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Noise robust detection of quantum phase transitions
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Quantum computing allows for the manipulation of highly correlated states whose properties quickly go
beyond the capacity of any classical method to calculate. Thus one natural problem which could lend itself to
quantum advantage is the study of ground-states of condensed matter models, and the transitions between them.
However, current levels of hardware noise can require extensive application of error-mitigation techniques to
achieve reliable computations. In this work, we use several IBM devices to explore a finite-size spin model
with multiple “phaselike” regions characterized by distinct ground-state configurations. Using preoptimized
Variational Quantum Eigensolver (VQE) solutions, we demonstrate that in contrast to calculating the energy,
where zero-noise extrapolation is required in order to obtain qualitatively accurate yet still unreliable results,
calculations of the energy derivative, two-site spin correlation functions, and the fidelity susceptibility yield
accurate behavior across multiple regions, even with minimal or no application of error-mitigation approaches.
Taken together, these sets of observables could be used to identify level crossings in a simple, noise-robust
manner which is agnostic to the method of ground state preparation. This work shows promising potential for
near-term application to identifying quantum phase transitions, including avoided crossings and nonadiabatic
conical intersections in electronic structure calculations.
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I. INTRODUCTION

The promise of quantum computing resides in making
classically infeasible computations realizable. The simula-
tion of quantum systems, known to be a classically hard
task, yields a particularly natural use-case. However, before
the advent of scalable, fault-tolerant quantum computers, ex-
tracting relevant results from the currently available “noisy
intermediate-scale quantum” (NISQ) devices remains a chal-
lenge due to high levels of noise from state preparation,
measurement, control, cross talk, etc. These lead to errors
which can seriously degrade the results of computations us-
ing the experimentally measured data, and vary over time
in nontrivial ways [1–5]. Despite these issues, assertions of
the advantage of quantum computation on NISQ devices over
classical methods have been made, focused on highly artifi-
cial problems that have no immediate real-world application
[6–9]. Furthermore, this preliminary evidence for useful quan-
tum computation before the realization of fully error-corrected
quantum devices remains a contentious topic, with many
claims being challenged via refinements of existing classical
computational schemes [10–13].
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Consequently, a conclusive real-world use case experi-
mentally demonstrating quantum advantage has yet to be
identified. Given that in their most naive interpretation,
quantum computers are devices capable of preparing and ma-
nipulating high dimensional states, a natural use case for them
is the investigation of the highly entangled and classically in-
tractable ground and dynamical states of correlated condensed
matter systems, which can yield novel insights to material
structure, function, and nonequilibrium properties [14–16].

In this pursuit to utilize the capabilities of near- to medium-
term available quantum devices for such practically significant
problems, recent years have seen the development of a large
number of techniques to leverage NISQ hardware. Broadly
speaking these can be thought of as algorithmic develop-
ments and methods of error mitigation (EM), which partially
compensate for the errors present in computation via pre-
and postprocessing to bring expectation values of observables
closer to their ideal noise-free levels. The topic of EM is a
rapidly evolving field: for a thorough recent review of the state
of the art, see Ref. [17]. On the algorithmic side, one major
area of investigation is that of ground state preparation for
arbitrary Hamiltonians. Methods such as adiabatic state prepa-
ration, quantum phase estimation, imaginary time evolution,
and the dissipative quantum eigensolver are all active areas
of research, for an overview see Refs. [18,19] and references
therein.

Variational quantum algorithms (VQAs) based on param-
eterized quantum circuits (PQCs) in particular have garnered
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a lot of interest on theoretical and pragmatic grounds [20,21].
On the theoretical side the expressive power of PQCs has been
shown to outperform generative neural networks [22], thereby
surpassing neural quantum states, which themselves can ex-
ceed limitations of tensor network states widely considered to
be a gold standard for area-law entangled states [23]. Prag-
matically these algorithms are straightforward to implement
on current and near-term devices, and it is primarily for this
reason that we utilize this method here.

In brief, a VQA is a hybrid quantum-classical algorithm
that utilizes classical optimization techniques to iteratively
refine a parameterized ansatz quantum circuit aimed at, e.g.,
preparing some target quantum state or minimizing a target
cost function. In particular, the variational quantum eigen-
solver (VQE, [24]) aims to find the ground state of a quantum
system by minimizing the quantity

E (p) = 〈�(p)|Ĥ |�(p)〉 (1)

for a given Hamiltonian Ĥ , where |�(p)〉 = Ĉ(p) |�0〉 is var-
ied by means of adjusting the parameters p defining the PQC
Ĉ(p) acting on the initial state |�0〉. This yields an upper
bound to the ground-state energy EG, attaining the actual value
if and only if |�(p)〉 is the system’s ground state.

Regardless of the method by which one prepares the
system ground state, the capacity to directly manipulate
these states could have a significant impact in one of the
most important challenges in condensed matter physics: the
characterization of phase diagrams, particularly quantum
phase transitions occurring at T = 0 which are defined by
the rearrangement of ground states driven by variations of
Hamiltonian parameters. These problems can be extremely
challenging for analytical or classical numerical methods to
handle due to the quantum critical points (QCPs) defining
the transition being characterized by highly entangled states
[25], in particular for highly frustrated systems with many
competing phases [26].

