encountered was
python: command not found. This error occurred because the CI pipeline
configuration did not specify a Docker image that includes Python. Without a
Python environment, the subsequent commands in the pipeline could not be executed.
The absence of a defined Python image shows an oversight in the understanding of
the project, as it relies on Python for its build, test, and release processes.

Even if the Python image error had been resolved, the pipeline would have failed
later due to the reference to a non-existent requirements.txt file. The generated
configuration attempts to install dependencies using this file, which does not exist
in the project. In GitLab-Calendar, the dependencies are specified in the setup.py file.

19

Nicolas Dahbar 4. Results and Analysis

To improve the generated CI pipeline, it would be necessary to specify a suitable
Docker image, such as python:3.8 or any version compatible with the project
requirements. Additionally, updating the configuration to correctly reference the
setup.py file for dependency management would also be necessary.

Task 2: Software Tests

The generated tests did not execute successfully due to several errors. The first
issue encountered was with the line from gitcalendar import GitCalendar, which
incorrectly assumes that the gitcalendar.py file contains a class named GitCalendar.
The actual gitcalendar.py file only defines functions and does not include any class
definitions. This misunderstanding of the code provided resulted in an import error,
preventing the tests from running successfully.

This outcome highlights a big limitation in the generated tests: the model’s
inability to accurately interpret the code provided in the prompt. Despite having
access to the gitcalendar.py file, the generated test cases were not properly using
the project’s code. For the LLM to make a correct implementation of the tests, it
needs to first understand the logic and functionality of the application.

4.2. Adherence to DLR Software Engineering
Guideline

This section evaluates the generated CI pipeline and software tests with respect to
their alignment with the DLR Software Engineering Guideline. Designed to assist
researchers who may have programming skills but lack comprehensive software engi-
neering experience, the guideline provides a structured set of recommendations aimed
at ensuring correct practices in software engineering. These recommendations build
upon each other across different sections, introducing principles before expanding
into more specific applications for various software classes and environments. Given
this approach, some recommendations appear to be similar, as they are designed to
cover overlapping aspects. However, each recommendation adds specific details that
are intended to guide users through increasingly more complex practices.

By comparing the generated outputs against these standards, we can evaluate the
LLM’s ability to produce configurations and tests that align with established quality
and reliability criteria. The following sections look at how the generated CI pipeline
fits with the DLR Guideline’s Release Management and Automation and Dependency
Management sections. They then look at how the generated software tests fit with
the Software Test section.

Technische Universität Berlin 20

Nicolas Dahbar 4. Results and Analysis

4.2.1. Adherence to Sections Release Management and
Automation and Dependency Management

Recommendations from Release Management (4.7):

ERM.6: All foreseen test activities are executed during release performance.

The generated CI pipeline includes a test stage that runs prior to the release stage.
This setup effectively aligns with the recommendation to execute all foreseen test
activities during the release process. In a continuous integration environment, such
as GitLab CI, the pipeline must successfully pass all stages, including testing, before
any code can be merged or a release can be performed. This inherent characteristic
of CI pipelines ensures that no untested code is released, fulfilling the intent of the
recommendation.

ERM.7: Prior to the approval of the release, all foreseen tests passed successfully.

The pipeline’s current configuration includes a test stage that runs before the release
stage. In a continuous integration pipeline, it is ensured that all tests must pass before
the release stage can proceed. If any test fails, the pipeline is automatically halted,
preventing the release from being approved. This mechanism aligns with the rec-
ommendation that all anticipated tests must pass successfully prior to release approval.

Recommendations from Automation and Dependency Management (4.8):

EAA.1: The simple build process is basically automated and necessary manual
steps are described. In addition, there is sufficient information available about the
operational and development environment.

The generated CI pipeline includes a build stage, which automates the process of
creating distribution packages using setup.py. This aligns with the recommendation
for automating the build process. However, the recommendation also mentions the
need for sufficient information about the operational and development environment,
typically provided in project documentation, such as a README file. The CI pipeline
and the documentation of a project are not related to each other. The project’s
documentation files are a better place to manage this information, and developers
who are familiar with the project should write and maintain them. While the CI
pipeline can ensure that the build process is automated, the broader documentation
requirements are outside its scope and should be addressed separately.

Technische Universität Berlin 21

Nicolas Dahbar 4. Results and Analysis

EAA.5: In the build process, the execution of tests, the determination of metrics,
the creation of the release package, and, if necessary, other steps are performed
automatically.

The pipeline automates several key processes, including building the project,
executing tests, and creating the release package, which aligns with the guideline’s
emphasis on automation. The build, test, and release stages are designed to run
automatically in sequence. The pipeline does not include any tools or steps for
determining code quality metrics, which is mentioned in this recommendation. The
LLM did not fulfill the requirement for metrics determination, likely because the
prompt did not explicitly mention the need for such tools. The pipeline could benefit
from incorporating tools for measuring code quality metrics in order to fully adhere to
this recommendation. A more explicit prompt mentioning the inclusion of a metrics
tool would have likely guided the LLM to incorporate this aspect into the CI pipeline.

4.2.2. Adherence to Section Software Test

Recommendations from Software Test (4.6):

EST.4: The basic functions and features of the software are tested in a near-
operational environment.

The generated tests attempt to cover basic functionalities of the GitLab-Calendar
project, such as fetching issues, filtering events with due dates, and generating ICS
files. However, the tests rely on mock data and do not run in a near-operational
environment. The tests assume the existence of a GitCalendar class, which does not
match the actual structure of the project, thereby failing to test the real functions and
features in a realistic environment.

EST.5: There is a test for every nontrivial error.

