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1. Introduction

Soiling on photovoltaic (PV) modules is a
major factor in reducing the efficiency of
solar energy generation, leading to global
energy production losses of up to 4%–7%
in 2023 despite manual or automatic clean-
ing.[1,2] Several soiling models exist which
consider soiling deposition and also the
natural cleaning by rain (see ref. [3] for
an illustrative example and ref. [4] for a col-
lection of available models). Such modeled
soiling data help to estimate the expected
PV yield and the required cleaning effort
for a PV plant project. Furthermore, effec-
tive PV cleaning strategies are important to
minimize production losses due to soiling.
Optimized cleaning schedules are neces-

sary to improve the tradeoff between energy losses caused by soil-
ing and associated cleaning costs. Therefore, accurate soiling
forecasts that consider the effect of natural cleaning by precipi-
tation are essential.

Currently, most PV soiling models use a simplified approach
for estimating the cleaning effect of rain, assuming the PV mod-
ule is completely cleaned if the daily precipitation exceeds a fixed
threshold. Thresholds ranging from 0.3 to 20mm daily rain sum
can be found in the literature.[5] However, most studies indicate
that rainfall often only results in partial cleaning, reducing soil-
ing losses, but not achieving full cleaning. No single cleaning
threshold guarantees complete cleaning under all conditions
and locations, as described in the following works.[3] Established
cleaning thresholds ranging from 5.08 to 10.16mm per day for
several large grid-connected PV systems across California and
the southwestern United States. A definitive amount of rainfall
that would clean all systems could not be identified, with light
rain the modules could even get dirtier, and several rainfall
events exceeding 5mm did not totally clean the systems. In a
study in Phoenix, California,[6] observed that, except in the pres-
ence of bird droppings, rainfall of 5mm generally reduced soil-
ing losses to approximately half,[7] observed that rainfall above
4 to 5mm per day considerably cleaned the modules in a study
focusing on the impact of dust in Navarra, Spain, while removing
dirt such as bird droppings from the modules. Additionally, the
authors stated that rain was less effective at cleaning horizontal
surfaces compared to inclined ones.

Further research by ref. [8] in California established a cleaning
threshold of 1mm. Similarly,[9] developed a model for predicting
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Predicting the amount of soiling accumulated on the collectors is a key factor
when optimizing the trade-off between reducing soiling losses and cleaning
costs. An important influence on soiling losses is natural cleaning through rain.
Several soiling models assume complete cleaning through rain for daily rain
sums above a model specific threshold and no cleaning otherwise. However,
various studies show that cleaning is often incomplete. This study employs two
statistical learning methods to model the cleaning effect of rain, aiming to achieve
more accurate results than a simple totally cleaned/no cleaning answer while also
considering other parameters besides the rain sum. The models are tested using
meteorological and soiling data from 33 measurement stations in West Africa.
Linear regression seems to be a good alternative for predicting the reduction in
soiling levels after a rainfall.
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soiling and adopted the same cleaning threshold. However,[8]

found that some soiling remained on the modules after rain.
The amount of rain required for a complete cleaning could
not be determined, but partial cleaning was observed with rain-
fall as small as a fraction of a millimeter. In ref. [10], no cleaning
effect was observed for rainfall less than 0.3 mm.

These existing thresholds are computed for specific locations
with specific climatological conditions and are solely based on
the accumulated rain per day. They do not consider additional
parameters, such as rain intensity, preexisting soiling levels,
or module inclination. The effect of the inclination angle was
investigated by ref. [7], but none of the previous studies reviewed
here incorporate this factor into their models. Several other stud-
ies investigated the dependance of cleaning on other parameters
beyond the rain sum and the degree of achieved cleaning.[11]

Optimized a cleaning threshold of 6.9 mm per day for an urban
area in Colorado, USA. However, the authors found that any
threshold between 2.54 and 7.62mm per day produces compa-
rable results to this optimized threshold. They also noted that
coarse particles are more likely to be removed by rain, whereas
fine particles tend to adhere more and are less easily washed
away. As a result, the authors did not assume full cleaning when
the threshold was surpassed, but only the removal of coarse par-
ticles,[12] conducted a study on the soiling of photovoltaic mod-
ules in Qatar, using data collected over 6 years (2014–2019) and
fitted a multiple linear regression model to analyze the cleaning
effect of the rain, using daily rain sum and length of dry period.
The research concluded that a minimum of 3mm of rain sum is
required to completely clean the modules. Rainfall of less than
2mm resulted in various degrees of cleaning effect, with even
1mm of rain achieving an almost clean state. Rainfall of less than
0.2mm could increase the level of soiling on the panels.[13]

