
 
 
 

Data assimilation 
 

Andreas Schröder, Philipp Godbersen, Florian Huhn, Sebastian Gesemann, 
Daniel Schanz  

 
DLR German Aerospace Center 

Institute of Aerodynamics and Flow Technology 
 

December 4th, 2024 
 
 

Data assimilation (DA) emerged already in the 1950s in the field of weather prediction frame 
works, which involves the usage of sparse and limited measurement data in time series at 
discrete weather stations, based on which numerical predictions for future weather conditions 
can be supported (Navon 2009). With the rising computational capabilities over the past 
decades various DA schemes have been developed in the field of fluid mechanics and 
implemented by incorporating mathematical and numerical methods like ensemble Kalman 
filtering based or other variational approaches (4D- or 3DVar) mostly including adjoint CFD 
schemes or fully DNS/LES based adjoint methods, continuous and grid-based augmentation 
and interpolation using physical constraints and Physics Informed Neural-Networks (PINN’s). 
Another field of DA is lower order modelling and filtering of PIV and PTV data using (gappy) 
POD, LSE or DMD methods, which can serve as basis for “super-resolution” approaches. All 
these methods gained increasing interest in the past couple of years and demonstrated their 
possibilities within applications to a wide field of inverse problems based on probe, 2D- or full 
3D-flow field measurement data (Agarwal et al 2021, Appelbaum et al 2021, Beneddine et al 
2017, Buchta et al 2022, Cai et al 2023, Cakir et al 2023, Chandramouli et al 2020, Clark di 
Leonie et al 2023, Discetti and Liu 2022, Du et al. 2023, Duraisamy 2019, Ehlers et al 2020, 
Fukami et al 2021, Gesemann et al 2016, Godbersen et al 2024, Gronskis et al 2013, Hanrahan 
et al 2023, He et al 2022, He et al 2024, Jeon et al. 2022, Lemke and Sesterhenn 2016, Leoni et 
al 2023, Li and Pan 2024, Mons et al 2022, Navon 2009, Raissi et al 2019/2020, Scarano et al 
2022, Schneiders and Scarano 2016, Sperotto et al 2022, Suzuki et al 2009a/b, Suzuki and 
Yamamoto 2015, Van Gent et al 2017, Wang and Zaki 2021, Zauner et al 2022, Zhou and 
Grauer 2023, Zhou et al 2024). 
In experimental fluid mechanics and aerodynamics 3D PIV and -LPT measurement techniques 
provide a well-suited input basis for such DA schemes. Especially, volumetric LPT data with 
temporal resolution can deliver position, velocity and acceleration (material derivative) vector 
information along a huge number of individual particle trajectories inside the measured fluid 
flow (today mainly by Shake-The-Box) for various data assimilation methods allowing for a 
high-resolution interpolation of the time-resolved 3D velocity-, velocity gradient tensor (VGT)- 
and pressure fields by using physical constraints (Navier-Stokes-equations). A two- or four-
pulse 3D LPT system can at least provide position and velocity distributions in a scattered 
manner from which data assimilation schemes can derive significant instantaneous flow 
quantities (coherent structures, vorticity, Q-values etc) which are important for the 
understanding and characterization of the investigated flow field and validation of CFD 
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methods. The resolution and accuracy of the resulting flow field interpolation is limited by the 
measurement accuracy and the mean 3D inter-particle distances of the particle trajectories in 
terms of Kolmogorov length scales, but as well by the quality and performance of the used DA 
algorithm, which might involve physical laws, neural networks, adjoint methods or temporal 
information. Two recent studies show superior resolution and accuracies for 4D VAR methods 
over PINNs (Du et al 2023) and for PINNs over FlowFit and VIC# (Zhou et al 2024), but with 
significantly lower computational costs for the latter methods. Such synthetic and experimental 
benchmark tests, e.g. performed as an international challenge with an independent jury 
(Sciacchitano et al. 2021), are a welcome frame work for comparing and discussing 
implementation details of the various algorithms and for inspiring further developments. 
Furthermore, related publications and online accessible benchmark test platforms demonstrate 
the capabilities of the various DA algorithms in comparison to each other and in outperforming 
simple interpolation methods e.g. based on weighted binning or adaptive smoothing with 
polynomials or other functionals. 
Already in the past, with grid based and low-pass filtered snapshot or time-resolved tomo-PIV 
or sparse PTV data many groups have developed methods that compute unsteady pressure fields 
(Fujisawa et al 2005, Liu and Katz 2006, Kurtulus et al 2007, Murai et al 2007, Suzuki et al 
2009a, 2009b, Violato et al 2011, Oudheusden et al. 2013) 
By solving the pressure -Poisson-equation 3D (or 2D) pressure fields can be estimated. The 
solvers are typically based on (time-series) of instantaneous PIV results and use certain 
assumptions, boundary conditions and various integration schemes, depending on the available 
flow data. For scattered 3D LPT results single time-step techniques for data assimilation 
schemes have been established using solenoidal constraints or a full incompressible Navier-
Stokes-regularization. For the latter velocity and acceleration (material derivative) of the 
particle tracks are used as input values (left side of the momentum equation) for e.g. FlowFit, 
VIC +/# (Gesemann et al 2016, Godbersen et al 2024, Schneiders and Scarano 2016). Those 
schemes provide a continuous functional representation of the assimilated velocity vector field 
with-out additional spatial filtering (on the basis of (truncated) 3D radial basis functions of 
Gaussian shapes or B-Splines). Analytical derivatives can be computed for the VGT Aij(t) and 
3D pressure fields are integrated by solving the Poisson equation implicitly using non-linear 
optimization solvers (e.g. L-BFGS). These methods can be improved by exploiting the available 
time-series of LPT data by using advection models with smoothness constraints for du/dt and 
d/dt of the VGT (Jeon et al 2022), finite time-segments of particle trajectories (Scarano et al 
2022) or advection of virtual particles from time-step to time-step (Ehlers et al 2020). A 
relatively new and fast developing field of DA based on 3D LPT data are physics-informed-
neural networks (PINNs) (Raissi et al. 2019/2020) which fit a solution of the inverse 
augmentation problem along a full time-series of trajectories (> 10 time-steps) while penalizing 
deviations to the measurement data at particle positions (up and ap), to continuity (div u = 0) 
and to the momentum equation. The augmentation results are generally smoother in space and 
time and have increased accuracies with respect to former and simpler methods (Zhou and 
Grauer 2023, Zhou et al. 2024), but on the other hand PINNs require training data inducing 
high computational costs (preferably on a GPU cluster). 
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1 Introduction and Motivation 
Today, there are continuously increasing requirements for flow field investigations in 

aerodynamics and fluid mechanics research for both experimental and numerical methods: 
Flow configurations become more and more complex while the interest in unsteady and vortical 
flow phenomena in research and aeronautics industry is growing. For clarifying remaining 
theoretical aspects of turbulence, enhancing modelling and validation capabilities of advanced 
CFD codes at high Reynolds numbers experimental data describing the flow more completely 
and in whole fields or volumes are necessary. 
3D PIV and LPT are able to provide unsteady as well as averaged velocity fields and related 
rms –values, vorticity etc. and have been developed to a reliable measurement tool in the recent 
years, but are still experimentally demanding for many applications in (large) test facilities 
(Scarano 2013, Discetti and Colletti 2018, Schröder and Schanz 2023). For gaining the time 
resolved 3D velocity gradient tensor and respective acceleration- and pressure fields at high 
accuracies and spatial resolution advanced 3D LPT and data assimilation methods are currently 
under development (Schanz et al. 2016a, Schanz et al. 2021, Schneiders et al. 2016, Gesemann 
et al. 2016). 