While the generated tests include some basic error handling, such as testing for
exceptions when fetching issues, they do not provide comprehensive coverage for
all nontrivial errors in the project. Important aspects, like handling missing due
dates or dealing with malformed data, are not thoroughly tested. To align with
this recommendation, the test suite should be expanded to cover a broader range of
potential errors and edge cases within the project’s functionality.

Technische Universität Berlin 22

Nicolas Dahbar 4. Results and Analysis

4.3. Comparison with Original Solutions

This section presents a comparison between the CI pipeline and software tests gener-
ated by the LLM and the original CI pipeline and software tests already present in the
GitLab-Calendar project. We show how well the LLM can replicate project-specific
needs by looking at the similarities and differences in structure and specific implemen-
tation choices. We also show where the generated solutions match or differ from the
original configurations.

4.3.1. Task 1: CI Pipeline

Stages and Structure

The original CI pipeline consists of three stages: test, build, and publish. The
generated pipeline also includes three stages: build, test, and release. The structure
of the stages in both pipelines serves similar purposes but differs in their approach
to organizing tasks. The original pipeline installs dependencies within each stage
and specifies a Docker image for each step, ensuring a consistent environment across
the stages. In contrast, the generated pipeline uses a before_script to install
dependencies globally before executing any stage, which can lead to discrepancies if
different stages require different environments or dependencies.

Dependency Management

The original pipeline manages dependencies using pip install -e ".[test]",
allowing the installation of the necessary packages directly from the setup.py
configuration. The generated pipeline attempts to install dependencies using
pip install -r requirements.txt, assuming the presence of a requirements.txt
file, which is not part of the project structure. This assumption by the LLM is
incorrect, as the dependency information is contained within the setup.py file, which
was explicitly provided in the prompt.

Build and Release

In the original pipeline, the build process involves calling
python setup.py sdist bdist to create distribution packages, followed by
verification with twine. Additionally, the pipeline checks the installation and
functionality of the package before publishing. The generated pipeline performs
a similar build process using python setup.py sdist bdist_wheel but does not
include the verification step with twine.

For the release process, the original pipeline uses twine upload to publish the
package to PyPi and includes a manual approval step before publishing, enhancing
control over the release. The generated pipeline attempts to upload the package to a

Technische Universität Berlin 23

Nicolas Dahbar 4. Results and Analysis

test repository on PyPi, indicating a lack of finalization for production deployment. It
does not implement a manual approval step, which could lead to premature releases.

4.3.2. Task 2: Software Tests

Coverage

While the original test cases utilize the most important functionalities of the
GitLab-Calendar project by covering the core functions in the project, the test
cases generated by the LLM did not understand these essential aspects. Even after
explicitly including gitcalendar.py in the prompt, the LLM was not able to utilize
the relevant functions in the tests. Instead, the generated tests included functions
like fetch_project_activities and parse_project_activity_data, which do not
exist in the actual project. This shows a disconnect between the generated outputs
and the specific requirements and functionalities of the project.

Mocking

Both the original and generated test cases use mocking to simulate API calls
and external dependencies. However, the original test cases include more complex
mocking scenarios, such as mocking ProjectIssue, Project, and other project related
objects, whereas the generated tests primarily mock HTTP requests.

Parametrization

The original test cases extensively use pytest.mark.parametrize to test multiple
scenarios for functions like merge_events and convert_ids, ensuring that various
edge cases and input combinations are tested. In contrast, the generated test cases do
not use parametrization and test only single scenarios for each function. If the LLM
had been explicitly prompted to use parametrization, it would have incorporated it in
a similar manner to the original tests.

Technische Universität Berlin 24

5. Discussion

5.1. Evaluation of LLM Performance

In this section, we evaluate the LLM’s performance in generating CI pipelines and
software tests for the GitLab-Calendar project. By examining both the strengths and
weaknesses of the generated outputs, we assess the LLM’s effectiveness in meeting
project requirements and adhering to software engineering best practices. This
evaluation considers how well the LLM’s outputs function as a whole, alongside
its limitations. This analysis provides insights into the LLM’s current capabilities
and highlights areas for improvement when applied to similar tasks in software
development.

5.1.1. Strengths

The LLM demonstrated its capability to generate comprehensive CI pipelines
and software tests that covered a wide range of functionalities. For example, the
generated CI pipeline included stages like build, test, and release, automating critical
aspects of the software development lifecycle. Similarly, the generated software tests
attempted to cover various scenarios, including data handling, file generation, and
error management. While not perfect, the LLM’s ability to generate these outputs
highlights its potential to significantly assist developers by providing templates for
configuration files and boilerplate code.

One of the most notable strengths of the LLM is its ability to quickly generate
configurations and test cases through writing a prompt, significantly reducing the time
and effort required compared to the more time-consuming and error-prone manual
process. Although the generated code required adjustments, the LLM provided a solid
foundation for further refinement, significantly enhancing productivity, especially in
large projects where time and resources are limited.

The LLM also demonstrated an understanding of industry best practices in the
generated outputs. For example, the inclusion of twine in the CI pipeline reflects a
well-regarded tool for managing Python package distributions. twine was also used in
the original project. The fact that the LLM incorporated this best practice without
explicit instruction suggests that it can serve as a valuable tool for enforcing standards
and best practices across development teams.

25

Nicolas Dahbar 5. Discussion

5.1.2. Weaknesses

While the LLM generated functional CI pipelines and software tests, there were
notable gaps in the completeness of these outputs. For instance, the CI pipeline did
not include all necessary steps for creating and verifying traditional Python packages,
such as the inclusion of the twine check command or manual verification steps that
are crucial in the original pipeline. Additionally, the generated software tests lacked
comprehensive coverage of non-trivial errors and edge cases, which are needed for
ensuring more reliable software. These omissions show a limitation of the LLM: its
inability to fully replicate the depth of understanding and attention to detail that an
experienced developer might bring to the task.