Simulates the impact of soiling on PV power generation globally
and model the cleaning by rain as a function of precipitation
intensity and the type of aerosol. The authors use MERRA-2
reanalysis data to estimate the accumulated mass of four partic-
ular matter (PM) species—dust, sulfate, organic carbon, and
black carbon—on PV panels. Sulfate and organic carbon have
hydrophilic properties and are therefore easily removed by rain
than dust and black carbon. Cleaning by rain is modeled as:
1) For rain intensities bellow 1mmh�1, no cleaning occurs;
2) For rain intensities between 1 and 3mmh�1, sulfate is
completely removed, and half of the organic carbon is removed;
3) For rain intensity between 3 and 5mmh�1, sulfate is
completely removed, and half of the other aerosols are removed;
and 4) When the rain intensity exceeds 5mmh�1, the panels are
completely cleaned of all particles.

This study expands the previous efforts and analyzes the
impact of several parameters on the estimation of the cleaning
effect of rain. Additionally, it applies two statistical learning
methods to model this effect: multiple linear regression and ran-
dom forest. These models are tested using meteorological and
soiling data from several countries and 33 sites in West
Africa. Rain events within this dataset are identified and charac-
terized, considering not only rain sum but also rain intensity,
soiling level, and tilt angle of the modules.

The methodology including the data, the parameters to
describe rain, and the modeling approach are explained in
Section 2. Section 3 presents the results and discussion of the

different models and Section 4 shows the conclusions and the
outlook.

2. Methodology

This section explains the methodology applied in this study. The
data used will be presented in Section 2.1. The following
Section 2.2, describes the identification and characterization of
rain events within the dataset. The cleaning metrics employed
and the estimation of their uncertainties are discussed in
Section 2.3. Section 2.4 outlines the criteria for filtering the rain
events. Finally, Section 2.5 explains the modeling of the cleaning
effect, providing a brief overview of the three approaches used
and a description of the evaluation structure and metrics.

2.1. Meteorological Ground Data from the WAPP Stations

The meteorological and soiling data used in this study are from a
ground-based solar radiation measurement campaign conducted
by Yandalux Solar GmbH and CSP Services GmbH as part of the
World Bank Project “Solar Development in Sub-Saharan
Africa—Phase 1 (Sahel)” for the West African Power Pool
(WAPP), an agency of the Economic Community of West
African States (ECOWAS). This dataset was selected for its exten-
sive coverage and comprehensive set of parameters required for
this study. It is freely available and can be accessed in ref. [14].

The campaign includes 33 measurement stations distributed
across 14 countries in West Africa: Benin, Côte d’Ivoire, Burkina
Faso, Ghana, Gambia, Guinea, Guinea Bissau, Liberia, Mali,
Niger, Nigeria, Senegal, Sierra Leone, and Togo. Figure 1 pro-
vides a map with the locations of these stations. The measure-
ment campaign began in July 2021 and continued for two
consecutive years at each station. Since the measurements did
not start simultaneously at all stations, each one has its own dis-
tinct measurement period. At the time of this study, data from
only the first year was available.

Each station has measurements for several meteorological
parameters, but apart from the soiling data only precipitation
intensity is used in this study. In addition, each station contained
two reference PV modules, one of which was kept clean (cleaned
generally daily) while the other was allowed to accumulate soiling
and was cleaned only once a month. Table 1 provides

Figure 1. Map of West Africa showing the 33 stations from a ground-
based solar radiation measurement campaign conducted by Yandalux
Solar GmbH and CSP Services GmbH as part of the World Bank
Project “Solar Development in Sub-Saharan Africa–Phase 1 (Sahel)” for
the West African Power Pool (WAPP).
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information on the PV modules and the rain gauges installed at
theWAPP stations. Figure 2 shows a photo of the station Davié in
Togo, indicating all the deployed instrumentation.