Subsequently developing methods to identify phases of
matter using NISQ hardware and algorithms has received
significant attention in recent years. While explorations of
equilibrium transitions have seen the application of a plethora
of methods including calculating correlation functions in
different phases [27–29], nonlocal string order parameters
and Chern numbers for topological phases [30,31], tracking
changes in fidelity of ground states between Hamiltonian
parameters [32], entanglement spectrum [33], coupling sys-
tems to external probes which act as witness to transitions
[34,35], machine learning assisted variational optimization
[36], or classification by quantum convolutional neural net-
works [37–39], the majority of these studies were either
purely classical simulations, digital quantum simulations with
ground states prepared by hand from known or classically
solved instances, or analog experiments with limited gate sets.
Furthermore those studies which used digitally programmable
quantum hardware were generally restricted to a small number
of physical qubits, typically less than five, or with limited EM
techniques applied.

In contrast, the goal of this paper is to demonstrate that
determining phase transitions from states prepared on NISQ
devices requires the effective utilization of a collection of
noise robust observables working in tandem. To accomplish

this we apply the VQE to investigate ground-state properties
of a frustrated spin model whose ground state manifold dis-
plays a rich variety of highly entangled correlated states, and
utilize real hardware to explore its properties for system sizes
up to twelve sites. Utilizing IBM superconducting transmon
devices, we particularly focus on the question of which ob-
servables can be reliably calculated despite noise in order to
determine, potentially without prior knowledge, where transi-
tions occur from these properties alone. However, we find that
the noise level of these devices is still prohibitively high when
investigating a simple scalar quantity characterizing the sys-
tem, such as the ground-state energy, failing to even reproduce
the qualitative behavior when using parameters preoptimized
via classical simulation. Using EM techniques ameliorates
the problem somewhat, but ultimately proves insufficient to
produce reliable results or to extract nontrivial features of the
system’s phenomenology. Thus, while a narrow focus on the
energy to characterize the system seems to show strong lim-
itations for the conclusions available using current hardware,
expanding our scope to more noise-robust quantities suggests
that this is merely due to an inefficient utilization of data.

Instead, we propose to shift focus to features whose
qualitative behavior might be recovered even within NISQ
limitations. By exploring several different observables for
each VQE solution, we demonstrate that utilizing the mea-
surement data already gathered for the energy calculation in
order to construct the first energy derivative and spin-spin cor-
relation functions results in very clean experimental signals
of ground state rearrangement under different levels of EM.
Furthermore we show that appropriately adapting the fidelity
susceptibility (FS) to the potentially symmetry breaking ex-
pressivity of the VQE ansatz yields a direct measurement of
the similarity of different VQE solutions with a high signal to
noise ratio, which can be used in the case of topologically dif-
ferentiated states where local order parameters would fail. We
therefore argue that by cross referencing these measurements,
one is more capable of accurately inferring whether large
fluctuations in a given subset of data are due to corruption
from noise or stem from really existing “hidden” noise-free
properties of the encoded wave function. Consequently, we
find that when working within the limitations of present-day
quantum devices, while noise may wash out even qualitative
features of observables such as energy, useful information
can still be obtained by focusing on noise-robust quantities
such as the FS, alongside other observables, and therefore that
the choice of observable may be just as important as EM if
one wants to unambiguously demonstrate a meaningful result
beyond the limitations of classical computation.

The rest of the paper is structured as follows. In Sec. II, we
describe our frustrated spin model in more detail, and discuss
the method of studying phase transitions using FS. Sec-
tion III introduces our experimental methodology, discussing
the ansatz used for our VQE-circuit and the EM methods used.
The following Sec. III B showcases the results of experiments
performed on IBM quantum computers to calculate the en-
ergy, and demonstrates the difference between using “raw”
data and EM experiments. Sec. III C shows that the energy
derivative, coupled with correlation functions and with FS
measurements displays unambiguous signals of ground-state
rearrangement; we demonstrate that the latter two observables
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display noise robust behavior across several different choices
of system size, boundary conditions and usages of EM. We
conclude in Sec. IV with a discussion of the implications of
our findings for the overriding goal of finding quantum utility
by suggesting several applications of our method to specific
systems.

II. AXIAL NEXT-NEAREST NEIGHBOR
ISING (ANNNI) MODEL

Throughout this work, we study the ground-state properties
of VQE solutions to the ANNNI model [40], written in terms
of the Pauli operators on qubits i ∈ [0, N − 1], Zi, Xi, as

Ĥ (p) = −J1

∑
i

ZiZi+1 + J2

∑
i

ZiZi+2 + Bx

∑
i

Xi, (2)

where Ĥ is parameterized by p = (J2, Bx ). We consider J2 >

0, set J1 = 1 as the unit of energy and use both open and
periodic boundary conditions. Despite its seeming simplicity,
the combination of a nearest-neighbor ferromagnetic Ising
coupling with a next-nearest neighbor antiferromagnetic cou-
pling alongside fluctuations induced by the transverse field
Bx, playing a role analagous to temperature, induces a rich
variety of phases, including modulated magnetic orders, com-
mensurate to incommensurate transitions, floating phases, and
potential Koster-Thouless infinite order transitions [26,40–
45]. Although one must of course be in the thermodynamic
limit in order to speak of true phases, the structure of these
ground states is distinct enough to allow one to identify
“phaselike” regions. Thus we use the terms “critical point,”
“phases,” and “transitions” when referencing these different
regions of parameter space defined by the structure of the
ground-state wave function.