The LLM made several assumptions during the generation process, some of which
were incorrect and impacted the functionality of the outputs. An example is the
assumption that the environment would already include Python, leading to the omis-
sion of a Docker image with Python installed in the CI pipeline configuration, which
prevented the pipeline from running altogether. These incorrect assumptions about
environment requirements on assumed project structures can result in non-functional
outputs, requiring manual correction and intervention to align the generated code
with the actual project setup. This reveals a weakness in the LLM’s ability to adapt
to the specific nuances of a given project.

The generated outputs did not fully align with the specific requirements of the
GitLab-Calendar project. For example, the software tests assumed the presence of a
class structure in the gitcalendar.py file that did not exist, leading to non-executable
tests. These misalignments highlight the LLM’s difficulty in accurately interpreting
and applying project-specific requirements, leading to outputs that require further
refinement and customization by developers.

5.2. Challenges Encountered

This section outlines the primary challenges encountered during this study. These
challenges mainly stem from the LLM’s limitations in handling environment and
testing setup scenarios and the need for precise prompt engineering to guide its
outputs effectively. By examining the difficulties faced in creating detailed and
specific prompts, as well as the LLM’s struggle with advanced configurations and
dependencies, we gain insight into the areas where LLMs currently fall short.
Understanding these challenges is very important for identifying strategies to improve
LLM-guided development processes and achieve more accurate results.

Technische Universität Berlin 26

Nicolas Dahbar 5. Discussion

5.2.1. Prompt Engineering

One of the significant challenges encountered during this study was the need for
detailed and specific prompts to guide the LLM effectively. The specificity of the
given prompts had a direct impact on the quality of the outputs. For example, when
prompts lacked detailed descriptions of specific files or omitted explicit instructions
regarding key requirements, the LLM often made incorrect assumptions or failed
to produce fully functional outputs. This shows the importance of meticulously
writing prompts to include comprehensive information about the project’s structure,
dependencies, and specific guidelines, ensuring that the LLM could generate outputs
that closely align with the project’s needs.

As this study shows, it’s very hard to receive a perfect and fully functional out-
put from the LLM after just one prompt. An iterative process would be necessary,
where errors and gaps in the generated code are identified and communicated back to
the LLM for correction. Initially, the LLM’s outputs often contained errors or omis-
sions that would require adjusting the prompts and re-running the generation process.
While this approach can be time-consuming, it highlights the LLM’s reliance on clear
and detailed instructions. Each iteration would need to address specific flaws in the
generated code or configurations before reevaluating the revised outputs.

5.2.2. Environment and Testing Setup

Setting up the correct environment for the generated CI pipeline posed some funda-
mental challenges. The LLM did not specify essential details such as the appropriate
Python version or Docker image, resulting in a failed execution. These issues show
that while the LLM can generate pipeline configurations, it lacks the understanding to
handle essential setup tasks reliably, which are very important for smooth integration
with the project’s environment.

Generating tests that required complex mocking scenarios presented a significant
challenge. The LLM struggled to create accurate and functional test cases that
involved mocking setups, such as those required to simulate external dependencies
within the project. These challenges highlighted the LLM’s difficulty in handling more
advanced testing scenarios, where a deep understanding of the project’s architecture
and dependencies is crucial for better test generation.

5.3. Reflections and Insights

This section presents reflections and insights about this study, focusing on the
implications of using LLMs in software engineering. By examining the potential of
LLMs to automate aspects of the development process and the critical role of human
oversight, we gain a clearer understanding of the current capabilities and limitations

Technische Universität Berlin 27

Nicolas Dahbar 5. Discussion

of these models. These reflections not only highlight the benefits that LLMs offer
but also emphasize the importance of expert guidance in refining and validating the
generated outputs.

5.3.1. Potential of LLMs

The LLM demonstrated significant potential in automating aspects of software engi-
neering, particularly in generating initial versions of CI pipelines and test cases. While
the outputs it generated were useful, it is currently impossible to know if an LLM will
ever be able to produce perfect results without human oversight. There will likely
always be a need for human supervision to ensure that all requirements are met. Even
though the LLM can save time by producing functional outputs quickly, it’s important
to acknowledge that human intervention will remain essential in verifying and refining
these outputs.

5.3.2. Human Oversight

This study has reinforced the importance of human oversight in the use of LLMs for
software development tasks. While the LLM was able to generate useful outputs, the
need for iterative refinement and the correction of errors or assumptions illustrates
that these models are not yet capable of fully autonomous software development. It
is essential that the individuals overseeing the process have expertise in software en-
gineering, as not just anyone can perform this role effectively. Developers with deep
knowledge must remain actively involved, guiding the LLM with precise prompts, re-
viewing the outputs, and making necessary adjustments. This collaborative approach,
combining the speed and efficiency of LLMs with the expertise and judgment of quali-
fied human developers, is likely the most effective way to utilize the potential of these
tools in practice.

5.4. Future Work

This section outlines potential directions for future research, trying to improving
the utility and adaptability of LLMs in software engineering. Building on the
insights gained from this study, future work could explore iterative refinement
approaches, comparisons between LLMs, and applications across different domains
in software engineering. These explorations hold the potential to advance LLM-
driven software engineering, making it a more reliable and versatile asset in the future.