The modules had tilt angles ranging from 8 to 18 degrees, cho-
sen according to the optimal tilt angle for equator-facing PV
installations as provided by ref. [15]. Using the temperature-
corrected incident irradiance in Wm�2 obtained from the mod-
ules, soiling ratios in 1min resolution (SR1min) were calculated as

SR1min ¼ GPOAsoiled

GPOAclean

(1)

where GPOAsoiled
and GPOAclean

are the plane of array irradiance mea-
sured on the soiled and clean PV module, respectively. The GPOA
was calculated from the temperature corrected short-circuit cur-
rent Isccorrected as GPOA ¼ Isccorrected · cI, G, with cI, G being the calibra-
tion factor converting Isccorrected to plane of array irradiance for the
specific module. These irradiances are derived from the short cir-
cuit current of the PVmodules using a module specific calibration
factor obtained from the manufacturer’s datasheet and an addi-
tional relative calibration of the modules under clean conditions.
The manufacturer’s calibration of the modules can still result in
offsets of the soiling ratio in both directions. To address this, addi-
tional relative calibration of the modules is necessary. This is
achieved by comparing the GPOAsoiled

and GPOAclean
on a day when

both modules are clean. From this comparison, a relative calibra-
tion factor is calculated for the soiled module which results in a
soiling ratio of 1 for the clean conditions.

The soiling data was processed to obtain daily soiling ratios
(SR) according to ref. [16] as summarized in the following.

Raw soiling data undergoes filtering to remove outliers. One-
minute soiling ratios outside a reasonable range, typically
0.7–1.1 as defined in ref. [16], are discarded. Values outside this
range can indicate module malfunction or localized soiling, such
as bird droppings. Daily spread is then assessed: acceptable daily
soiling ratios must fall within a band defined by the median, 5th
percentile, and 95th percentile values. Finally, a flattening adjust-
ment compensates for systematic errors related to the different
orientations of the two modules:

SR1min; flattened ¼ SR1min � fitðAZMÞþ fitð180Þ (2)

where SR1min, flattened is the flattened SR and SR1min is the mea-
sured SR. fit (AZM) is a linear fit of the SR over the day, using as
an independent variable the azimuth angle of each data point and
the SR1min as a dependent variable. fit (180) is the SR at noon.

In this process of estimating SR, only data within 2 h before
and after solar noon were considered. The daily soiling loss (SL)
used in this study was then estimated as

SL ¼ 1� SR (3)

For example, Figure 3 illustrates a time series of soiling losses
and rain sums at the station Malanville, Benin. The rain sum of a
given day is calculated as the cumulative rainfall from 2 h after
solar noon on the previous day and 2 h after solar noon on the
current day. This time span corresponds to the period during
which differences in soiling loss can be measured, ensuring that
the cleaning effect of the rain is accurately reflected in the SL
measurements. During the dry season the soiling loss reaches

Table 1. Information on the rain gauges and PV modules installed at the WAPP stations.

Measured parameter Units Sensor type Sensor manufacturer Sensor model

Precipitation intensity mmmin�1 Tipping bucket rain gauge Campbell Scientific 52 203

Global plane of array irradiance (soiled and clean) Wm�2 Monocrystalline solar panel Phaesun Phaesun Sun Plus 30 S, 30 W

Figure 2. Photo of the station Davié in Togo.
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up to 14%, in contrast, soiling levels are significantly lower dur-
ing the rainy season. In the absence of monthly manual cleaning,
even higher SL could be achieved before the rainy season.
Similar seasonal patterns are observed at other stations with var-
iations in the duration of the dry and rainy seasons.

2.2. Rain Events Definition

In the dataset presented in the previous section, rainfall events
were identified, and for each of these events the following
magnitudes were determined: 1) SL before the rain event
(SLbefore) [%]; 2) SL after the rain event (SLafter) [%]; 3) rain
sum [mm]; 4) average rain intensity [mmmin�1]; and 5) maxi-
mum rain intensity [mmmin�1].