Flow topologies can be defined either in a Eulerian (laboratory) reference system e.g. by 
the invariants Q and R of Aij(t) (for incompressible flows) (Chong et al. 1990) or from a 
Lagrangian perspective (Haller 2015, Haller et al. 2016) moving with the fluid elements. 
Furthermore, 3D pressure fields can be calculated e.g. directly via integration of the Poisson 
equation from time-resolved 3D velocity vector fields (van Oudheusden 2013, van Gent et al. 
2017) or implicitly by data assimilation approaches using dense scattered Lagrangian velocity 
and acceleration vector fields as input (Gesemann et al. 2016, Huhn et al. 2018). 

Most of the mathematical schemes to derive statistical values and spatial or temporal 
derivatives of independent and time-resolved x-dimensional vector fields can be found in 
respective books on mathematics and do not need to be written down here. For the part dealing 
with fluid mechanical values please look into Chong at al. 1990, Pope 2000, Chakraborty et al. 
2005, Chakraborty et al. 2007, and specifically for PIV and LPT based data into Lourenco and 
Krothapalli 1995, Etebari and Vlachos 2005, Kurtulus et al. 2007, Adrian and Westerweel 2011, 
Ghaemi et al. 2012, van Oudheusden 2013, Novara and Scarano 2013, Kähler et al. 2016, 
Gesemann et al. 2016, Schneiders et al. 2016b, Schanz et al. 2016a, Raffel et al. 2018, and many 
others, partly by given by respective references. 

In the remainder of this paper two recent developments in the frame of data assimilation are 
presented exemplarily: The recent development of FlowFit3 (Godbersen et al 2024) with its 
very efficient linear and non-linear modes is decribed and assessed in the first part. FlowFit3 is 
using LPT input data like its predecessor FlowFit2, either fully time-resolved or as short tracks 
(delivered by MP-STB, Novara et al. 2019)). Secondly, a specific approach using FlowFit 2 to 
achieve time-resolved 3D VGT and pressure fields from 3D LPT data in a large-scale impinging 
jet experiment using pulsed LED illumination of HFSB (Huhn et al. 2018) is enrolled and 
assessed with microphone measurements. 
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2 FlowFit3: Efficient data assimilation of LPT measurements 

2.1 Introduction 
3D Lagrangian particle tracking (LPT) (Schröder & Schanz, 2023) enables the accurate 

measurement of the position, velocity and acceleration of particles moving within fluid flows 
(Ouellette et al. 2006, Schanz et al. 2016a, Schröder and Schanz 2023). The scattered nature of 
the individually tracked particles provides a great advantage over other related measurement 
techniques such as PIV. Instead of a fixed regular grid of convolution windows, whose size 
imposes a low pass filtering effect on resolvable structures, particle positions are distributed in 
a stochastic manner and provide local point measurements. This can be exploited in Eulerian 
ensemble averaging using spatial binning to realize very fine resolutions, since the bin size is 
not directly linked to measurement technique and is primarily limited by the amount of available 
data. This allows a direct trade-off between bin size and convergence of the underlying statistic. 
One particularity of LPT is that we do not just have the position and velocity of a particle at 
each timestep but inherent to the processing a continuous track over a certain time range. This 
provides additional information as the single time steps are not independent but instead 
temporally linked. 

Within this contribution we will focus on the Shake-The-Box (STB) approach for LPT 
where the two variants for time-resolved STB (Schanz et al. 2016a) and multi-pulse STB 
(Novara et al. 2019) express this temporal connection in slightly different ways. For time-
resolved STB tracks can span up to the entire measurement duration directly providing 
significant temporal information. The multi-pulse variant necessary for faster flows provides 
temporal information only for the short bursts typically consisting of four pulses. This variant 
relies on collecting many bursts that are temporally uncorrelated from each other to build flow 
statistics. A small amount of temporal information is nevertheless available for each burst and 
within this paper we will mostly focus on the processing of such multi-pulse data. The presented 
approaches are generally not limited to multi-pulse STB but adaptable to any LPT measurement 
that provides access to this temporal data. 

Often it is also desirable to have access to a grid-structured representation of the data, 
especially for the calculation of spatial gradients of flow field measures. While a simple 
interpolation onto a grid is possible, data assimilation techniques using physics-based 
regularization such as FlowFit2 (Gesemann et al. 2016) or VIC+ (Schneiders & Scarano 2016) 
and VIC# (Jeon et al. 2022) are frequently used nowadays. Through knowledge of the Navier-
Stokes equations a higher spatial resolution can be obtained than from interpolation alone (see 
e.g. Zhou et al. 2024). We present the new and highly efficient FlowFit3 approach and its 
evaluation on synthetic data. 

FlowFit3 is a new development within the existing FlowFit concept. Common to its 
predecessors is the representation of the instantaneous flow field using a 3D uniform B-spline 
grid of weighting coefficients. B-splines can be efficiently evaluated at arbitrary positions 
within the reconstructed volume and provide easy access to spatial gradients (see Figure 1). The 
FlowFit3 approach thoroughly changes the way these coefficients are determined from the data. 
In this paper we will focus on the description of the method and will conduct comparisons with 
prior FlowFit versions. A comprehensive evaluation of the results obtained using FlowFit3 in 
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comparison to other data assimilation techniques on synthetic and real-world data can be found 
in Zhou et al. (2024). 

 

 
Figure 1: FlowFit3 basis: (left): Example of a 2D staggered grid. (right:) Example of 1D 

B-spline basis functions and interpolation. Lines at the bottom highlight the compact support 

Just as with prior versions of FlowFit the incompressible Navier-Stokes equations are used 
as underlying physics equations: 

 
� ���⃗ =  ���⃗ �/�� =  −�� +  �∆� ���⃗     (1) 

∇ ∙  u�⃗  =  0       (2) 
 

In Figure 1 lines at the bottom highlight the limited support with velocity u�⃗ , acceleration a�⃗ , 
kinematic pressure �̅  and kinematic viscosity ν. With LPT we directly measure the material 
derivative ���⃗ �/�� so there is no need to expand it into its convective form. By rearranging these 
equations, one also obtains an equation (3) for pressure which is used by some variants of 
FlowFit: 

 
∆�̅  +  � ·  ((��⃗ ·  �)��⃗ )  =  0       (3) 

 

2.2 Method 

We introduce two variants of FlowFit3, similar to the div1 and div2 modes of FlowFit2. 
The first, constraining the divergence of velocity (2), will be called "linear" mode in the 
following as only linear terms are involved in the physics constraint. No measured acceleration 
data is needed for this mode. The second variant is the "nonlinear" mode using also the 
momentum equation (1) as an additional constraint. This mode uses measured accelerations to 
improve the reconstruction and is also able to recover pressure fields using (3). Both modes 
build on the same internal architecture so we begin with an explanation of the simpler linear 
mode. 

2.2.1  B-Spline representation 
Just as in previous iterations of FlowFit a B-spline representation is used as basis for the 

data assimilation. This takes the form of a grid of spline basis functions of e.g. 3rd order, each 
with compact support. One can then select scaling weights for each of the basis functions. The 
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basis functions overlap, but due to the compact support only a small amount of basis functions 
is nonzero for a given point in the domain. In order to evaluate such a B-spline representation 
at a certain point, one needs to evaluate the value of all local basis functions at this position and 
scale them by their respective weighting coefficients. The sum now represents the evaluated 
value at that point. 

The basis functions itself are fixed for a given FlowFit “grid” of continuous B-Splines so 
all that is needed during reconstruction is to compute appropriate weighting coefficients that 
best represent a given flow. Each of the components of the velocity vector (u,v,w) is considered 
a separate field. A finished FlowFit reconstruction corresponds to a grid of B-spline coefficients 
for each flow quantity which can be evaluated at arbitrary points within the domain. This setup 
also allows for easy evaluation of spatial gradients since the derivative of the spatial field can 
be obtained using the derivative of the basis functions which can be computed beforehand. In 
the following we will use the term coefficients to refer to the values of the B-spline coefficients 
themselves whereas the term field will be used for the resulting continuous interpolation (e.g, 
pressure coefficients vs. pressure field). 