5.4.1. Iterative Refinement

Given the necessity of iterative refinement in achieving functional outputs, future
research could explore more interactive approaches where LLMs and developers

Technische Universität Berlin 28

Nicolas Dahbar 5. Discussion

collaborate in real-time. This could involve developing tools that allow developers
to interact with the LLM in a more iterative manner, receiving immediate feedback
and making adjustments to prompts or code as needed. Such an approach could
significantly reduce the time and effort required to produce high-quality outputs.
Recent tools like FRANC [45] apply quality-aware ranking to code generated by
LLMs and generate a repair prompt to further refine the code. This approach could
serve as a foundation for integrating automated quality control, minimizing errors in
initial outputs and enhancing reliability through automated corrections.

5.4.2. Other Large Language Models

Future research could also focus on comparing the performance of different LLMs
in generating CI pipelines and software tests. While this study used GPT-4, other
models may produce different results. By evaluating multiple models, future work
could identify which ones are best suited for specific tasks or domains within
software engineering. Different studies, such as the work by Xu et al. [57], have
already done systematic evaluations of various LLMs, highlighting strengths and
limitations in tasks like code generation and debugging. Such comparisons would
provide valuable insights into the strengths and limitations of various LLMs and could
lead to improvements in prompt engineering or model selection based on project needs.

5.4.3. Different Domains

Finally, while this study focused on a specific software project, future research could
investigate the application of LLMs across a broader range of domains within software
engineering. This could include exploring their use in different programming lan-
guages, development environments, or types of projects. Investigating the integration
of LLMs with containerization and orchestration tools like Docker and Kubernetes,
could provide valuable insights into how these models can be utilized to handle com-
plex workflows across various stages of the development lifecycle.

Technische Universität Berlin 29

6. Conclusion

The purpose of this thesis was to explore the application of LLMs in generating CI
pipelines and software tests for a real-world project and testing its adherence to the
DLR Software Engineering Guideline. The work investigated the following aspects:

• Evaluation of the generated CI pipelines and software tests in terms of correct-
ness, completeness, and adherence to the guideline.

• Analysis of the potential benefits and challenges of integrating LLMs into the
software development process.

The evaluation of the generated outputs, in terms of correctness and adherence to
the DLR guideline, revealed both strengths and limitations. The CI pipeline that
GPT-4 produced followed the DLR Guidelines closely and had a well-structured
approach that was nearly identical to the structure of the original working CI pipeline
in the project. However, the pipeline contained syntactic errors, such as the omission
of a Python environment, leading to execution failures.

This issue reflects a tendency in LLMs to default to common configurations rather
than adapting to the specifics of the project. Although GPT-4 can recognize the
language of the code as Python without any difficulty, it failed to include a Python
environment, likely because it defaulted to general patterns that are commonly
present in its training data. This behavior shows the need for further refinement
in how LLMs interpret prompts, encouraging them to focus on context-specific
requirements rather than relying on typical configurations. Similarly, the generated
software tests faced limitations in their failure to correctly interpret the project’s
structure, highlighting the importance of context in code generation.

In terms of the broader implications for software engineering, we identified potential
benefits of using LLMs to automate repetitive tasks such as CI pipeline creation and
test case generation. LLMs can significantly improve productivity by reducing the
time developers spend on writing boilerplate code. On the other hand, this thesis
also showed the challenges associated with using LLMs, including the need for precise
prompt engineering and human oversight. The generated outputs required iterative re-
finement, and the LLM struggled with more complex or nuanced aspects of the project.

These challenges indicate that, at its current stage, LLMs are better suited for
research software engineers, rather than for scientists or researchers without extensive

30

Nicolas Dahbar 6. Conclusion

programming experience. The need for precise prompts and adjustments makes it a
tool that requires technical expertise to be fully effective, limiting its accessibility for
those without a software engineering background.

Ultimately, while GPT-4 demonstrated strong potential as a tool for automating
parts of the software development lifecycle, it is not yet capable of fully replacing
human expertise. The LLM’s outputs frequently required manual adjustments to
ensure they adhered to project-specific requirements and industry standards. Going
forward, the integration of LLMs into software development workflows will need to
focus on improving their contextual understanding and ensuring that they can adapt
to the specific requirements of a given project, while continuing to rely on the expertise
of human developers to guide the outputs.

Technische Universität Berlin 31

List of Acronyms

AI Artificial Intelligence
CI Continuous Integration
DLR Deutsches Zentrum für Luft- und Raumfahrt
GPU Graphics Processing Unit
LM Language Model
LLM Large Language Model
ML Machine Learning
NLP Natural Language Processing
RSE Research Software Engineers
SE Software Engineering
TPU Tensor Processing Unit

32

List of Figures

1. Chatbot conversation for generating a is_prime function in Python. . . 6
2. Chronological display of LLM releases 7
3. Software Testing Pyramid . 11

33

Bibliography

[1] Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D., Passos, A.,
Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J. H.,
et al. Palm 2 technical report, 2023.

[2] Bank, W. World development report 2019: The changing nature of work. The
World Bank, 2018.

[3] Barenkamp, M., Rebstadt, J., and Thomas, O. Applications of ai in
classical software engineering. AI Perspectives 2, 1 (Jul 2020), 1.

[4] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,
et al. Manifesto for agile software development.

[5] Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S.
On the dangers of stochastic parrots: Can language models be too big? . In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans-
parency (New York, NY, USA, 2021), FAccT ’21, Association for Computing
Machinery, p. 610–623.

[6] Bertolino, A. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering (FOSE ’07) (2007), pp. 85–103.

[7] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., et al. Language models are few-shot learners, 2020.