A rainfall event is defined as starting when, after a series of
zero rain intensity, the first nonzero value was recorded in
the precipitation intensity time series. Once started, a rainfall
event is concluded when the intensity returned to zero and
remained so for at least three consecutive hours. If multiple rain-
fall events occurred between two consecutive SL measurements,
they were merged into a single rain event. When estimating SL
before and after the rain, measurements were always taken at the
same time of the day (within 2 h before and after solar noon),
regardless of the time of the rain.

2.3. Experimental Cleaning Metrics

Two metrics were employed to describe the cleaning effect of the
previously defined rain events: soiling loss reduction (SLR) and
completeness of natural cleaning (CNC). SLR is calculated as
follows

SLR ¼ SLbefore � SLafter (4)

The completeness of natural cleaning was defined by[17] to
assess the effectiveness of cleaning by rain. It can be calculated
using SL as

CNC ¼ SLbefore � SLafter
SLbefore

(5)

Positive values lower than 1 indicate partial cleaning, with 1
meaning the surface is totally cleaned, while 0 means no cleaning
effect. Negative values indicate that the time interval including
the rain event(s) contributed to more soiling (e.g., red rain events,
wet deposition).

To ensure the reliability of the analysis, the uncertainty u of
the cleaning metrics was calculated. Based on the error
propagation and given the soiling loss uncertainty of uSLafter ¼
uSLbefore ≈ �1% ([18] and[16]), the uncertainty of soiling loss reduc-

tion is estimated to be a factor of
ffiffiffi
2

p
higher than the uncertainty

of the SL measurement. Hence, the expected uncertainty for the
soiling loss reduction is roughly uSLR ¼ 1.4%. Both uncertainties
are absolute and expressed as percentage points (%pt.) due to the
definition of the SL.

Similarly, the uncertainty of the completeness of natural
cleaning is calculated as

uCNC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� uSLafter
SLbefore

� �
2
þ uSLbefore SLafter

SL2before

� �
2

s
(6)

with uSLafter ¼ uSLbefore ≈ �1% as mentioned previously. Figure 4
shows the absolute uncertainties of the CNC calculated for the
SLbefore up to 10% and SLafter up to 7%. Uncertainties are high
for low soiling levels (SLbefore below 3%) and for rain events that
increase the soiling losses (lower right of the Figure 4). In such
cases, the uncertainty associated with the soiling level is too high
to ensure robust results. Therefore, the uncertainty of the CNC
was computed for each identified rain event, and the data were
filtered accordingly. These and other filters are presented in the
following section.

Figure 3. Time series of soiling losses and rainfall sums at the station
Malanville in Benin, from 2021-08-08 to 2022-08-09.

Figure 4. Uncertainties for completeness of natural cleaning for soiling
loss before up to 10% and soiling loss after up to 7%.
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2.4. Filtering Out Rain Events

For this analysis, rain events not fulfilling certain criteria were
excluded to ensure that only data with sufficient accuracy for
the calculated CNC and SLR were considered. The selected rain-
fall events were filtered using the following criteria: 1) A soiling
loss measurement that was neither NaN nor less than�0.3% was
recorded before and after the rain. Due to the uncertainties,
slightly negative SL values were allowed and set to zero; 2) No
manual cleaning was performed between the last soiling loss
measurement before the rain started and the next soiling loss
measurement after the rain ended; and 3) The uncertainty of
the completeness of natural cleaning is less than 0.33.

Previous analysis has shown that, in many situations, a SL of
5% or less before the rain could lead to unreliable CNC.
However, this threshold would also exclude interesting rain
events, resulting in a loss of valuable data. To address this issue,
the uncertainty of the CNC is proposed as a more robust filtering
criterion. A maximum uncertainty value of 0.33 was chosen as
the upper threshold because it excludes unreliable values while
retaining sufficiently accurate data.

This filtering resulted in 70 rain events being considered at 30
out of 33 stations. Figure 5 illustrates the distribution of the
selected rain events per station. Most of the stations recorded
one or two applicable events, while three stations had no events
that met our criteria. The relatively low number of rain events is
mainly due to low soiling levels during the rainy period, which,
as written previously, results in a high uncertainty of the CNC.