At its heart the data assimilation is accomplished by a gradient based optimization with a 
cost function that incorporates measured data as well as additional constraints. The measured 
data in the form of particles with positions and velocity values can simply be included by 
evaluating the current velocity field at the particles locations and examining the velocity 
difference, which is included as a term in the cost function. In order to move beyond simple 
interpolation knowledge of the underlying flow physics is included into the optimization. 
Assuming an incompressible fluid with constant density, the continuity equation transforms to 
a divergence constraint on the velocity field (2). Previous versions of FlowFit would incorporate 
such constraints as penalty terms into the cost function. Such a soft constraint has several 
disadvantages as not only this term has to be properly weighted with respect to the other cost 
function terms, the constraint is also not exactly enforced. 

 

2.2.2 Hard constraint on divergence 
 
One key improvement of FlowFit3 over prior versions is to move the divergence constraint 

into the design of the Ansatz instead. In this way the constraint is satisfied at any point in the 
domain and the optimizer is able to more efficiently reach an optimal solution as it is restricted 
from even considering infeasible solutions during intermediate steps. In the following we give 
a brief overview of how this is accomplished. FlowFit3 now utilizes a staggered grid (Harlow 
& Welch, 1965) for the velocity coefficients where the grids are shifted by half of the spacing. 
The shift is performed in the direction of the individual velocity component (e.g. in y-direction 
for v). A visual example of the resulting grid structure for the case of a 2D grid is given in 
Figure 1. In a 3D grid the w component is shifted similarly in the z-direction. 

Such a staggered grid is useful to avoid the problem of even/odd decoupling when solving 
the pressure Possion equation which will be a topic when discussing the nonlinear mode. For 
the moment we will focus on the hard divergence constraint and how the staggered grid can be 
used for this. Originally such a grid was introduced for the application of finite differences used 
in the discretization of the spatial derivatives in the incompressible Navier-Stokes equations, 
but the concept applies to the use of uniform B-splines in a comparable way. The derivative of 
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an (n+1)th order uniform B-spline is an n-th order uniform B-spline on a grid shifted by half a 
spacing unit. The divergence of the velocity field requires the derivatives ∂u/∂x, ∂v/∂y and 
∂w/∂z. If one constructs the 3D B-spline for u as (4th, 3rd, 3rd) order for (x, y, z) respectively 
then ∂u/∂x is a B-spline with (3rd, 3rd, 3rd) order. Moreover, since the derivative grid is shifted 
by half a spacing unit in the x-direction its location is now back at a grid position co-located 
with pressure. The same applies for the other staggered velocity components (e.g. (3rd, 4th, 
3rd) order for v) giving a (3rd, 3rd, 3rd) order uniform B-spline for the divergence. If we wish 
to force this divergence to be zero everywhere the coefficients need to satisfy: 

 
0 =  (����/�,�,�  − u���/�,�,�)  +  (v�,���/�,� −  v�,���/�,�)  +  (w�,�,���/�  − w�,�,���/�) (4) 

 
Essentially the divergence of the coefficient grid needs to be zero, which then guarantees 

by construction that the divergence field is exactly zero in the entire domain. If we can ensure 
that the divergence of the coefficients is zero we successfully constrain divergence in the entire 
field. 
Instead of simply removing divergence from the final result given by the optimizer we more 
closely incorporate this constraint into the optimization procedure. For the gradient based 
optimization techniques utilized, the optimizer is provided with a starting solution and the 
current gradient of the cost function with respect to the state vector for each iteration step. 
Assuming for the moment the use of simple gradient descent. If we provide a starting solution 
that is divergence free as initial state and then subtract a scaled gradient for the descent this next 
state is no longer necessarily divergence free. We can enforce this by requiring the gradient to 
be divergence free as well. If we perform an orthogonal projection of the gradient into the 
divergence free subspace the optimizer is never able to leave this subspace as any movement 
away from the initial solution is at most a linear combination of vectors from within the 
subspace. This not only ensures that the final result must be divergence free, but also that the 
optimizer is constrained in every intermediate step of the way thus eliminating these 
unnecessary degrees of freedom. The optimizer is simply unable to explore physically 
infeasible areas of the solution space. In the actual implementation we do not use simple 
gradient descent but the quasi newton method L-BFGS (Liu & Nocedal, 1989). The above 
approach is still valid since L-BFGS uses a linear combination of previous gradients for its step 
so it is still unable to leave the divergence free subspace at any time. 

The divergence free projection is based on the Helmholtz-Hodge decomposition of a vector 
field into a solenoidal (divergence free) part usol and an irrotational part uirrot: 

 
��⃗  =  ��⃗ ���  +  ��⃗ ����� = ��⃗ ���   +  ��    (5) 

 
with some yet to be determined potential field ϕ. Taking the divergence of (5) gives a 

Poisson equation for ϕ since � · ��⃗ ���  =  0 : 
 

� ·  ��⃗  =  ∆�      (6) 
 
Once ϕ is known the divergence free part of ��⃗   can be determined: 
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��⃗ ���  =  ��⃗  –  ��       (7) 
 

We are solving (6) efficiently under homogeneous Dirichlet boundary conditions using a 
Discrete Sine Transform. This process then forms an orthogonal projection of a vector field ��⃗   
into the divergence free subspace. 

2.2.3 Linear mode 
By this approach the only needed term in the cost function is the velocity discrepancy 

between field and particles, however a regularization term that penalizes high wavenumber 
oscillations of the coefficients is still added just as in prior FlowFit versions. The cost function 
for the linear mode FlowFit3 thus becomes: 

 
�������(�⃗)  =  �

�
(∥ ������(�⃗) ∥� +  � ∥ ℎ����(�⃗) ∥�)    (8) 

 
with �⃗ as the optimizer state in form of the velocity coefficients, velerr as the velocity 

discrepancy of the particles to the field, hfpen as the high wavenumber penalization with a 
weighting term α. This penalization is calculated just as in FlowFit2 as the L2 norm of the high-
pass-filtered version of the coefficient field (Gesemann et al., 2016). 
This variant of FlowFit3 provides a very efficient way to perform data assimilation but does 
not yet use acceleration information in order to further improve assimilation quality or provide 
pressure reconstruction as well. This is realized in a second mode we call nonlinear mode 
FlowFit3. 