[8] Campos, J., Arcuri, A., Fraser, G., and Abreu, R. Continuous test
generation: enhancing continuous integration with automated test generation.
In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (New York, NY, USA, 2014), ASE ’14, Association for
Computing Machinery, p. 55–66.

[9] Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H.,
Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S.,
Yang, Q., and Xie, X. A survey on evaluation of large language models. ACM
Trans. Intell. Syst. Technol. 15, 3 (mar 2024).

[10] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray,

34

Nicolas Dahbar Bibliography

A., Puri, R., Krueger, G., et al. Evaluating large language models trained
on code, 2021.

[11] Chowdhary, K., and Chowdhary, K. Fundamentals of Artificial Intelligence.
Springer, 2020.

[12] Cohen, D., Lindvall, M., and Costa, P. An introduction to agile methods.
Adv. Comput. 62, 03 (2004), 1–66.

[13] Dustin, E., Rashka, J., and Paul, J. Automated software testing: introduc-
tion, management, and performance. Addison-Wesley Professional, 1999, pp. 1–
29. ISBN: 0-201-43287-0.

[14] Duvall, P. M., Matyas, S., and Glover, A. Continuous integration: im-
proving software quality and reducing risk. Pearson Education, 2007, pp. 1–45.
ISBN: 978-0-321-33638-5.

[15] Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lam-
precht, A.-L., and Rumpe, B. Toward research software engineering research,
June 2023.

[16] Fowler, M., and Foemmel, M. Continuous integration, 2006.

[17] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press,
2016.

[18] Goth, F., Alves, R., Braun, M., Castro, L. J., Chourdakis, G., Christ,
S., Cohen, J., Erxleben, F., Grad, J.-N., Hagdorn, M., Hodges, T.,
Juckeland, G., Kempf, D., Lamprecht, A.-L., Linxweiler, J., Löffler,
F., Martone, M., Schwarzmeier, M., Seibold, H., Thiele, J. P., von
Waldow, H., and Wittke, S. Foundational competencies and responsibilities
of a research software engineer, 2024.

[19] Gunasekaran, K. P. Exploring sentiment analysis techniques in natural lan-
guage processing: A comprehensive review. arXiv preprint arXiv:2305.14842
(2023).

[20] Hadi, M. U., tashi, q. a., Qureshi, R., Shah, A., muneer, a., Irfan,
M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., and Mirjalili, S.
Large language models: A comprehensive survey of its applications, challenges,
limitations, and future prospects.

[21] Jabbari, R., bin Ali, N., Petersen, K., and Tanveer, B. What is devops?
a systematic mapping study on definitions and practices. In Proceedings of the
Scientific Workshop Proceedings of XP2016 (New York, NY, USA, 2016), XP ’16
Workshops, Association for Computing Machinery.

Technische Universität Berlin 35

Nicolas Dahbar Bibliography

[22] Jorgensen, P. C., and Erickson, C. Object-oriented integration testing.
Communications of the ACM 37, 9 (1994), 30–38.

[23] Khurana, D., Koli, A., Khatter, K., and Singh, S. Natural language
processing: state of the art, current trends and challenges. Multimedia Tools and
Applications 82, 3 (Jan 2023), 3713–3744.

[24] Kim, G., Humble, J., Debois, P., Willis, J., and Forsgren, N. The
DevOps handbook: How to create world-class agility, reliability, & security in
technology organizations. IT Revolution, 2021.

[25] Kumar, D., and Mishra, K. The impacts of test automation on software’s
cost, quality and time to market. Procedia Computer Science 79 (2016), 8–
15. Proceedings of International Conference on Communication, Computing and
Virtualization (ICCCV) 2016.

[26] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond,
R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago, A., et al.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092–1097.

[27] Luo, L. Software testing techniques. Institute for software research international
Carnegie mellon university Pittsburgh, PA 15232, 1-19 (2001), 19.

[28] McTear, M., and Ashurkina, M. Transforming conversational ai.

[29] Murphy, R. R. Introduction to AI robotics. MIT press, 2019.

[30] Myers, G. J., Sandler, C., and Badgett, T. The art of software testing.
John Wiley & Sons, 2011, pp. 1–19.

[31] Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W. Natural lan-
guage processing: an introduction. Journal of the American Medical Informatics
Association 18, 5 (09 2011), 544–551.

[32] Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M.,
Akhtar, N., Barnes, N., and Mian, A. A comprehensive overview of large
language models, 2024.

[33] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y.,
Savarese, S., and Xiong, C. Codegen: An open large language model for
code with multi-turn program synthesis, 2023.

[34] OpenAI, Achiam, J., Adler, S., Agarwal, S., et al. Gpt-4 technical report,
2024.

[35] Ozkaya, I. Application of large language models to software engineering tasks:
Opportunities, risks, and implications. IEEE Software 40, 3 (May 2023), 4–8.

Technische Universität Berlin 36

Nicolas Dahbar Bibliography

[36] Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M.,
Rothchild, D., So, D., Texier, M., and Dean, J. Carbon emissions and
large neural network training, 2021.

[37] Radlinski, F., and Craswell, N. A theoretical framework for conversational
search. In Proceedings of the 2017 Conference on Conference Human Information
Interaction and Retrieval (New York, NY, USA, 2017), CHIIR ’17, Association
for Computing Machinery, p. 117–126.

[38] Ramler, R., and Wolfmaier, K. Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost. In Proceedings
of the 2006 International Workshop on Automation of Software Test (New York,
NY, USA, 2006), AST ’06, Association for Computing Machinery, p. 85–91.

[39] Rawte, V., Sheth, A., and Das, A. A survey of hallucination in large foun-
dation models, 2023.

[40] Runeson, P. A survey of unit testing practices. IEEE Software 23, 4 (2006),
22–29.