2.5. Modelling Cleaning by Rain

Different approaches to model the cleaning effect of rain events
are compared: cleaning threshold (state of the art), multiple

linear regression, and random forest (statistical learning
models). All three approaches were used to model cleaning by
rain in terms of completeness of cleaning and soiling loss reduc-
tion. The two statistical learning models use SLbefore, rain sum,
and average and maximum rain intensity as independent varia-
bles. In contrast, the threshold method only considers the rain
sum.

Linear regression was chosen to investigate how a simple lin-
ear model would perform. Random forest was selected as a more
complex model that can handle nonlinear data without assuming
a specific relationship between the variables. It can also perform
well without parameter tuning, which is of interest given the lim-
ited amount of data available.

In the following sections, a brief description of the three con-
sidered modeling approaches is provided, followed by the struc-
ture of the evaluation.

2.5.1. Cleaning Thresholds

Soiling loss reduction (SLR) and completeness of natural clean-
ing (CNC) for a given rain event r are estimated using a given
threshold t as

CNCðrÞ ¼
�
1, rain sumðrÞ ≥ t
0, rain sumðrÞ < t

(7)

SLRðrÞ ¼
�
SLbeforeðrÞ, rain sumðrÞ ≥ t
0, rain sumðrÞ < t

(8)

2.5.2. Multiple Linear Regression

Multiple linear regression is an extension of linear regression to
include multiple independent variables. Each independent vari-
able Xi has its own regression coefficient βi. The multiple linear
regression with p independent variables is

Y ¼ β0 þ β1X1 þ β2X2 þ : : : þ βpXp þ ε (9)

β0 is the intercept, Xi is the ith predictor and βi its regression
coefficient for i between 1 and p and ε is the model error.
The coefficients β0, β1, : : : , βp are estimated using training data
ðx1, y1Þ, ðx2, y2Þ, : : : , ðxn, ynÞ by minimizing the sum of
squares.[19]

In this work, the independent variables are defined as follows:
X1 is SLbefore, X2 is rain sum, X3 is maximum rain intensity, and
X4 is average rain intensity. The dependent variable Y is either
soiling loss reduction or completeness of natural cleaning,
depending on what is being modeled.

If the linear regression results in a completeness of natural
cleaning above 1, it is set to 1. A negative value of CNC and
SLR obtained from the regression is accepted as, for example,
red rain can actually increase soiling loss. In the data used in
this study, the number of events in which the modules experi-
ence an increase in soiling is too limited for the model to learn
effectively from them. To properly test the model performance in
relation to increased soiling after a rain event, a dataset with
more frequent occurrences of such events would be required.Figure 5. Number of selected rain events per station.
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2.5.3. Random Forest

The random forest algorithm consists of multiple decorrelated
decision trees and makes an aggregated prediction. A decision
tree divides the data space defined by p independent variables,
X1, X2, : : : , Xp, into j regions, R1, R2, : : : , Rj. The process starts
with a root node that contains the entire data set. The data space
is then recursively split into two parts using the independent var-
iable that provides the largest reduction in the residual sum of
squares. This binary partitioning continues until a stopping
criterion is satisfied. Each of the terminal nodes corresponds
to one of the j regions R1, R2, : : : , Rj. For each of the j regions,
a constant value is assigned that corresponds to the mean of the
training observations within that region. This constant value is
attributed to the test observations that fall within the correspond-
ing region.[19,20]

Decision trees are not robust and suffer from high variance.
To deal with this problem, the random forest generates an
ensemble of decorrelated trees. Decorrelation is achieved by
bootstrapping the training data for each fitted tree and selecting
a random sample of features that is considered for each split.[19]

2.5.4. Structure of the Evaluation

The evaluation is divided into two parts. First, several cleaning
thresholds ranging from 0.1 to 30mm of rain sum are tested.
Subsequently, the statistical learning methods are trained, eval-
uated and compared against the threshold that produced the best
results.

In the evaluation of the statistical learning methods, a 10-fold
cross-validation was employed to address the limited amount of
data. This approach divides the dataset into 10 subsets, with each
subset serving once as the test set while the others are used for
training. Each station’s data is exclusively in either the training or
testing set, mirroring practical application scenarios where mod-
els are applied to sites lacking soiling and rain-cleaning informa-
tion. Since the cleaning thresholds do not require training, they
are directly tested across the entire dataset.