2.2.4  Nonlinear mode 
If acceleration measurements are available we can use them to further improve 

reconstruction quality as well as to recover pressure fields. The additional data allows for the 
use of the momentum equation from the incompressible Navier-Stokes equations in addition to 
the continuity equation used so far. Accelerations obtained from LPT measurements provide 
the material derivative of velocity, the left side of the momentum equation: 

 

�⃗ = ����⃗
��

= −�� + �∆��⃗ = ����⃗
��

+ (��⃗ ∙ �)��⃗     (9) 
 
Just as the continuity equation requires zero velocity divergence, the divergence of the 

temporal derivative of velocity must vanish as well: 
 

� ·  ��
��

=  � ·  (�⃗  −  ��⃗  ·  ���⃗ )  =  0    (10) 
 

After some transformations this leads to the Poisson equation for pressure: 
 

∆� +  � ·  (��⃗  ·  ���⃗ )  =  0      (11) 
 

∇ ∙ (��⃗ ∙ ∇��⃗ ) = ���
��

�
�

+ ���
��

�
�

+  ���
��

�
�

+ 2(��
��

��
��

+ ��
��

��
��

+ ��
��

��
��

) (12) 
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The nonlinear source term can be further simplified (12) and is the origin for the naming of 
this mode as “nonlinear”. Once the pressure field has been determined one can calculate the 
acceleration field as needed using (9) in order to be able to calculate an acceleration error at the 
particle positions. Whereas prior FlowFit versions would add an additional set of pressure 
coefficients to be optimized alongside the velocity the new FlowFit3 approach does not include 
them in the state vector anymore. Pressure is calculated from velocities by use of the pressure 
Poisson equation as needed which is solved efficiently using a FFT based approach. We utilize 
a Discrete Sine Transform (DST) which implies homogeneous Dirichlet boundary conditions. 
While this allows for a very efficient computation of the solution for the Poisson equation it is 
not necessarily the correct boundaries for a given reconstruction. To allow for arbitrary 
boundary conditions while still using the DST we add an inner boundary layer to the source 
term. Due to the support region of the B-Splines the nonlinear term can only be computed from 
velocity in the interior region. By surrounding this region with the additional boundary layer 
we retain the correct size in order to reuse the DST for the divergence free projection, now just 
with a different transfer function in Fourier space. By selecting appropriate values for this layer 
of source terms we can enforce arbitrary boundary conditions for the original problem. These 
explicit source term variables are simply included into the optimizer state in order to obtain 
suitable values for a given reconstruction problem. 

With this Ansatz pressure is no longer part of the state of the optimizer (except for boundary 
conditions) but this approach introduces greater complexity in the implementation of the cost 
function and especially its gradient. Instead of just backpropagating cost function gradients to 
the pressure coefficients as in prior FlowFit versions they now need to be calculated further 
through the pressure reconstruction all the way to the velocity coefficients instead. But again, 
just as with the divergence constraint, the degrees of freedom for the optimizer are reduced 
since this way the dependent relationship between velocity and pressure is encoded explicitly. 
The cost function for the nonlinear mode is very similar to the linear mode (8): 

 
�������(�⃗)  =  �

�
(∥ ������(�⃗) ∥� +  � ∥ ℎ����(�⃗) ∥�+ � ∥ ������(�⃗) ∥� )   (13) 

 
now including an additional acceleration discrepancy term accerr with a weighting factor 

between velocity and acceleration errors β. This factor can be determined from the uncertainty 
quantification based on the Trackfit (Gesemann et al. 2016) approach. 

One could obtain the required cost function gradient with respect to the state required for 
the optimizer using automatic differentiation on an implementation of (12). Our implementation 
uses a handwritten backpropagation approach for efficiency reasons. The initial two terms also 
present in the cost function for the linear mode in (8) are fairly straightforward to handle since 
they either directly or almost directly operate on the velocity coefficients. The acceleration term 
is more complex so we will discuss its gradient in more detail. The cost term for the acceleration 
is a sum of acceleration errors over all particles: 

 
�
�

∑ ��������|���������������[�] − ���������[�]��
� ²   (14) 
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A gradient of sums is the sum of its gradients so in the following we look at the cost 
contribution of just a single particle within the sum with its measured acceleration ⃗ap and the 
fitted acceleration ⃗af at its position: 
 

�� = �
�

��⃗� − �⃗��
�

=  �
�

‖���������⃗ ‖�    (15) 
 
We can only affect this by modifying the fitted acceleration: 
 

���
���⃗ �

= ���������⃗ ����⃗ �

���⃗ �
− ���⃗ �

���⃗ �
� = ���������⃗      (16) 

 
Which can be related to the velocity coefficient field ��⃗ � by chaining the Jacobians of the 
intermediate operations: 
 

���
����⃗ � 

= ���
���⃗ � 

���⃗ �

�∆���⃗
�∆���⃗
����⃗ �

   with  ���⃗ �

�∆�
= � − �∇�

�∆���⃗  
  since  �⃗� = �∆��⃗ − ∇�  (17) 

 
 
The term �∆���⃗

����⃗ �
  is known from the B-spline construction but �∇�

�∆���⃗  
 must still be determined. 

Using the nonlinear term (12) as N and the Poisson solver including the mapping to the 
B-Spline coefficients as P we obtain: 
 

∆� = �(∇��⃗ ) and �� = �(∆�)    (18) 
 

We can then express the missing term in terms of known operations after some chain 
rule wrangling of the derivatives: 
 

�∇�
�∆���⃗  

= �∇�
��� 

��
�∆� 

��
�∇���⃗  

�∇���⃗
�∆���⃗  

    (19) 
 
Substituting into (17): 
 

���
����⃗ � 

= ���
���⃗ � 

(� − �∇�
��� 

��
�∆� 

��
�∇���⃗  

�∇���⃗
�∆���⃗  

) �∆���⃗
����⃗ �

    (20) 

 
followed by simplification of some ��⃗ , ��⃗ �   terms and substituting (16) one finally obtains: 

 
���
����⃗ � 

= ���������⃗ �∆���⃗
����⃗ �

� − ���������⃗  �∇�
��� 

��
�∆� 

��
�∇���⃗  

�∇���⃗
����⃗ �

   (21) 
 

the desired gradient of the acceleration cost function with respect to the optimizer state 
in form of the velocity coefficients. One essentially multiplies this from left to right as 
vector Jacobi products (vJp) starting from the calculated acceleration error value at the 
particle location ���������⃗ . The Jacobi matrices in (21) are not supposed to be actually created 
as one can implement the result of the vJp directly. These adjoints generally can be 
obtained for a similar computational cost as the respective operations in the forward pass. 
This is especially the case for the Poisson solver step P as it is self-adjoint. At that stage of 
the backpropagation one would also extract the gradient for the source term used for the 
pressure boundary. As the value of the source term is jointly optimized together with the 
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velocity coefficients one needs to scale its gradient to a similar norm as the gradient for 
the velocity coefficients. 
 

3 Evaluation 
To compare the new FlowFit3 variants to the prior versions we use synthetic data based on a 
sub-volume of the isotropic turbulence data set from the Johns Hopkins Turbulence Database 
(Yeung et al. 2012) just as in the original FlowFit2 publication (Gesemann et al. 2016). 
Synthetic particle data is generated simply by sampling the database at random positions in the 
domain. Four different particle densities are investigated resulting in a mean inter-particle 
distance of approx. 7.5 to 3.75 Kolmogorov length scales. We compare the performance of 
FlowFit3 with results obtained using the FlowFit2 approach on the same data. Figure 2 shows 
a comparison of reconstruction quality in a slice of the vorticity field for a particle sampling at 
6 Kolmogorov length scales. The FlowFit2 div1 version, using only velocity information, yields 
the lowest quality of reconstruction. 
Interestingly, the linear version of FlowFit3 shows visibly better results, despite depending on 
the same restricted data. The div2 variant of FlowFit2, additionally utilizing acceleration data, 
markedly improves on its div1 counterpart, producing results quite alike to FlowFit3 linear, 
albeit with a slightly better rendition of the gradient. The FlowFit3 nonlinear mode yields a 
further increase of perceived sharpness. 
This can also be seen in a visualization of iso-surfaces of the Q-criterion of the same 
reconstructions, but at a reduced particle density to a mean spacing of approx. 7.5 Kolmogorov 
length scales shown in Figure 3. Again, the nonlinear mode FlowFit3 provides a slight 
improvement over FlowFit2 div2 whereas a significant gain can be observed for the linear mode 
versus the div1 result. This highlights the benefit of including acceleration data using the 
momentum equation. Both FlowFit variants using accelerations are much less affected by the 
decrease of particle density than the variants using only velocity. The FlowFit2 div1 result has 
degraded significantly. Linear mode FlowFit3 now shows less detail than the nonlinear variant 
but still presents a relatively smooth solution without the noise visible for div1 FlowFit2. 
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Figure 2: Slices of vorticity field reconstructed using the different methods for a particle 