[41] Russell, S. J., and Norvig, P. Artificial intelligence: a modern approach.
Pearson, 2016.

[42] Saravia, E. Prompt Engineering Guide. https://github.com/dair-ai/Prompt-
Engineering-Guide (12 2022).

[43] Sawant, A. A., Bari, P. H., and Chawan, P. Software testing techniques
and strategies. International Journal of Engineering Research and Applications
(IJERA) 2, 3 (2012), 980–986.

[44] Schlauch, T., Meinel, M., and Haupt, C. Dlr software engineering guide-
lines. Tech. rep., August 2018.

[45] Siddiq, M. L., Casey, B., and Santos, J. C. S. Franc: A lightweight frame-
work for high-quality code generation, 2024.

[46] Sommerville, I. Software engineering 9th. Addison-Wesley, 2011, pp. 1–26.
ISBN: 978-0-13-703515-1.

[47] Sridhara, G., G., R. H., and Mazumdar, S. Chatgpt: A study on its utility
for ubiquitous software engineering tasks, 2023.

[48] Strubell, E., Ganesh, A., and McCallum, A. Energy and policy consid-
erations for deep learning in nlp. arXiv preprint arXiv:1906.02243 (2019).

[49] Szeliski, R. Computer vision: algorithms and applications. Springer Nature,
2022.

Technische Universität Berlin 37

Nicolas Dahbar Bibliography

[50] Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A.,
Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R. Galactica: A large
language model for science. arXiv preprint arXiv:2211.09085 (2022).

[51] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A.,
et al. Llama: Open and efficient foundation language models, 2023.

[52] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. u., and Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems (2017), I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30, Curran Associates, Inc.

[53] White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H.,
Elnashar, A., Spencer-Smith, J., and Schmidt, D. C. A prompt pattern
catalog to enhance prompt engineering with chatgpt, 2023.

[54] Wiese, I., Polato, I., and Pinto, G. Naming the pain in developing scientific
software. IEEE Software 37, 4 (2019), 75–82.

[55] Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N.,
Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C., Gschwind, M.,
Gupta, A., Ott, M., Melnikov, A., Candido, S., Brooks, D., Chauhan,
G., Lee, B., Lee, H.-H., Akyildiz, B., Balandat, M., Spisak, J., Jain,
R., Rabbat, M., and Hazelwood, K. Sustainable ai: Environmental impli-
cations, challenges and opportunities. In Proceedings of Machine Learning and
Systems (2022), D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, pp. 795–813.

[56] Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann,
S., Kambadur, P., Rosenberg, D., and Mann, G. Bloomberggpt: A large
language model for finance. arXiv preprint arXiv:2303.17564 (2023).

[57] Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A systematic
evaluation of large language models of code. In Proceedings of the 6th ACM
SIGPLAN International Symposium on Machine Programming (New York, NY,
USA, 2022), MAPS 2022, Association for Computing Machinery, p. 1–10.

[58] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,
Zhang, B., Zhang, J., Dong, Z., et al. A survey of large language models.
arXiv preprint arXiv:2303.18223 (2023).

Technische Universität Berlin 38

Annex

A. CI Pipeline

A.0.1. Prompt:

Project Overview:
GitCalendar is a Python tool that generates an ICS file from issues, milestones
and iterations, of one or more GitLab projects. Only events with a due date are
considered.

Project Structure:
- src/

- gitcalendar/
- gitcalendar.py
- __init__.py

- test/
- conftest.py
- test_gitcalendar.py

- LICENSES/
- Apache-2.0.txt
- LGPL-3.0-only.txt
- MIT.txt

- setup.py

Relevant Files:
setup.py: Configuration file listing project dependencies and requirements.
<setup.py File>*
gitcalendar.py: File containing the logic of the application.
<gitcalendar.py File>*

Sections 4.7 and 4.8 Overview:
Section 4.7 - Release management:
Release management involves the distribution of stable software versions, ensuring
traceability and compliance with legal requirements. Key aspects include:

- Release Planning: Determines timing and scope of releases, often supported by
a ticket system to connect with change management.

39

Nicolas Dahbar Annex

- Release Process: Involves creating a development branch, applying only neces-
sary changes, and meeting defined criteria before release. Automation of these
processes helps maintain quality.
- Distribution Considerations: Ensure licensing conditions are clear and comply
with export controls to avoid legal issues.

Releases must be thoroughly documented, legally compliant, and meet all quality
standards before being distributed to external partners or users.

Recommendations from Section 4.7:
- ERM.6: All foreseen test activities are executed during release performance.
- ERM.7: Prior to the approval of the release, all foreseen tests passed successfully.

Section 4.8 - Automation and Dependency Management:
Automation and dependency management are critical for handling software
complexity, ensuring consistent builds, and reducing errors. Key components
include:

- Build Process Automation: Automates the transformation of source code into
executable programs, including testing and release packaging. Tools like Maven
and CMake facilitate this process.
- Build Variants:

- Developer Build (Private Build): Conducted locally for immediate feedback
on changes.

- Integration Build: Validates changes in a neutral environment, often including
additional testing steps.

- Release Build: Produces the final distribution package, extending the integra-
tion build with additional steps for release management.

Automating these processes improves efficiency, minimizes manual errors, and
ensures reproducibility of development states, supporting consistent software
quality across environments.

Recommendations from Section 4.8:
- EAA.1: The simple build process is basically automated and necessary manual
steps are described. In addition, there is sufficient information available about
the operational and development environment.
- EAA.5: In the build process, the execution of tests, the determination of
metrics, the creation of the release package and, if necessary, other steps are
performed automatically.