Since ANNNI essentially encapsulates the complexity of
correlated matter through competition and fluctuation, its
phase diagram is a subject of continuing interest in the litera-
ture. Yet, there remains no consensus on the number, nature,
or location of the phases present [44,46], despite investigation
through a prolific set of methods, including quantum convo-
lutional neural networks [46,47], matrix product states [48],
density-matrix renormalization group (DMRG) [49], quantum
monte carlo [42] and perturbative approaches [50]. For ex-
ample, Beccaria et al. [49] and Nagy [48] both use matrix
product state based methods and report that all phase tran-
sitions converge at one multicritical point. By contrast the
perturbative approach of Chandra and Dasgupta [50] finds that
the paramagnetic phase is restricted to sufficiently high Bx.

One particularly challenging phase to describe is the
floating phase, suitable for describing the properties of the
frustrated magnetic compound Ca3Co2O6 [51,52] which dis-
plays characteristics indicative of incommensurate phases
formed of periodic order parameters mismatched with respect
to the underlying lattice constant [41]. While there are very
strong theoretical tools for describing gapped phases in 1D
and 2D, if the dominant correlation displays oscillations of
this kind, requiring large unit cells to capture, it becomes
challenging for 1D methods [49,53] and virtually impossible
for 2D systems, while still being experimentally accessible
[54]. In the case of the ANNNI model, the study of Beccaria
et al. reports that the power law dictating the correlation

function which characterizes the phase converges to two dif-
ferent possible exponents depending on the number of sites,
and thus even the gold standard of 1D models, DMRG, breaks
down. Therefore given the potential for NISQ devices to ac-
cess highly such correlated states, the model forms an ideal
testbed for promising approaches to digital quantum simula-
tion by combining a simple system with a well-understood,
nontrivial phenomenology.

The aspects of the phase diagram for this model which
are broadly agreed on are that for Bx = 0, it is trivial
to show that there are two ground-state regimes divided
by the critical point Jc

2 = 1/2. For J2 < 1/2, the ground
state adopts an energy-degenerate ferromagnetic superposi-
tion, namely |�〉 ≈ 1√

2
(|↑〉⊗N + |↓〉⊗N ). Whereas, for J2 >

1/2, the next-nearest neighbor anti-ferromagnetic term dom-
inates and the ground state adopts what is referred to as a
〈2, 2〉 configuration, characterized by spin states looking like
|↑↑↓↓↑↑↓↓ . . .〉. The ground state at the critical point (Jc

2 , 0)
is dominated by fluctuations and is completely degenerate,
but numerical studies have shown that lifting the degeneracy
by setting Bx 
= 0, reveals this to be a multi-critical point of
a number of phases dependent on boundary conditions and
system size N , fanning out as Bx increases until reaching a
paramagnetic phase for Bx � J2.

This rich diversity of phases is characterized by phase-
transitions which are generally understood to be second order
in nature, with the exception perhaps of the phase transi-
tion to the 〈2, 2〉 phase, which could first order [44]. Thus
identifying these transitions requires utilizing either an ap-
propriately constructed order parameter, or investigation with
correlation functions. As already mentioned, for incommen-
surate or floating phases this can become a significant hurdle.
An alternative metric which has been used to detect ground-
state configuration rearrangements in condensed matter and
universal properties of critical points in an order-parameter
agnostic manner is the fidelity susceptibility. Given any circuit
which prepares a ground state, one can directly calculate this
quantity on a Quantum Computer. However, when dealing the
with VQE specifically, we must adapt this method to partially
compensate for its shortcomings.

Fidelity susceptibility

Given a wave function dependent on a parameter p (re-
stricted to be one dimensional for simplicity) the sensitivity
of the fidelity of the wave function with respect to a change in
this parameter δ is given by

F (p, δ) = | 〈�(p − δ)|�(p + δ)〉 |. (3)

Taking the Taylor expansion of this expression to second
order, one obtains

F (p, δ) = 1 − χ (p)δ2 + O(δ4), (4)

which defines the fidelity susceptibility (FS) χ (p). This
measure has been used as a standard tool in classical anal-
ysis to study phase transitions in condensed matter systems
[44,55,56]. It is conceptually related to the Loschmidt echo
and has direct bearing on the quantum Fisher information
[57]. Furthermore, it is a measurable quantity via experiments
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in the linear response regime [58] and has been studied di-
rectly on NMR devices [59,60]. Throughout this work we use
the pragmatic approximation χ (p) ≈ 1 − | 〈�(p)|�(p + δ)〉 |
for ease of calculation. For each point of interest in the phase
space p, one can optimize a VQE ansatz parameter vector,
φ(p) such that EVQE(φ(p)) ≈ EG(p), and subsequently calcu-
late χ between different solutions |�VQE(φ(p))〉 (which for
ease of notation we define to be |�VQE(p)〉 = Ĉ(φ(p)) |0〉)
via measuring the proportion of outcomes in the |0〉 state
following preparation of Ĉ†(φ(p′))Ĉ(φ(p)) |0〉 [32].

There is however an important caveat to calculating the FS
between VQE solutions, without explicitly turning to differ-
entiation with respect to the VQE parameters [61]. Given that
the expressibility of any given circuit ansatz is limited, it is
not guaranteed that a given solution |�VQE(p)〉 preserves the
symmetries of the system if the optimization manifold biases
a particular broken symmetry or the solution is trapped in a
local minimum. If two nearby VQE solutions should happen
to break the system symmetries in noncommensurate ways,
the fidelity between these states will be artificially suppressed.
However, this effect can be partially countered.