density with a mean spacing of approx. 6 Kolmogorov length scales 

 
A quantitative comparison of rms-errors of the Q-value compared to the ground truth is 
presented in Figure 4 for a range of particle densities. The results match the visual 
interpretations of the prior figures with FlowFit3 nonlinear as an improvement over FlowFit2 
div1. As the particle distance increases the difference between the variants with and without 
use of the momentum equation increases. Remarkable is the comparatively low error of the 
FlowFit3 linear mode which almost approaches the performance of the prior FlowFit2 div2 
version, but at much lower computational costs. 
A brief evaluation of the reconstructed pressures shows the handling of arbitrary boundary 
conditions in FlowFit3 non-linear mode is successful. Figure 5 shows the error of reconstructed 
pressure in a slice through the volume. The FlowFit2 div2 result shows a slight gradient in the 
error field which is not present in the FlowFit3 non-linear case. The architectural changes to 
the FlowFit internals in the handling of the divergence constraint appear to be highly successful 
in guiding the optimizer towards a physically correct solution. Such performance makes the 
linear mode very attractive for the processing of a large number of snapshots as it is very 
efficient. On a reasonably modern CPU, a typical measurement domain can usually be 
reconstructed in less than 10 seconds, while the nonlinear mode requires around one order of 
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magnitude more processing resources. However, compared to other data assimilation methods, 
even this mode is highly competitive in terms of computational cost, as reported in Zhou et al. 
2024. Some aspects of the nonlinear mode are still under development so we still expect some 
improvements to the above results. 

 
Figure 3: Iso-surfaces of Q-criterion at 400 1/s2 reconstructed using the different methods 

for a particle density with a mean spacing of approx. 7.5 Kolmogorov length scales 
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Figure 4: RMS error of the reconstructed Q field for the different methods at various 

particle densities 

 
Figure 5: Pressure reconstruction error for the two methods for a particle density with a 

mean spacing of approx. 6 Kolmogorov length scales 

4 Conclusion and future work for FlowFit3 
Based on the initial testing presented above the new FlowFit3 approach is a successful 

development that outperforms its predecessor in data quality and reconstruction time. The linear 
mode provides very fast reconstruction times which will be of interest for large data sets. The 
nonlinear mode results in even higher fidelity reconstructions and also allows for pressure 
reconstructions. For a more detailed evaluation of the FlowFit3 variants see Zhou et al. (2024). 

For the current implementation of FlowFit3 only a limited number of parameters needs to 
be selected. A key value that needs to be adjusted is the penalization of higher wave numbers 
α. This parameter directly controls the smoothness of the solution and as such can be easily 
adjusted based on visual examination. A current topic for further development is to better 
determine this regularization based on physical properties. Different regions of a flow field 
likely require different strengths of this regularization which could be determined from flow 
structure sizes obtained from two-point correlations. Currently the high-pass filter used for the 
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penalty operates directly on the coefficient field. In principle this would still allow for spatially 
varying regularization since the coefficients directly correspond to regions in physical space. 
However, it would be beneficial to instead define the penalization in world space in order to 
more precisely allow for spatially varying anisotropic curvature penalization. 

Currently FlowFit3 conducts an independent reconstruction of individual time steps in a 
sequential measurement. This can be an advantage for parallel processing as no time resolved 
data is required but leaves some room for further improvement. The use of virtual particles to 
enhance temporal consistency has already shown some benefit (Ehlers et al. 2020) but future 
work will also consider more explicitly linking FlowFit3 reconstructions across multiple 
timesteps for a joint optimization or in conjunction with PINNs. 

5 Estimation of time-resolved 3D pressure fields in an impinging jet flow 
from dense 3D Lagrangian particle tracking (LPT) 

5.1 Introduction  
The measurement of the pressure field in aerodynamic and turbulent flows is of high 

interest, for example, for the estimation of unsteady fluid dynamic loads and forces on structures 
to study aero-elastic problems, for the determination of sources of aero-acoustic noise, and for 
the computation of the pressure-diffusion term in the transport equation of turbulent kinetic 
energy. Pressure transducers and microphones can be used to obtain a local point-wise 
measurement of pressure. They are often mounted in walls, and also free-field pressure probes 
exist. However, unlike the intrusive measurement with sensors, the pressure field is also 
indirectly accessible through an optical nonintrusive flow measurement of fields of the material 
acceleration. The pressure gradient and the material acceleration are the dominant terms in the 
momentum equation (1) and therefore directly linked by this equation. van Oudheusden (2013) 
reviews the development of pressure reconstruction from flow measurements that dates back to 
the year 1935 and made significant progress in the last two decades, mainly based on velocity 
data gained from particle image velocimetry (PIV). 

Recent examples of studies dealing with pressure reconstruction from flow measurements 
include a comparison of stereoscopic and tomographic (tomo) PIV in the wake of a square 
cylinder de Kat and van Oudheusden 2012, tomo PIV measurements in a turbulent boundary 
layer (Ghaemi et al. 2012, Pröbsting et al. 2013, Schneiders et al. 2016), time-resolved tomo-
PIV around an airfoil (Jeon et al. 2015), a scanning tomo PIV experiment around a flapping 
wing (Tronchin et al. 2015), a tomo-PIV measurement with subsequent particle tracking in the 
wake of a wall-mounted cylinder (Schneiders et al. 2016, cf. Li et al. 2008, Schneiders et al. 
2016). Most of the studies validate their results against other pressure measurements or against 
theoretical predictions. Except for the last two, the listed studies are based on time-resolved 
PIV data and consequently obtain the material acceleration from the Eulerian velocity field by 
computing the low-pass filtered material derivative indirectly. A comparison of a broad scope 
of techniques for pressure reconstruction (van Gent et al. 2017) shows, however, that the 
accuracy of the pressure field determination can be considerably improved with dense 
Lagrangian particle tracking (LPT) where the material acceleration is directly obtained from 
individual particle trajectories. Nowadays, with the Shake-The-Box (STB) Lagrangian particle 
tracking technique (Schanz et al. 2013, Schanz et al. 2016a, Schröder and Schanz 2023) time-
resolved series of particle images with densities of ~0.1 ppp and above can be processed 
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accurately which allow to simultaneously track up to 300,000 particles for typical 4 Mpx high-
speed cameras (Huhn et al. 2017, Bosbach et al. 2021). Furthermore, a new four-pulse STB 
technique is available, which allows the required determination of velocity and acceleration 
fields by Lagrangian particle tracking as well in high-speed flows (Novara et al. 2019). In a 
review article on the development of load estimation techniques Rival and van Oudheusden 
2017 explicitly propose that the STB technique will become the new standard for instantaneous 
pressure reconstruction and state its importance for future measurements of unsteady flows. 

In our experimental investigation time-resolved volumetric pressure fields have been 
reconstructed in a perpendicular impinging jet flow with exit velocities at U =1, 4 and 16 m/s 
and a nozzle-plate spacing of H/D = 5 from Lagrangian particle tracking with high seeding 
concentration. The Shake-The-Box method has been employed for dense particle tracking and 
subsequently the FlowFit2 data assimilation technique has been applied to the particle track 
data in order to gain 3D velocity and pressure fields. Helium-filled soap bubbles (HFSB) are 
used as tracer particles (Bosbach et al. 2009) which are illuminated by high-power pulsed LED 
arrays at 1.25 kHz acquisition rate. A large measurement volume of 54 liters has been covered 
enabling particle tracking of up to ~190,000 particles simultaneously. The reconstructed time-
resolved 3D pressure fields have been validated against local flush mounted microphone 
recordings at the wall with high correlation coefficients up to R = 0.88. In a reduced 
measurement volume (13 liters) it was demonstrated that dense Lagrangian particle tracking is 
feasible up to the maximal possible jet velocity of U = 16 m/s at the current set-up. This fact 
indicates the possibility to apply large-volume flow measurements by STB using HFSB as well 
in low-speed wind tunnels, in which the interference-free introduction of the HFSB tracers in a 
sufficient number and density is one major challenge. Further details of the present 
experimental investigation can be found in (Huhn et al. 2018). 