In addition, the modeled values for the soiling loss reduction
and the completeness of cleaning resulting from the 10-fold-
cross-validation were used to calculate the other parameter.
Modeled SLR values were used to calculate CNC and vice versa.

The performance of the methods is evaluated using
mean absolute deviation (MAD), root mean squared deviation
(RMSD) and bias

MAD ¼ 1
n

Xn
i¼1

jx0i � xij (10)

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðx0i � xiÞ2
s

(11)

Bias ¼ 1
n

Xn
i¼1

x0i � xi (12)

where x0i is the modeled value, xi is the observed value and n is
the number of data evaluated.

3. Results and Discussion

3.1. Data Analysis

The 70 selected rain events had average intensities ranging
from 0.003 to 0.5mmmin�1, maximum intensities from
0.1 to 4mmmin�1, and duration ranging from 1min to 38.5 h.
The average intensity was computed over the entire duration of
each rain event, including periods when no rainfall
was recorded. Consequently, the average intensity may be
lower than the resolution of the rain sensor, which is
0.1mmmin�1.

Figure 6 shows a scatter plot of the completeness of cleaning
as a function of the rain sum. The soiling loss before the rain
event is indicated by the color of the marker. The size of the
points displays the average intensity (up) andmaximum intensity
(down). The error bars represent the uncertainties. As described
previously, the error bars show that the uncertainties are higher
for low SLbefore, while higher SLbefore have lower uncertainties.

Based on Figure 6, it is not possible to identify a rain sum
threshold that well describes the complete cleaning of the mod-
ules over all rain events. However, for the investigated sites and
cases, it is likely that the modules are cleaner after the rain. The
modules were dirtier after the rain only in four cases (indicated
by negative values of both metrics) and this occurred only for
events with a rain sum of 0.2 mm or less.

At low rainfall sums (up to 1.5 mm), the completeness of
cleaning ranges from almost no cleaning to almost complete
cleaning. For rain sums less than 1.95mm, it is unlikely that
the completeness of cleaning will be greater than 0.8. On the
contrary, for higher rainfall sums, the completeness of
cleaning tends to be high, although no complete cleaning
is achieved and there is still some soiling loss after the rain
(Figure 6).

The relationship between the preexisting soiling level and the
reduction due to rain is illustrated in Figure 7. The size of the
points displays the average intensity (left) and maximum inten-
sity (right). The dirtier the surface was initially, the greater the
cleaning effect in absolute terms. Even small amounts of rain
can result in significant soiling reduction, depending on the soil-
ing level before the rain. Incomplete cleaning events are
described by points below the black line. The incomplete clean-
ing events are typically connected to lower rain sums.

In both Figure 6 and 7, no clear relationship between rain
intensity and reduction of soiling losses can be observed.
Additionally, although not included in this work, the relationship
between the cleaning effect of rain and the PV modules tilt angle
was investigated. Similarly, to the rain intensity, no relationship
could be observed between the tilt of the modules and the clean-
ing effect of the rain, possibly because the modules at the stations
studied had similar and quite low tilt angles (8° to 18°).

3.2. Modeling Analysis

3.2.1. Cleaning Thresholds

Figure 8 shows the MAD, RMSD, and bias of the rain cleaning
modeling for different thresholds of the daily rain sum. The
tested thresholds are 1 to 30mm in 1mm increment, and
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0.1mm, which was included to represent the assumption that
any rain event completely cleans the PV.

Thresholds of 0.1, 1, and 2mm give similar results in terms of
MAD and RMSD. However, the 0.1mm threshold has a signifi-
cantly higher absolute bias. For thresholds of 3mm and above,
the estimation of the soiling loss reduction worsens significantly.
The estimation of the completeness of cleaning also deteriorates,
but not as sharply.

The threshold of 1 mm shows the best results, with MAD,
RMSD, and bias of 0.25, 0.36, and �0.03, respectively,
for CNC, and 1.49, 2.29, and �0.21 for SLR. This can be
attributed to the observation that even with low rainfall sums,
the completeness of cleaning tends to be closer to 1 than to 0
(Figure 6). Similarly, the values of soiling loss reduction tend
to be closer to the soiling level before the rain than to zero
(Figure 7).