Every symmetry operation i of the Hamiltonian can be
represented by a unitary operator Ûi such that [Ĥ, Ûi] = 0.
We can collect these operators into the group U . By defini-
tion a symmetry-broken solution will not be invariant under
some Ûi ∈ U , i.e., | 〈�VQE(p)|Ûi|�VQE(p)〉 | < 1. The state
Ûi |�VQE(p)〉 instead corresponds to a rotation within the en-
ergy degenerate subspace dictated by symmetry operation i.
We can generalize this notion by using Ûi as a generator of
rotations characterized by R̂i(θ ) = exp(iθÛi ). If Ûi is not Her-
mitian, linear combinations of Ûi within the same symmetry
class can be performed to create Hermitian operators so that
the operator exponential is guaranteed to preserve state nor-
malization. We denote all possible rotations associated with
each generator in the group as

R̂(θ ) = exp

(
i
∑

i

θiÛi

)
, (5)

where θ ∈ [0, 2π ]d−1 where d = |U | is the cardinality of U ,
and we ignore the trivial identity operation Î corresponding to
the U (1) global phase symmetry.

With these definitions in mind we can consider the VQE
solutions at two phase space points p and p′. We must try
to align these two solutions as much as possible within the
degenerate subspace in order to approximate the fidelity mea-
sure. Thus the calcuation becomes:

FVQE(p, p′) = 1 − max
θ

| 〈�VQE(p)|R̂(θ )|�VQE(p′)〉 |. (6)

Such rotations are not guaranteed to be capable of bringing ar-
bitrary superpositions into perfect alignment with each other.
Indeed it is enough to see this by comparing two solutions
at the same point. Consider one VQE parameterized solution
|�VQE(p)〉 which is in an equal superposition within the de-
generate subspace. By construction this state is invariant under
all symmetry operations such that |〈�VQE(p)|Ûi|�VQE(p)〉| =
1 for all Ûi ∈ U . Now consider another solution |�̃VQE(p)〉
in a completely symmetry broken state, which by construc-
tion means that |〈�̃VQE(p)|Ûi|�̃VQE(p)〉| < 1 for all Ûi 
= Î .

A concrete example for a ferromagnetic ground state with
respect to the Z2 symmetry under open boundary condi-
tions would be |�〉 = 1√

2
(|↑↑ . . .〉 + |↓↓ . . .〉), and |�̃〉 =

|↑↑ . . .〉. In this case, one could represent the Z2 symmetry as
Û = X ⊗N , and U = {I, X ⊗N }. It is easy to see that the equal
superposition state is, up to a phase, unaffected by the rota-
tions in Eq. (6) and thus | 〈�̃|R̂(θ )|�〉 | effectively measures
the projection of the d = 2 dimensional superposition onto
one basis state in the symmetry subspace, corresponding to
1/

√
d .

Depending on the number of symmetries present, scan-
ning over the d dimensional sphere of rotation angles can
become prohibitively expensive, even when doing coarse sam-
pling. Furthermore, implementation of Eq. (5) can lead to
a large experimental overhead depending on the native gate
set available. Thus a pragmatic approximation which we use
throughout this work is to take only the effect of the genera-
tors:

FVQE(p, p′) ≈ 1 − max
i

| 〈�VQE(p)|Ûi|�VQE(p′)〉 |. (7)

In our case, we precompute the appropriate generators to
apply between states across the parameter scan, consisting of
total bit flip, X ⊗N , and when working in periodic boundary
conditions, the shift operators Li which send site i → (i +
k) mod N . We implement shift operators by simply reassign-
ing qubits to the inverted parameterized VQE unitary used to
calculate the overlap between states.

III. EXPERIMENTS

A. Variational circuit and error mitigation

The structure of the VQE ansatz used in this study is epit-
omized in Fig. 1, although this figure is given for N = 4 sites
for clarity. Each ansatz layer consists of two rounds of CNOT
blocks applied to the qubits in a staggered fashion, minimizing
idle time. We choose to construct each layer with two rounds
of entangling gates in order to induce entanglement between
next-nearest neighbors within the connectivity restrictions of
the heavy-hex topology also depicted in Fig. 1. All the results
presented are for a single optimization layer. The optimal
parameters for the ANNNI model were converged using a
classical gradient descent simulation as implemented in the
YAO package [62]. For the N = 12 VQE, in order to improve
convergence the initial cost function was chosen so as to
maximize overlap with the classically computed exact ground
state. However, we removed any underlying symmetries in the
ground state, e.g., Z2 inversion, in order to reduce the degree
of superposition in the target state. Following convergence,
the cost function was switched back to the energy, and the
previously converged parameters used as a starting guess,
which tended to reintroduce some superposition across the
symmetry subspace. For N = 8 and 4, we simply used the
energy cost function throughout the optimization.