The experimental set-up, acquisition strategy of particle images, STB evaluation method 
and post-processing steps using FlowFit2 for gaining continuous 3D velocity and pressure field 
reconstructions are described in section 5.2, while the gained time-resolved volumetric pressure 
and flow field results are presented in section 5.3 together with comparisons of sampled 3D 
pressure signals at the wall with time-series of pressure fluctuations measured by three flush 
mounted microphones. 

5.2 Method 

In the present study, we combine three techniques in the field of particle-based measurement 
methods, Shake-The-Box Lagrangian particle tracking (LPT), helium-filled soap bubbles 
(HFSB) and use of high-power LEDs for pulsed volumetric illumination of the bubbles in order 
to measure the flow of an impinging jet. The impinging jet was chosen as a generic flow with 
substantial pressure gradients and fluctuations that has many practical applications. An air jet 
generated by an 8-bladed fan with stators (PHYWE - 02742-93) and a nozzle exit diameter of 
0.11 m impinges on a flat acrylic glass plate at an angle of θ = 90◦. The flow is seeded with 
HFSBs with a diameter of 300 -500 µm depending on the air pressure supplied to the generator 
(LaVision HFSB generator, 10 nozzles). For a single measurement run, the flow chamber was 
seeded in advance for a time > 5 min and the seeding generator was left running during the 
measurement. The HFSBs are illuminated by three over-pulsed high-power LED arrays, 
including two arrays of 42 LEDs each (HARDsoft Microprocessor Systems) operated at 90 A 
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(voltage 44 V). The illuminated cross-sectional area has a size of ∼ 200 mm in depth and ∼ 450 
mm in radial direction along the glass plate. All LED arrays are equipped with collimating 
lenses on top of each single LED and are operated at 10% duty cycle. A rectangular mirror on 
the bottom plate is used to increase the illumination by back reflection. 

 
 

  

Figure 6: Experimental setup. (a) Camera setup and flow chamber. (b) Jet nozzle and 
impinging jet seeded with HFSB tracers. At the top, the locations of the three microphones in 

the impingement plate appear as bright dots. 

The measurement volume, extending from the wall to the fan nozzle exit (530 mm in 
streamwise direction) is imaged by six high-speed cameras (PCO Dimax S4 and LaVision 
Imager pro HS 4M). The cameras are positioned in an in-line configuration and oriented in a 
way that those lines-of-sight imaging the wall surface are tangential to the flat plate. For the 
calibration of the cameras, a large 2D calibration target (77 × 95 cm2, black dots, diameter 10 
mm, spacing 45 mm) on a translation stage is aligned with the centerline of the jet and is 
translated -100 mm and +100 mm in z-direction. Volume self-calibration (VSC) (Wieneke 
2008) is used to refine the camera calibration. The experimental setup is shown in Figure 6.  

The STB evaluation technique has been adapted to the series of particle images from all 6 
camera projections, which requires the calibration of the particles optical transfer function 
(OTF) for each camera and sub-volume (Schanz et al. 2013) and a proper parametrization of 
the iterative 3D particle reconstruction scheme (IPR) (Wieneke 2013), Jahn et al. 2021) for the 
initialization phase of STB and the 3D particle position correction (“shaking”) after each 
prediction step. Particle tracks with discrete positions are then fit with a continuous function 
consisting of cubic B-splines (TrackFit, Gesemann et al. 2016). The coefficient for the 
smoothing term in the cost function is based on the cross-over frequency of the particle position 
frequency spectrum and is chosen such that particle tracks are low-pass filtered with a cut-off 
frequency of 0.3fNy with the Nyquist frequency fNy . Velocity and acceleration are obtained as 
the temporal derivatives of the continuous B-spline function. With a model for the position 
frequency spectrum of the found tracks assuming the jolt of the used measurement signal to be 
white noise, the uncertainties of position, velocity and acceleration of the fitted trajectories 



VKI - 19 -  
 

(TrackFit) can be estimated as x = 16 μm (∼ 0.05 pixels), v = 0.01 m∕s and a = 14 m∕s2 for 
the U = 4 m/s flow case. For the low velocity case at U = 1 m/s the respective uncertainties are 
x = 8 μm, v = 0.002 m∕s and a = 0.8 m∕s², and for the fast case at U = 16 m/s they are x = 28 
μm, v = 0.07 m∕s and a = 375 m∕s². On one side, the reduction of position accuracy for 
increasing velocities are caused by the reduced amount of light available per snapshot at 
respective higher illumination and imaging frequencies. On top of that an increase in position, 
velocity and acceleration uncertainties is caused by the relative reduction of the sampling 
frequencies with respect to the smallest temporal scales within the turbulent flows which 
typically decrease with increasing Reynolds number. This leads to the conclusion that 
depending on the (local) spectrum of the flow a Lagrangian particle tracking experiment needs 
increase the imaging frequency more than linear with the velocity and/or Reynolds number (as 
typical in PIV for keeping a constant pixel shift between two time-steps) in order to reconstruct 
the corresponding 3D pressure fields adequately. The respective scaling properties have to 
consider the actual Kolmogorov lengths and time scales.  

In general, STB Lagrangian particle tracking with high seeding densities is well suited for 
the measurement of mean fields in the flow. Bin averaging of velocity and acceleration, that are 
accurately measured based on single trajectories with subpixel (~0.1 px) position accuracy, 
yields mean fields (Schröder et al. 2015). Due to the large number of particles, a high spatial 
resolution (typically with subpixel bin sizes) of the mean and related RMS- fields and a small 
uncertainty (many particles per bin) can be reached with reasonable experimental effort. Due 
to the high position accuracy, the mean acceleration field can be obtained down to walls, such 
that mean wall pressure fields on aerodynamic models are obtained by a simple integration of 
the mean acceleration field. 

Based on our measured time-resolved velocity and acceleration data along the densely 
distributed tracks instantaneous 3D pressure fields are reconstructed in a next step with the 
interpolation and data assimilation scheme FlowFit2 (Gesemann et al. 2016). In the FlowFit2 
approach both measured fields, velocity u and acceleration a, and the full momentum equation 
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+ (��⃗ ∙ �)��⃗      (22) 

 
coupling both measured quantities are considered for the pressure reconstruction. 
 