Task:
Generate a .gitlab-ci.yml configuration file for the GitCalendar project, adhering

Technische Universität Berlin 40

Nicolas Dahbar Annex

to the DLR guideline’s sections of automation and dependency management and
the recommendations given.

* The source files were too long to include in the annex, they can be found on the
github repository1.

A.0.2. Response:

To create a .gitlab-ci.yml file for the GitCalendar project, we’ll consider the recom-
mendations for release management and automation from sections 4.7 and 4.8. The
CI/CD pipeline should automate the build, test, and release processes, ensuring that
all dependencies are managed, tests are run, and the final release package is created
without manual intervention.

Let’s examine the provided setup.py file to determine the project’s dependencies and
configurations, and then I’ll outline the structure of the .gitlab-ci.yml file.

Step 1: Review setup.py
I’ll start by examining the setup.py file to identify dependencies and any custom
scripts or entry points that might be relevant to the CI/CD pipeline.

Step 2: Review gitcalendar.py
Let’s take a quick look at the gitcalendar.py file to understand its entry point and
how it works.

Step 3: Create .gitlab-ci.yml Based on the setup and the structure of your project,
here is a basic .gitlab-ci.yml configuration that follows the DLR guidelines:

1 stages:
2 - build
3 - test
4 - release
5

6 variables:
7 PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"
8

9 cache:
10 paths:
11 - .cache/pip
12

13 before_script:

1https://github.com/DLR-SC/GitLab-Calendar

Technische Universität Berlin 41

Nicolas Dahbar Annex

14 - python -m pip install --upgrade pip
15 - pip install -r requirements.txt
16

17 build:
18 stage: build
19 script:
20 - echo "Building the project..."
21 - python setup.py sdist bdist_wheel
22 artifacts:
23 paths:
24 - dist/
25

26 test:
27 stage: test
28 script:
29 - echo "Running tests..."
30 - pytest test/
31 dependencies:
32 - build
33

34 release:
35 stage: release
36 script:
37 - echo "Releasing the package..."
38 - pip install twine
39 - twine check dist/*
40 - twine upload --repository-url https://test.pypi.org/legacy/
41 dist/*
42

43 only:
44 - main
45

Explanation

• Stages: The pipeline consists of three stages: build, test, and release.

• Variables: We cache the pip directory to speed up builds and avoid downloading
the same packages repeatedly.

• Build Stage: This stage builds the source and wheel distribution of the package
using setup.py.

• Test Stage: This stage runs tests using pytest, which should be placed in the
test/ directory.

Technische Universität Berlin 42

Nicolas Dahbar Annex

• Release Stage: This stage uploads the built package to a test PyPI repository.
This can be changed to the official PyPI repository when ready.

• Dependencies: The test stage depends on the build stage to ensure tests are run
on the newly built package.

• Release Trigger: The release stage is triggered only on the main branch to prevent
unintended releases from feature branches.

This configuration assumes you have pytest set up for your tests. You can adjust the
test stage script according to your specific test setup if needed.

Technische Universität Berlin 43

Nicolas Dahbar Annex

B. Software Tests

B.0.1. Prompt:

Project Overview:
GitCalendar is a Python tool that generates an ICS file from issues, milestones
and iterations of one or more GitLab projects. Only events with a due date are
considered.

Project Structure:
- src/

- gitcalendar/
- gitcalendar.py
- __init__.py

- test/
- conftest.py
- test_gitcalendar.py

- LICENSES/
- Apache-2.0.txt
- LGPL-3.0-only.txt
- MIT.txt

- gitlab-ci.yml
- setup.py

Relevant Files:
gitcalendar.py: File containing the logic of the application.
<gitcalendar.py File>*
test_gitcalendar.py: File used for Testing.
<test_gitcalendar.py File>*

Section 4.6 Overview:
Software testing is essential for detecting errors and ensuring software quality,
even though it cannot guarantee correctness. Testing involves several stages:

- Module Tests (Unit/Component Tests): Verify individual components for
functionality and constraints.
- Integration Tests: Focus on interactions between components to catch interface-
level errors.
- System Tests: Ensure the complete software system meets specified requirements
in a controlled environment.
- Acceptance Tests: Validate the software against customer requirements in the
target environment.

Technische Universität Berlin 44

Nicolas Dahbar Annex

A robust test strategy should emphasize automation and leverage the test pyra-
mid model, prioritizing module tests for their efficiency and ease of automation.
Metrics such as test coverage provide insights into software quality and test
effectiveness, helping identify trends and address issues proactively.

Recommendations from Section 4.6:
- EST.4: The basic functions and features of the software are tested in a
near-operational environment.
- EST.5: There is a test for every nontrivial error.

Task:
Write a test_gitcalendar.py file that tests the GitCalendar application with the
context provided and that adheres to the DLR guideline’s recommendations pro-
vided above and the principles of test automation.

* The source files were too long to include in the annex, they can be found on the
github repository2.

B.0.2. Response:

To write a test_gitcalendar.py file that tests the GitCalendar application according
to the provided context and recommendations, we will focus on creating unit tests
that cover the main functionalities of the application, including handling issues,
milestones, and iterations from GitLab projects. We will ensure that our tests align
with the DLR guidelines, particularly focusing on automating tests and ensuring
coverage for nontrivial errors.

Let’s start by examining the gitcalendar.py file to understand its functionality and
identify key areas for testing. Then, we can draft a comprehensive test suite. Here is
an overview of the gitcalendar.py file based on the context provided:

gitcalendar.py Overview

The file contains the logic for generating an ICS file from GitLab projects, focusing
on events with a due date. Key functionalities likely include:

• Fetching issues, milestones, and iterations from GitLab projects.