In order to mitigate readout error we utilized twirled
readout error extinction (TREX) [63] which effectively diag-
onalizes the readout error map through random application
of Pauli strings in {I, X }⊗N to the qubits, followed by
inversion in post processing, at the cost of running one
set of calibration circuits. We performed TREX calibration
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FIG. 1. The top four plots show example circuit layouts of the
VQE ansatz mapped to the IBM heavy hexagon architecture, show-
ing N = 4 and N = 8 under open boundary conditions on top, and
N = 12 with open and periodic boundary conditions respectively
below. The structure of one layer of the VQE ansatz for N = 4 is
shown on the bottom. For N = 8 and 12, the structure is effectively
the same, but tiled vertically.

measurements at each J2 value in the scan before measuring
in the X and Z bases and performing the FS calculation. We
furthermore utilized zero noise extrapolation [64] by replacing
every instance of a CNOT gate with three and five physically
applied, but logically redundant CNOT gates, under the ex-
pectation that the noise associated with two qubit gates is
the dominant source of error. We used an exponential noise
model E (λ) = E0 exp(aλ) to fit E0 and a for λ ∈ {1, 3, 5}. In
order to eliminate coherent error, we utilized Pauli twirling
of our CNOT gates, which has been shown experimentally
to enforce a stochastic Pauli noise channel associated with
a significantly reduced worst-case error rate [65,66]. When
performing TREX or twirling we use 16 circuit instantiations,
which has been credited as being sufficient for many applica-
tions [4,67] and used 100,000 shots distributed across the 16
circuits. We implemented these tools by hand in Qiskit using
the QiskitRuntime sampler primitive [68].

B. Energy

In Fig. 2, we show indicative experimental results, obtained
by running the precomputed optimal VQE parameters for
the ground-state energy E of Eq. (2) for different J2 values
across multiple devices at Bx = 0.1 for N = 12 under peri-
odic boundary conditions. Both of these experiments were
performed on 127 qubit “Eagle r3” IBM machines. The noise-
free statevector simulation of the optimized parameters in
dashed black is relatively well converged to the numerically
exact solution obtained via exact diagonalization, in particular

FIG. 2. The ground-state energy profile of Eq. (2) for N = 12 at
Bx = 0.1 under periodic boundary conditions obtained via executing
the preoptimized VQE solutions on ibm_osaka with no EM in red
and ibm_kyoto with EM in blue. Error bars are due to shot noise in
the former case (invisible on this scale) and ZNE fitting and extrapo-
lation uncertainty in the latter. The exact diagonalization solution is
in solid black with the ideal, noise free, VQE values in dashed black
obtained via a statevector simulation. Cartoons of the ferromagnetic,
floating and 〈2, 2〉 phases are indicated at the top of the graph with
vertical grey dashed lines at the exact transition points, determined
by χ .

in the “more classical” ferromagnetic and floating phases, in
which the degree of superposition in the Z basis is minimized
compared to the Bx term dominated floating phases.

The results from experiments on real devices without error
mitigation is quite poor, with consistently high energy values
and spurious deviations from the underlying inverse U trend
of the ideal energy profile. When utilizing TREX, twirling,
and ZNE in concert, we can obtain somewhat more reasonable
results, with smaller spurious deviations from the ideal values,
and a qualitatively acceptable profile. Without using TREX
and twirling, the ZNE fits have large uncertainties, leading to
larger error bars and unphysical extrapolated energy values for
some runs. See Fig. 7 in the Appendix for more details.

C. Noise robust detection of phase changes

Given the large extrapolation uncertainty in some of the
ZNE points, alongside the potential to return nonphysical
extrapolations, it is hard to claim without prior knowledge
that any given energy calculation is useful. Can we instead
find a better use for the same experimental results? Naturally,
in order to calculate the energy, measurements must be done
in the X and Z bases, and the energy calculated via the sums
present in the Hamiltonian, Eq. (2). This single scalar is of
course far from all the information which can be calculated
from a measurement in these bases. We can, from the same
experimental data, easily calculate other quantities.

In order to learn more about the properties of the system,
and in particular to study the “phase transitions” which oc-
cur, we start by looking at the derivative of the energy with
respect to J2 through the parameter space. While analytical
expressions for higher order derivatives of the energy within
the VQE have seen substantial development in recent years
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[69–74], due to their relevance in quantum chemistry appli-
cations, we consider simply the first order derivative of the
ground state energy. Assuming that the VQE solution is close
enough to the exact (expressible) ground state, this can be
straightforwardly calculated via the Hellmann-Feynman force
[69,70]: ∂J2 E = 〈�(p)|∂J2 Ĥ |�(p)〉, which clearly entails tak-
ing only the expectation value of the antiferromagnetic sum in
Eq. (2), referred to here as ĤA. It turns out that this quantity
can serve a similar role as the FS in determining phase tran-
sitions, which we briefly clarify here. We start by taking the
second derivative of the energy: ∂2

J2
E = 〈�(p)|ĤA|∂J2�(p)〉 +

c.c. From the first-order perturbative expansion of |∂J2�(p)〉
(for the exact state), we have

|∂J2�(p)〉 =
∑
n 
=0

Hn0
A |�n(p)〉

En(p) − E0(p)
, (8)

where Hn0
A = 〈�n(p)|ĤA|�0(p)〉 for the excited states

Ĥ (p) |�n(p)〉 = En(p) |�n(p)〉 with energies En(p). Subse-
quently,

∂2
J2

E (p) = 2
∑
n 
=0

∣∣Hn0
A

∣∣2

En(p) − E0(p)
, (9)

which is seen to be the second order perturbative correction to
the energy with respect to J2. A similar perturbative analysis
of Eqs. (3) and (4), straightforwardly leads to an expression
for χ in the limit that δ → 0 [55,56]:

χ (p) =
∑
n 
=0

∣∣Hn0
A

∣∣2

(En(p) − E0(p))2
. (10)

Clearly Eqs. (10) and (9) have a very similar form up to the
exponent in the denominator. Thus we can expect that when
the gap closes at a phase transition that both measures will
diverge, although there will be differences depending on if
there is a first or second order phase transition present when
in the thermodynamic limit, the Anderson orthogonality catas-
trophe notwithstanding [75]. Since it is trivial to plot the first
energy derivative, we can inspect these data for large changes
as evidence of a strong second derivative and thus evidence
for a phase transition or level crossing, again with the caveat
that we are working with finite sized systems.