Figure 6. Scatter plots of the completeness of natural cleaning by rain sum, size of the points displays the average intensitiy (up) and maximum intensity
(down). The soiling loss before the rain event is shown by the color of the marker. The error bars represent the uncertainties.

Figure 7. Scatter plots of the soiling loss reduction by the soiling loss before the rain event. Size of the points displays the average intensitiy (left) and
maximum intensity (right). The soiling loss before the rain event is shown by the color or the marker. The black lines show the 1:1 relation.
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3.2.2. Statistical Learning Methods

Figure 9 and Table 2 show the results of the estimation of soiling
loss reduction and completeness of natural cleaning using mul-
tiple linear regression, random forest, and a threshold of 1mm.

The soiling loss reduction is best estimated using the linear
regression in terms of RMSD and bias (1.85 and 0.03 %pt.), while
the random forest shows the lowest MAD (1.14 %pt.). Although
the MAD of linear regression is higher than that of the random
forest (1.36 in comparison to 1.14 %pt.), its RMSD is notably
lower (1.85 in comparison to 2.15 %pt.), indicating that linear
regression tends to have fewer large errors. In particular, the bias
of linear regression is close to zero and considerably lower than
that of the random forest and threshold methods.

The completeness of natural cleaning is best estimated by the
random forest in terms of MAD and RMSD (0.15 and 0.21),
while the linear regression shows the same low bias
(both �0.01). However, linear regression seems unable to effec-
tively capture the rain events with low completeness of cleaning.

A positive characteristic of the linear regression results is that the
completeness of cleaning does not reach 1 frequently. This cor-
responds well to the data and everyday life experience, as most
soiling types on PV modules and other glass surfaces are not
completely removed only by rain. This is of particular importance
for oily substances or resins.

A dataset with only 70 observations may be too small for
optimal performance of the random forest. With a larger dataset,
the random forest could potentially make more accurate
predictions.

In order to test the robustness of the two considered statistical
methods (lineal regression and random forest), the results
obtained modeling one parameter (e.g., SLR) were used to model
the second parameter (e.g., CNC). Since the linear regression
performed best in predicting soiling loss reduction, its results
were used to calculate the completeness of cleaning. In contrast,
the results of modeling the completeness of cleaning with the
random forest were used to calculate the soiling loss reduction.
The error metrics associated to these tests are shown in

Figure 8. MAD, RMSD, and bias of various cleaning thresholds on the estimation of soiling loss reduction (left) and completeness of natural
cleaning (right).

Figure 9. Scatter plots of the modeled versus the observed soiling loss reduction (left) and of the modeled versus the observed completeness of natural
cleaning (right). The black lines show the 1:1 relation.

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2024, 2400551 2400551 (8 of 10) © 2024 Wiley-VCH GmbH

 2367198x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202400551 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [29/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com


Table 3. For simplification they will be referred as “SLR–linear
regression” and “CNC—random forest” in the following text.

SLR derived using the CNC—random forest shows lower devi-
ation metrics than the SLR derived directly with random forest. It
even reaches a lower MAD and RMSD compared to the soiling
loss reduction modeled with linear regression (1.02 and 1.76 in
comparison to 1.36 and 1.85). However, it also shows a higher
bias (�0.28 in comparison to 0.03). Additionally, unlike linear
regression, random forest cannot extrapolate values.
Therefore, if the model is applied in a different location with
potentially differing soiling and rain conditions, choosing linear
regression would be more likely advisable.

Table 4 contains the coefficients of the multiple liner regres-
sion model (Equation (9)), trained using all selected rain events.
These coefficients can be used to model the SLR in locations with
meteorological and soiling conditions similar to those of the
WAPP stations.

4. Conclusions and Outlook

Most of existing soiling models utilize threshold values for the
daily rain sums to consider total cleaning of PV modules.