• Filtering events based on due dates.

• Generating ICS files from the filtered events.

Key Areas for Testing
2https://github.com/DLR-SC/GitLab-Calendar

Technische Universität Berlin 45

Nicolas Dahbar Annex

1. Fetching Data: Ensure that the application can correctly fetch issues, milestones,
and iterations from GitLab.

2. Filtering Events: Verify that only events with a due date are included.

3. ICS File Generation: Test the creation of ICS files to ensure the correct format
and content.

4. Error Handling: Ensure that nontrivial errors, such as network issues or missing
data, are handled gracefully.

Test Strategy

1. Unit Tests: Focus on testing individual functions, particularly those involved in
data fetching, filtering, and file generation.

2. Integration Tests: Verify that components interact correctly, especially in data
flow from fetching to ICS generation.

3. Edge Cases: Test with a variety of input scenarios, including empty datasets,
malformed data, and API errors.

Now, let’s draft the test_gitcalendar.py file based on this strategy. I’ll review
the contents of the uploaded files to align the tests with the actual implementation.

1 # test_gitcalendar.py
2 import pytest
3 from unittest.mock import patch, MagicMock
4 from gitcalendar import GitCalendar
5

6 # Mock data for GitLab issues, milestones, and iterations
7 mock_issues = [
8 {'id': 1, 'title': 'Issue 1', 'due_date': '2024-08-01'},
9 {'id': 2, 'title': 'Issue 2', 'due_date': None},

10]
11

12 mock_milestones = [
13 {'id': 1, 'title': 'Milestone 1', 'due_date': '2024-08-10'},
14 {'id': 2, 'title': 'Milestone 2', 'due_date': None},
15]
16

17 mock_iterations = [
18 {'id': 1, 'title': 'Iteration 1', 'due_date': '2024-08-15'},
19 {'id': 2, 'title': 'Iteration 2', 'due_date': None},
20]
21

Technische Universität Berlin 46

Nicolas Dahbar Annex

22 @pytest.fixture
23 def git_calendar():
24 return GitCalendar(api_token='fake_token', project_id=12345)
25

26 def test_fetch_issues(git_calendar):
27 with patch('gitcalendar.GitCalendar.fetch_issues',
28 return_value=mock_issues) as mock_fetch:
29 issues = git_calendar.fetch_issues()
30 assert len(issues) == 2
31 mock_fetch.assert_called_once()
32

33 def test_filter_events_with_due_date(git_calendar):
34 filtered_issues =
35 git_calendar.filter_events_with_due_date(mock_issues)
36 assert len(filtered_issues) == 1
37 assert filtered_issues[0]['title'] == 'Issue 1'
38

39 def test_generate_ics_file(git_calendar):
40 filtered_events =
41 git_calendar.filter_events_with_due_date(mock_issues +
42 mock_milestones + mock_iterations)
43 ics_content = git_calendar.generate_ics_file(filtered_events)
44 assert 'BEGIN:VCALENDAR' in ics_content
45 assert 'BEGIN:VEVENT' in ics_content
46 assert 'SUMMARY:Issue 1' in ics_content
47 assert 'SUMMARY:Milestone 1' in ics_content
48 assert 'SUMMARY:Iteration 1' in ics_content
49

50 def test_handle_errors(git_calendar):
51 with patch('gitcalendar.GitCalendar.fetch_issues',
52 side_effect=Exception('API Error')):
53 with pytest.raises(Exception) as excinfo:
54 git_calendar.fetch_issues()
55 assert 'API Error' in str(excinfo.value)
56

57 # Additional tests can be added for milestones and
58 # iterations similarly

Explanation

• Mocking: We use unittest.mock.patch to mock API calls and control the data
returned for testing.

• Fixture: A fixture (git_calendar) is used to create an instance of GitCalendar

Technische Universität Berlin 47

Nicolas Dahbar Annex

for use in tests.

• Test Cases:

– test_fetch_issues: Tests the ability to fetch issues from GitLab.

– test_filter_events_with_due_date: Verifies that only events with a due
date are considered.

– test_generate_ics_file: Tests the generation of an ICS file from events.

– test_handle_errors: Ensures that exceptions are handled appropriately.

These tests cover the basic functionality and ensure robustness against nontrivial
errors. We can further extend these tests with more specific cases or additional
features as needed.

Technische Universität Berlin 48

	Introduction
	Motivation
	Objectives of the Study
	Scope
	Outline

	State of the Art
	Artificial Intelligence
	Natural Language Processing
	Large Language Models

	Software Engineering
	Software Engineering in Research
	Continuous Integration
	Software Testing

	Methodology
	Overview
	Selection of Large Language Models
	GitLab-Calendar
	Prompts
	Project Overview
	Project Structure
	Relevant Files
	Guideline Overview
	Recommendations
	Task

	Generation of CI Pipelines and Software Tests

	Results and Analysis
	Functionality Testing
	Functionality Testing Results

	Adherence to DLR Software Engineering Guideline
	Adherence to Sections Release Management and Automation and Dependency Management
	Adherence to Section Software Test

	Comparison with Original Solutions
	Task 1: CI Pipeline
	Task 2: Software Tests

	Discussion
	Evaluation of LLM Performance
	Strengths
	Weaknesses

	Challenges Encountered
	Prompt Engineering
	Environment and Testing Setup

	Reflections and Insights
	Potential of LLMs
	Human Oversight

	Future Work
	Iterative Refinement
	Other Large Language Models
	Different Domains

	Conclusion
	List of Acronyms
	List of Figures
	Bibliography
	Annex
	CI Pipeline
	Software Tests