The two fields ��⃗  and � are used as fit variables. Acceleration is expressed in terms of ���⃗  and 

� by Eq. (22). The velocity field is regularized by  � ∙ ��⃗ = 0. Combining the further condition 

� ∙ ����⃗
�� = 0 , with the material derivative and the momentum equation leads to the condition 

∆� + � ∙ (��⃗ ∙ �)��⃗ = 0 for the two fit variables. This last condition is quadratic in ��⃗  and leads 
to a non-linear optimization problem which is solved with a Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) solver (see Gesemann et al. 2016). At the wall we impose 
symmetric boundary conditions, i.e., the measured flow quantities ��⃗  and �⃗ are mirrored at the 
wall, i.e., about the x–z plane. These boundary conditions correspond to setting the normal 
vector components of velocity and acceleration to zero at the wall, uy|w = 0 and ay|w = 0, where 
the w-subscript denotes the evaluation at the wall. For the simpler momentum Eq. (22) this 
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translates to the condition  ��
��

|� = 0. This is in line with the observation that in a turbulent 

boundary layer the pressure at a small distance to the wall is a good estimate for the wall 
pressure itself (Pröbsting et al. 2013). Applying the above estimated uncertainty values found 
for particle velocity and acceleration to the calculation of the error of the pressure reconstruction 
for a corresponding wavenumber window between two times the mean particle distance, 2 = 
12 mm and a typical domain size, 1 = 200 mm, i.e., [k1, k2] = [31, 524] rad/m the uncertainty 
of the pressure field remains in the order of N ∼ 0.1 Pa (details in (Huhn et al. 2018). This 
uncertainty seems rather small and would correspond to a dynamic pressure range of ∼ 60:1. 
However, it is a rough estimate and additional error sources may exist. On one hand, aliasing 
due to under-sampling of small flow structures possibly leads to an additional error that is 
excluded in the above value. On the other hand, with STB the 3D pressure measurement 
uncertainty is scalable: At lower flow velocities much smaller pressure fluctuations are 
measurable which is caused by the lower uncertainties of velocity and acceleration determined 
at U = 1 m/s. 

The interpolated pressure and velocity fields are represented as a dense grid of cubic B-
splines with a step width of x = 3 mm, half the mean particle distance of 6 mm, corresponding 
to a particle density of 0.125 particles per B-spline cell [ppc]. The B-spline coefficients are 
found by a fit to the scattered data. The cost functions include terms for spatial smoothing and 
for a regularization of the solution with additional physical constraints from the Navier-Stokes-
equation. The wall allows for the installation of microphones for a validation of the pressure 
reconstruction. Three condenser microphones (G.R.A.S. 40BF 1/4”, diameter of diaphragm 5.9 
mm) are flush mounted in the impinging plate at distances of 1D, 2D and 3D from the jet center. 
The frequency response is flat ( ±2 dB) in the range from 4 Hz to 100 kHz. Microphone data is 
recorded with a 16-bit VIPER- 48 (GBM) multi-channel acquisition system at a frequency of 
250 kHz, high-pass filtered with a 1.5 Hz cut-off frequency. Microphone recordings are 
synchronized with the flow measurement by recording the trigger (enable) signal of the LED 
illumination on an additional channel. Noise from the fan and its motor is the main source of 
uncertainties of the microphone pressure signal. However, in the relevant frequency range of 
5–150 Hz, the signal to noise ratio has been measured to be in the order of 104, i.e., the amplitude 
error of the microphone pressure signal is ∼ 1% and therefore negligible w.r.t. the accuracy 
discussed here.  

The study has two objectives, first, we show the applicability of LPT with LED illuminated 
HFBSs in a large volume for higher flow velocities than in previous experiments (Huhn et al. 
2017), and second, we validate the reconstructed pressure field. We achieve a measurement 
volume of 54 liters for a jet velocity of U = 1 and 4 m/s and a rectangular volume of 13 liters at 
U = 16 m/s with a reduced field-of-view due to frame rate limitations. To the best knowledge 
of the authors, the reconstructed volumetric pressure field with a volume of 30 liters is the 
largest reported so far (cf. Rival & van Oudheusden 2017, Schneiders et al. 2016, van 
Oudheusden 2013).  

5.3 Assessment of pressure reconstruction via FlowFit2 

Synthetic experiments using the FlowFit algorithm have been performed based on a 
subvolume of the DNS data of the “Forced Isotropic Turbulence” case at Re = 418 from the 
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Johns Hopkins Turbulence Data Base (FIT@JHTB, Li et al. (2008)) in order to assess the 
accuracy of the reconstructed velocity and pressure fields. A set of randomly selected DNS data 
points with different numbers and densities (resp. mean data point distances) are used in order 
to mimic a Lagrangian particle tracking experiment encountering the usual problem of 
undersampling the flow and pressure structures in turbulence. FlowFit2 reconstructs the full 
flow field based on the sparse scattered data points providing velocity and acceleration as input 
to the non-linear data assimilation problem. The accuracy of the reconstructed flow field is 
depending on the number and density of scattered input data points which can be quantitatively 
assessed by comparing the gained results to the provided ground truth from DNS. The 
subvolume size consists of 64 x 64 x 32 (= 131,072) grid points with a grid point spacing of 
dnsh = 2pi/1024 = 0.006136, while the Kolmogorov length scale  = 0.00280 corresponds to 
0.4563·dnsh.  All values are non-dimensional based on the DNS grid in time and space. Figure 
7 displays the subset of randomly selected data points in the sub-volume of 3,157 points (top-
left), 6,569 points (top-right), 13,104 (points) (bottom-left) together with iso-surfaces of �

�
∆� 

assimilated and interpolated by the FlowFit2 algorithm based on the respective subset of points. 
Ground truth from DNS for comparison is placed bottom-right. The number of points 
corresponds to ~1/41.5 (top-left), ~1/20 (top-right) and ~1/10 (bottom-left) of the original DNS 
resolution, but the main features of the pressure field can already be reconstructed by FlowFit2 
using the lower number of points.  
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Figure 7: Iso-surfaces of  �

�
∆�for reconstructed p and random sample positions of data points 

with color-coded z coordinate. Due to incompressibility and constant density �
�

∆�is 
equivalent to the Q criterion. The iso-contour level is 500 (non-dimensional by DNS grid) 

 
 ~4.7 for the higher density case. The √��  –law allows one to keep the ppp-level of a STB 

experiment in a reasonable range (e.g. < 0.1 ppp) allowing for high accuracies of the velocity 
and acceleration measurements along the tracks. Below a certain ppp threshold this strategy can 
provide a bigger gain for the quality and resolution of the FlowFit2 interpolation than just 
enhancing the ppp to higher values and towards more difficult tracking conditions, because a 
higher ppp in the images provides just a small step in reducing the mean particle distance in 3D 
and will reduce the measurement accuracies.  

The percentage error of the pressure and pressure gradient reconstruction by FlowFit2 with 
respect to the local peak values for four different numbers of random data point cases from the 
DNS (with an additional case at an even higher density with 26,189 data points) is shown in 
Figure 8. The gain in accuracies for lower particle mean distances is still significant, but is 
reduced. A good result with 2 % RMS with respect to local peak values can be reached already 
at a fraction of ~1/20 data points compared to the full DNS resolution.  
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Figure 8: RMS error of reconstructed pressure and pressure gradient relative to peak spatial 

pressure fluctuation and peak pressure gradient, respectively. The black vertical line 
represents the particle distance at which the DNS grid is under sampled by a factor of 20 

5.4 Results 
The velocity fields of the impinging jet are presented for the slowest and fastest measured 

jet velocity, U = 1 m/s and U = 16 m/s. The slow case is recorded at a frame rate of 1.25 kHz 
with an LED pulse width of 100 µs. For the fast case, both parameters are adjusted to a frame 
rate of 3.9 kHz with an LED pulse width of 27 µs, in order to avoid streaking of the particle 
images and to reliably track also the fastest and most accelerated particles. To reach the high 
recording frequency, the camera resolution has to be reduced to 576 x 1728 pixels. 
Approximately 190,000 particles can be tracked simultaneously for the slow case in a volume 
of 54 liters, and 40,000 for the fast case in a volume of 13 liters. An example of the reconstructed 
particle tracks is shown in Figure 9.  