In Fig. 3, we show the results of calculating the first energy
derivative for the same data set seen in Fig. 2. It is obvi-
ous at a glance that the experimental data clearly recovers
the step transitions between the different phases, even when
performing no EM. Nonetheless the suite of EM considered
here considerably improves the quantitative accuracy of the
results, and remarkably the ZNE fits have extremely little
variance leading to quite tight error bars, not visible on this
scale. This is potentially due to the entire measurement data
coming from a single set of Z basis measurements for different
λ CX levels performed sequentially (thus with minimal drift
in noise channels due to non-Markovianity) and being used
to calculate just one antiferromagnetic sum, as opposed to
separate X and Z basis measurements used for different sums
as in Fig. 2.

Next we turn to the correlation functions 〈σiσ j〉 for Pauli
operators σ , special terms of which are present in the
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FIG. 3. The first derivative of the energy for N = 12 at Bx = 0.1
under periodic boundary conditions, in units of J1 obtained via exe-
cuting the preoptimized VQE solutions on ibm_osaka with no EM
in red and ibm_kyoto with EM in blue. Exact diagonalization results
are in solid black, while the noise free state-vector simulation of the
VQE is in dashed black. The grey dashed vertical lines indicate the
phase transition points determined by χ .

calculation of the energy and its derivative. In the top two
panels of Fig. 4, we show the ideal noise-free correlation
functions 〈X0Xi〉 and 〈Z0Zi〉 of the VQE calculated with
a state-vector simulation and the experimentally measured
quantities in the second row. The differing number of phase
transitions with respect to Figs. 2 and 3 is due to the latter
results being under open boundary conditions. The corre-
sponding energy calculation from the same data is seen in the
bottom left panel. Utilizing just the simple digital modifica-
tion and post processing tools of Pauli twirling and TREX,
we already see that the behavior of the correlation functions
is, qualitatively, quite accurate across the scanned parameters,
up to slight differences in magnitude for the 〈Z0Zi〉 correlator.
Due to the lower absolute magnitude of 〈X0Xi〉, the fluctua-
tions induced by noisy runs are more pronounced. Taken as
a whole however, it is easy to discern similarly structured
J2 ranges. These qualitative trends allow one to cleanly see
different “phases,” i.e., ground-state configurations that the
VQE takes on.

This conclusion is further bolstered by considering the FS,
shown on the bottom right panel of Fig. 4. Here we see that the
noise level creates quite a high baseline within phase regions,
showing that in this experiment between 35%–40% of the
measured states were not the |0〉⊗N state expected by the exact
and ideal VQE simulation. However when crossing between
phase regions, the measurement becomes effectively identical
to the ideal VQE results. This signal to noise ratio means that
the ground-state reconfiguration can be experimentally well
resolved. Furthermore it is clear at a glance that the peaks
in χ directly correspond to boundaries between similarly
structured areas in the correlation functions corresponding to
similar ground-state configurations.

Cross-referencing these results against each other, one can
also infer the reliability of outlying values in any one measure.
For instance, the XX correlator at J2/J1 = 0.51 displays a
strong drop in magnitude compared to the neighboring values.
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FIG. 4. The correlation functions 〈X0Xi〉 and 〈Z0Zi〉 alongside energy and FS for N = 12 at Bx = 0.1 with open boundary conditions. The
top row shows the ideal noise-free VQE correlation functions, while the middle row shows the experimental results on ibm_kyoto, starting
from site i = 1 on the y axis. The J2/J1 axes are shared with Energy and FS plotted on the bottom rows. The FS is plotted at the midpoint
between the two J2 values used to calculate it. The differing number of peaks/transitions with respect to Figs. 2 and 3 is because the results
plotted here are for open boundary conditions, while those are for periodic boundary conditions. All results were obtained using just TREX
and Pauli twirling.

However, there is no such trend observed in the ZZ correlator
at this point, and the FS value at 0.505, corresponding to the
overlap between J2/J1 = 0.5 and 0.51, does not peak, thus
implying that this particular X basis measurement was likely
subject to some fluctuation in the underlying noise channels.

In Fig. 5, we show the results of a VQE solution to the
N = 12, Bx = 0.1 problem with periodic boundary conditions
using just TREX. The heavy-hex architecture of the IBM
Eagle devices allows a natural mapping to a ring of physical
qubits as seen in Fig. 1. In addition to the Z2 symmetry,
this periodicity imposes a shift symmetry. As a result of this
symmetry being broken differently between neighboring J2

VQE solutions the 〈σiσ j〉 (p) matrices can be offset between
J2 values. Thus, in plotting Fig. 5, we align the calculated
correlation function matrices between J2 values as much as
possible. We see that even with a substantial amount of noise-
induced fluctuation in the energy calculation, the qualitative
trend in the correlation functions is still quite well behaved. In
these experimental results, it is evident that that the signal to
noise ratio in χ is higher than in Fig. 4.