However, according to the analyzed experimental data, cleaning
by rain is rarely complete. Despite the lack of complete cleaning
in most observed cases, the analyzed rain events mostly caused
strong reductions of the soiling losses. It was observed that, for
the investigated sites, the modules were closer to being totally
cleaned than not after a rain event (Figure 6), and that the reduc-
tion of the soiling level in this dataset is strongly related to the
soiling level before the rain (Figure 7). Threshold-based models
often deviate significantly from these experimental findings, as
they only generally consider either total or no cleaning. The rele-
vance of incomplete cleaning for estimates of soiling is consid-
erable, and assumptions of full cleaning after many rain events in
some studies likely result in underestimated soiling levels.

In this study, several rain sum thresholds between 1 and
30mm were tested. Among them, a threshold of 1 mm had
the lowest error metrics. Additionally, two different statistical
models, a multiple linear regression and a random forest,
were also considered. The two statistical methods were found
to perform better than the threshold when modeling the SLR
and CNC.

The random forest could be a good option to model cleaning
by rain. However, we assume that the lack of large data sets pre-
vented this model from having more accurate results. Also, the
lack of data limits its application to other locations, especially due
to its incapacity to extrapolate. Therefore, based on the error met-
rics, and the limitations associated to the random forest, we con-
clude that modeling the soiling loss reduction with the linear
regression is more adequate. The soiling loss reduction modeled
with linear regression can then also be used to calculate the com-
pleteness of cleaning.

To extend these results to other sites, several considerations
should be made: for example, parameters such as the type of soil-
ing have to be considered. The type of soiling investigated in this
study was mostly dust, which strongly influences the outcomes.
Substances such as bird droppings, brake dust, industrial emis-
sions, pollen, and other particles are more resistant to cleaning
compared to ordinary dust. For some soiling types, we plan to
adapt the model such that a complete cleaning cannot occur.
Besides the soiling type, another decisive parameter for the appli-
cation of the cleaning model is the tilt angle of the PV modules.
Low tilt angles between 8° and 18° have been analyzed in this
work, but higher levels of cleaning are expected for higher tilt
angles. While tilt angles are typically higher than those investi-
gated here at many fixed equator-facing PV parks at higher lat-
itudes, the tilt angles here considered are common, for example,
in roof top installations with east-west orientation also for higher
latitudes. The fact that the PV modules were manually cleaned
about each month and that the PV modules were only one year
old at the end of the experiment, is expected to lead to a higher
completeness of cleanliness than for older soiling layers and full
lifetime of a PV plant. Hence, the effect of low tilt angles is
expected to be (partially) compensated or even overcompensated.

In the future, the linear regression model should be tested at
various further sites.

The module temperature and tilt angle, as well as, the wind
speed and direction, are also likely to impact the results pre-
sented here. In the future, all these parameters will be integrated
in the model presented in this article.

Table 4. Coefficients of the multiple linear regression model for the SLR
from Equation (9), trained using all selected rain events.

Predictor variable Parameter Value Unit of coefficient

Intercept β0 �1.6727 %

SLbefore [%] β1 0.9650 unitless

Rain sum [mm] β2 0.0152 % mm�1

Maximum rain intensity [mmmin�1] β3 1.3931 % minmm�1

Average rain intensity [mmmin�1] β4 �9.9312 % minmm�1

Table 3. MAD, RMSD, and bias of the linear regression and random forest
in the estimation of soiling loss reduction and completeness of cleaning.

Soiling loss reduction Completeness of natural cleaning

MAD
[%pt.]

RMSD
[%pt.]

Bias
[%pt.]

MAD
[�]

RMSD
[�]

Bias
[�]

SLR–Linear regression – – – 0.22 0.3 �0.03

CNC–Random Forest 1.02 1.76 �0.28 – – –

Table 2. MAD, RMSD, and bias of the linear regression, random forest
and threshold of 1mm in the estimation of soiling loss reduction and
completeness of cleaning.

Soiling loss reduction Completeness of natural cleaning

MAD
[%pt.]

RMSD
[%pt.]

Bias
[%pt.]

MAD
[�]

RMSD
[�]

Bias
[�]

Linear regression 1.36 1.85 0.03 0.21 0.28 �0.01

Random forest 1.14 2.15 �0.19 0.15 0.21 �0.01

Threshold 1 mm 1.49 2.29 �0.21 0.25 0.36 �0.03
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