An example of a reconstructed 3D pressure field together with the Q-value for visualization 
of vortical motions is presented in Figure 10. For this case at U = 1 m/s, extended spatial and 
temporal coherent vortical structures can be resolved in the shear layer and in the wall jet region. 
The rectangular box in Figure 10 marks the region of negligible flow which is used as a 
reference for the absolute pressure and thus as a value for the pressure off-set correction. 
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Figure 9: Lagrangian particle tracks reconstructed by Shake-The-Box displayed using nine 
successive time-steps, color-coded by y-velocity for two jet velocities (Left: U = 1 m/s , 

Right: U = 16 m/s)  

In a first step the mean pressure over the box is set to be zero at each time step by subtracting 
the spatial mean value over the box from the entire pressure field. For the reconstruction of the 
pressure field, we focus on the experimental results with a jet velocity of U = 4 m/s recorded at 
1 kHz. For this velocity, we can expect more pronounced pressure fluctuations than for the 
slower velocity of U = 1 m/s, while the appearing flow structures can be better resolved spatially 
and temporally with the installed measurement equipment than in the high flow velocity case 
at U = 16 m/s.  
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Figure 10: 3D pressure field reconstruction from STB and FlowFit2. Snapshot from a 

time-resolved series of impinging jet flow at U = 1 m/s with iso-contour surfaces of Q-value 
for visualization of vortical motions. Marked rectangular box used for pressure off-set 

correction. 
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Figure 11: Lateral central slice (x-y-plane) (top) and at the wall (x-z-plane) (bottom) of 

the reconstructed pressure field P (x) [Pa] at U = 4 m/s using full non-linear FlowFit2 data 
assimilation and symmetric (“mirrored”) boundary conditions at the wall. The wall is drawn 

as a black line (top), dots represent three microphone positions. Range of contour lines [−6; 6] 
Pa with increment 0.2 Pa.  

In the shear layer at the nozzle radius of the jet (x∕D = 0.5), strong pressure fluctuations 
develop due to strong vortices which are advected upwards and impact on the wall at x∕D ∼ 0.5 
leading to large pressure fluctuations at the position of microphone 1 (black dot). The 
corresponding reconstructed pressure fields in a x-y-plane (showing the mirror-wall boundary 
condition) and at the wall in a x-z-plane are shown in Figure 11. Here, further outwards, 
following the flow in radial direction, the chain of alternating high- and low-pressure regions 
continues along the wall adjacent to microphone 2 and 3. The stagnation region with high 
pressure (maximum fluctuations reaching ∼ 12 Pa) is a distinct feature in the pressure field. 

The comparison of the two pressure time series in Figure 12 visualizes the agreement 
between microphone pressure and LPT pressure in a direct way. The pressure offset (black 
curve) is a small value and can be ruled out as a reason for the discrepancy between both signals. 
We obtain a high correlation coefficient of R = 0.88 for microphone 1. This value is among the 
highest reported in literature for pressure reconstruction from a turbulent boundary layer flow 
measurement. To some extent, the uncertainty of the reconstructed pressure field can be 
quantified based on the difference between both pressure data sets in Figure 12. The standard 
deviation of the difference signal is 0.36 Pa, 0.30 Pa, and 0.26 Pa, for microphone 1, 2 and 3. 
Assuming that the microphone recording has a negligible uncertainty, the magnitude of the 
difference signal can be interpreted as an uncertainty of the pressure field. This uncertainty of 
∼ 0.3 Pa is clearly higher than the value of ∼ 0.1 Pa derived above from the uncertainty of the 
acceleration data. It seems that some uncertainty is added during the step of pressure 
reconstruction with FlowFit2. To validate the reconstruction strategy against the microphone 
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measurements, we compute the Pearson correlation coefficient R = ⟨P1(t)P2(t)⟩∕(12) for the 
two time series, the pressure estimation from flow measurement P1(t) and the pressure recorded 
from the microphones P2(t) with their standard deviations 1 and 2 . Both pressure time series 
have first been filtered using a Butterworth filter with bandpass range [3, 150] Hz, the lower 
limit removing small frequencies and the upper limit corresponding to the low-pass cutoff 
frequency of the LPT trajectories when fit with a B-spline curve (TrackFit) (Gesemann et al. 
2016). The microphone data have been down-sampled to the LPT frequency by linear 
interpolation. The high correlation coefficients <R> = 0.77; Rmax = 0.88) between the 
reconstructed pressure field and the microphone pressure signals show that the dominant 
pressure fluctuations of the flow can be reliably obtained from the LPT flow measurement even 
in such large volumes. At microphone position 2 and 3 the correlation values decrease mainly 
due to two reasons: First, the pressure fluctuation amplitudes induced by the vortical flow 
structures are reduced by dissipation in radial directions and thus at a given sensitivity of the 
STB + FlowFit2 pressure reconstruction system of around ~0.2 Pa the noise level increases. 
Second, the near wall boundary layer flow develops along the radial direction and here small-
scale structures become dominant which are not well resolved by the present density of HFSB 
tracks. For a large measurement volume of 57 liters such a compromise leading to reduced 
correlation coefficients is a logical consequence. 

 

 
Figure 12: Direct comparison of pressure time series of the three microphones (red) and 

the reconstructed pressure from LPT (blue) at U = 4 m/s. The pressure offset is shown in 
black. Data is shown for the reconstruction with FlowFit2. Both pressure time series are 

bandpass filtered in the range [3; 150] Hz. 
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5.5 Conclusions on pressure from LPT data 
 
In the presented measurement of Chapter 5, we are able to reconstruct the time-resolved 3D 

pressure field in a larger volume compared to previous pressure reconstructions (Ghaemi et al. 
2012, Pröbsting et al. 2013, Schneiders et al. 2016) using HFSBs, pulsed LED illumination, 
high-speed cameras and Lagrangian particle tracking by STB. A local validation of the 
reconstructed pressure at critical points in the wall boundary layer shows that the dominant 
pressure fluctuations of the impinging jet (10 - 20 Hz) are well captured by the flow 
measurement. Smaller pressure fluctuations with higher temporal and spatial frequencies are 
less resolved at the chosen spatial and temporal resolution of the measurement; however, they 
are also less relevant for the estimation of integrated loads on the wall. The good agreement of 
the LPT pressure estimation based on the Navier-Stokes- constraint data assimilation approach 
FlowFit2 and the microphone pressure used as reference can be attributed to the accurate 
determination of the particle acceleration with STB, which has been shown to give better results 
than correlation-based PIV flow measurement techniques (see van Gent et al. 2017). The 
uncertainty of the measured acceleration is directly dependent on the position accuracy of 
tracked particles, which itself relies on the clear imaging of single particles. Using HFSB as 
large tracer particles has been shown to be suitable to image large measurement volumes (Huhn 
et al. 2017 Schanz et al. 2016b). Temporal and spatial resolution of the measurement limits the 
spectral range of pressure fluctuations that can be reconstructed. More details of the present 
study can be found in Huhn et al. 2018. 

In conclusion, the use of highly seeded Lagrangian particle tracking with the Shake-The-
Box (Schanz et al. 2016a) approach allows for the measurement of velocity and acceleration 
fields and the reconstruction of the time-resolved 3D pressure fields by FlowFit2 down to the 
wall of structures or models in a large volume. In low speed flows, unsteady pressure 
fluctuations in the order of ∼ 0.5 Pa can be reliably measured, while the pressure sensitivity is 
scalable with the flow velocity and turbulence properties within the technical bounds of the 
imaging system. With such sensitivities, the method extends the accessible measurement range 
to small instantaneous pressure fluctuations that cannot be detected with pressure sensitive paint 
(PSP). Pressure reconstruction from dense Lagrangian particle tracking offers the possibility to 
derive small forces and moments on wings and models in the wind tunnel. It is therefore ideal 
for the study of unsteady flow phenomena and the induced loads on structures, e.g., for 
efficiency studies in biomimetic propulsion, Fluid-Strcuture-Interaction (FSI) or for the 
localization of the sources of aero-acoustic noise close to walls.   
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6 Upcoming 2nd LPT and DA Challenges  
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