However, we can again cross reference the results to infer
the ‘hidden’ noise-free properties of the VQE solutions. In the
range J2/J1 = (0.45, 0.49), χ displays several large values.
Furthermore, we see from the measured data that rearrange-
ments in the XX and ZZ observables occur between each
of these values. Thus, even if we had trained these VQE
solutions blindly on a real device, we could infer that at the
very least, the parameterized wave functions in the range has
some reconfiguration, as indeed we see from the ideal VQE

FS calculation in dashed black lines. Another example is the
range J2/J1 = [0.57, 0.6]. The FS in this region is also quite
high, but by looking at the correlation values, it is evident
that XX remains near zero, while ZZ retains the same 〈2, 2〉
structure, even though the intensity fades. From this we can
infer that the FS calculation data may not be reliable.

At the level of correlation functions, we found that in
some cases their quantitative accuracy could be improved
under TREX and twirling, although the effects are not easily
discernible on a color scale plot. See Figs. 8 and 9 in the
Appendix to see the corrections obtained for the XX correlator
in N = 12 under open boundary conditions. However these
effects are minor enough that in Figs. 6 and 10, we show
results for N = 8 and 4, respectively, under open boundary
conditions with no EM techniques used at all. Here one sees
that the qualitative trends in the correlation functions are still
quite accurate, while the signal to noise ratio in FS is approx-
imately a factor of three.

IV. DISCUSSION AND OUTLOOK

We found that from a practical standpoint, when using
NISQ devices to calculate the energy using a VQE ansatz,
even if one uses Pauli noise shaping, read out and zero-
noise extrapolation error mitigation methods, the resulting
value is essentially useless. Without ZNE the value is virtu-
ally guaranteed to be much larger than the ideal noise-free
result. However, with ZNE it could well be that extrapola-
tion from fits with large uncertainties render a nonphysical

043254-7



KEVIN LIVELY et al. PHYSICAL REVIEW RESEARCH 6, 043254 (2024)

〈X
0X

i〉 Ideal VQE

〈Z
0Z

i〉

〈X
0X

i〉 Experiment

〈Z
0Z

i〉
0.40 0.45 0.50 0.55 0.60

J2/J1

5.0

5.5

6.0

6.5

7.0

7.5

−〈
Ĥ
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FIG. 5. The results for N = 12, Bx = 0.1 under periodic boundary conditions calculated on ibm_osaka. The ideal VQE results are on the
first row, with experimental results on the second. Energy and fidelity susceptibility are plotted on the bottom row. The FS is plotted at the
midpoint between the two J2 values used to calculate it. These results were obtained with TREX.
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with no error mitigation techniques.
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answer below the exact ground-state energy. Conversely,
when using precisely the same measurement data used in the
energy calculation, we can explore the nature of the physically
encoded and executed VQE wave function by analyzing the
data through a variety of observables. For example, looking at
the derivative of the energy through our parameterized slice of
phase space, as estimated by the Hellmann-Feynman theorem,
we saw that there was very clearly phase information about
the wave function encoded in the experimental data, which
was far more robust to noise than the value of the energy.
Of course this is in a qualitative sense, as the quantitative
error is still non-negligible if one is thinking of the accuracy
required from a quantum chemistry perspective. However, the
trends between data points corresponding to differing phases
are unmistakably clean.

Similarly, by focusing on “distributed” observables, i.e.,
the correlation function across all sites, we argue that the qual-
itative trend of these values gives more usable information.
Since for well converged solutions there is a similar ground-
state configuration between VQE wave functions within the
same region, the underlying trends within the highly struc-
tured correlation functions of those states are easier to discern,
despite the fluctuations induced at particular values due to
noise. In particular for our problem where we scan through
several distinct ground-state phases, the sharp difference in
these quantities gives clear, noise-robust signals of ground-
state rearrangement. The point is not so much that a particular
correlation function value 〈σiσ j〉 for a particular phase is nu-
merically accurate or not, it is that the trends of these functions
across the phase space provide unambiguous experimental
data identifying clear regions of similar structure. Therefore
we assert that using such observables to identify quantum
phase transitions in VQE solutions could conceivably consti-
tute a presently existing, noise robust utility of NISQ devices.

Alongside this tool, we adapted the well established Fi-
delity Susceptibility measure to partially accommodate the
limitations of the VQE ansatz, and found that it provides
a high signal-to-noise measure of phase boundaries being
crossed between VQE solutions. For the model studied here,
this allows one to quickly cross-check the spin correlation
functions with the FS measure in order to determine whether
there was a true ground-state rearrangement, or if there was
some partial, differentiated symmetry breaking across sym-
metry sectors between VQE solutions. For other problems,
e.g., topological phase transitions, where local order param-
eters do not show discontinuities between phases, the sucess
of using the FS in condensed matter theory could be easily
extended to NISQ computation. This provides a conceptually
simple method of detecting topological phases compared to
say identifying nonlocal string order parameters [30] or train-
ing quantum convolutional neural networks [37–39].

While these results have shown that one can use NISQ
devices to detect phases and their boundaries in VQE so-
lutions, it is important to emphasize that the spirit of this
work is not limited to the VQE algorithm, and can indeed be
extended to any method which prepares ground state solutions
to particular models. Going forward, to be able to demonstrate
a true advantage over classical computation requires finding
ground states for classically intractably large system sizes. In
the case of the VQE, which is one of the most promising

near term algorithms, this naturally requires implementing an
optimization loop on real devices. Given the active research
in compensating for problems of barren plateaus from overpa-
rameterization [76,77] and noise [78,79], our results suggest
that characterization of complex zero temperature phase dia-
grams in large systems can be a real near term advantage for
NISQ computation. Furthermore, while the interplay between
EM and trainability of VQAs is an area of active research
[21,80,81], fundamental limits on the ability of EM to fully
compensate for noise of large system sizes have been derived
[82,83]. This raises the possibility that simple measures like
the ones we propose, bolstered by stable EM methods like
digitally shaping the noise via twirling and postprocessing
methods like TREX, could still retain use in the system size
vs. error threshold range between EM and fully fault tolerant
computation.

While these are interesting speculations worthy of fur-
ther investigation, we end by noting a few concrete uses of
phase identification in relatively smaller systems. An obvi-
ous example would be larger system sizes for the ANNNI
model itself, useful for simulating the properties of the frus-
trated Ising magnet Ca3Co2O6 [51,52] or other systems which
display similar complicated phases which require scaling to
large system sizes in order to identify [53]. Furthermore, our
approach dovetails well with improvements in using VQAs
for resolving excited states [84] in particular in the context
of conical intersections and avoided crossings [71,73,85,86].
If one can detect rearrangements in the electronic structure
on either side of a conical intersection as encoded in phys-
ical qubit correlation functions, then there could be space
for a quantum advantage over classical electronic structure
methods, which already struggle at medium sized molecules.
Applications could include distinguishing Jahn-Teller Effects
(JTE) due to level crossings between the ground state and
higher lying states such as in the fullerene C60 molecule,
versus pseudo JTE (PJTE) coming from small gapped avoided
crossings such as in hemoglobin, in which the FS would in
principle not pick up a ground-state rearrangement. These
effects are ubiquitous in polyatomic molecular chemistry: for
a comprehensive review with extensions to periodic systems
see Ref. [87].

In conclusion, we found that by using a combination of
simple target observables, we can reliably detect the proper-
ties of ground state configurations in a noise robust manner on
presently existing NISQ devices by interrogation of the exper-
imental data from multiple angles, thus making the corruption
of one observable by noise less detrimental. We demonstrated
this utility experimentally by detecting rearrangement be-
tween phase domains for preoptimized VQE solutions to a
frustrated spin model. Our results have the potential for direct
application to circuits which prepare ground state solutions
for medium and large sized systems, and could be useful even
in cases where error mitigated observables are prohibitively
expensive.
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APPENDIX A: EM IMPROVEMENTS TO ZNE

We found that mollifying the effects of readout error via
TREX alongside noise shaping by Pauli twirling had a non-
trivial effect on the quality of the resulting ZNE fit to the
energy. In Fig. 7, we show the energy calculation as it appears
under increasing logically redundant but physically applied
CX gates, where every CX in the ansatz is replaced with
one, three or five CX cycles. In addition to the raw results
having consistently higher values than those with TREX and
twirling, their errors increase at a greater rate compared with
the TREX-Twirl results, seen by the increasing gap between
them going from λ = 1 to λ = 5. Subsequently the result-
ing fit has a larger variance, leading to larger uncertainty in
the extrapolated values, alongside greater fluctuation in the
extrapolated mean. In the worst cases, this leads to several
expected values below the physically bounded exact ground-
state value. In contrast, while for some runs, in particular
closer to the 〈2, 2〉 region, the EM extrapolation also has high
uncertainty, the expectation values are consistently closer to
the ideal results and, within the error, always physical.
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FIG. 8. The XX correlation function for N = 12, Bx = 0.1 un-
der open boundary conditions calculated on ibm_osaka, compared
to exact results and the ideal VQE results. The experiments were run
with no error mitigation techniques.

APPENDIX B: EM IMPROVEMENTS TO
CORRELATION FUNCTIONS

While one of the primary points of this paper has been
to argue that the specific numerical values of the 〈σiσ j〉 cor-
relation functions are not as relevant as the fact that their
structured nature yields reliable signals under ground-state
rearrangement, we nonetheless note that the quantitative ac-
curacy can be further improved through the EM methods
we explored here, thus improving their reliability. In Fig. 8,
we show slices of the XX correlator in the ferromagnetic
(J2/J1 = 0.42) and floating (J2/J1 = 0.48) phases without any
error mitigation applied. One sees that there is simultane-
ously large fluctuation in the ferromagnetic phase, while the
floating phase shows strong deviation from the characteristic
curve. Again, although these are clearly quantitatively quite
inaccurate, they are still quite distinct with respect to one
another.

Looking at Fig. 9 where TREX and twirling are performed,
we see that the flat line of the ferromagnetic phase and the
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der open boundary conditions calculated on ibm_osaka, compared
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with TREX and Twirling.
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oscillations of the floating phase are both quantitatively much
better captured, in particular, the amplitude of the floating
phase signal becomes quite accurate with respect to to the
ideal VQE results. These minor digital manipulation and post-
processing routines are sufficient to quite strongly improve the
signal, and the distinction between the two phases loses any
ambiguity.

APPENDIX C: N = 4 DATA

For completeness we here include the results of an N = 4
calculation in Fig. 10, in order to demonstrate that our results
hold for a variety of system sizes. In this case the correlation
functions are far less structured, yet clearly show a transition
across the range, while the energy calculation is also qualita-
tively well behaved.
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