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Abstract

The adoption of automatic inspection systems is growing across various industries, such
as manufacturing and energy, and is expected to expand significantly into other sectors,
including aerospace. The potential for automation in this field is substantial, promising
advancements in visual inspection to improve decision-making and performance. These
systems often encounter challenges when inspecting highly reflective metallic surfaces,
where varying light conditions can obscure critical surface details. Such limitations not
only compromise inspection accuracy but also pose potential risks to safety. To address
these issues, this thesis explores the implementation of various U-Net-based architectures
for detecting specular light reflections in inspection images, facilitating reactive planning
during autonomous inspections. A novel dataset comprising inspection images and corre-
sponding masks of light reflections is introduced, serving as a foundation for training the
U-Net models.

Key findings reveal that CNN-based U-Nets significantly outperform their Transformer-
based counterparts, with U-Net++ featuring a ResNet-50 encoder yielding the highest
Intersection over Union (IoU) and Dice Similarity Coefficient (DSC) scores. In con-
trast, the proposed UNETR-Attention Fusion (UNETR-AF) struggles to detect larger
reflections but performs comparably for medium and smaller reflections. This research
contributes valuable insights into industrial inspection applications focused on reflective
surfaces. While the findings predominantly pertain to 2D RGB images, future work may
explore the adaptation of these techniques to RGB-D images to capture additional depth
information, potentially improving the efficacy of reactive planning in autonomous in-
spections. Furthermore, the application of generative Al could facilitate the creation of
expansive datasets, while few-shot learning methods may be employed to mitigate data
scarcity challenges.

Keywords: Specular Reflection Detection, Image Segmentation in Inspection, U-Net,
Vision Transformer Architecture, Reflections in Inspection images, Inspection dataset,
Autonomous Visual Inspections.
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Chapter 1

Introduction

Robots are increasingly being adopted by the industrial sector to perform automatic in-
spections. In the aviation industry, visual inspection constitutes more than 80% of inspec-
tion procedures [88], representing a substantial amount of labor hours. These inspections,
which are still predominantly performed manually by human operators, require a signifi-
cant workforce and contribute greatly to the overall operational costs. Moreover, the cost
of maintenance during the operational phase is the highest and most unpredictable among
all phases of an aircraft’s life cycle [71]. This reliance on manual processes and the un-
predictability of costs highlight the potential benefits of automated inspection solutions,
which can reduce labor costs and improve efficiency.

Inspections form a large part of aircraft Maintenance, Repair, and Overhaul (MRO).
MRO activities also include preventive, corrective and predictive maintenance, such as
repairing or replacing system parts based on their quality condition [126]. Inspections
are foundational to MRO operations, as they aid in identifying components that require
replacement or repair to maintain optimal performance and safety standards. These
inspections take place under varying lighting conditions, from the expansive external
aircraft wings to narrow hydrogen fuel tanks. In such enclosed spaces, light sources
produce reflections on metallic surfaces which can obscure critical details, compromising
the reliability of the inspections. This poses significant safety risks, especially in the
aviation industry where human lives are at stake. Visual inspections of aircraft involve
multiple observation processes to identify irregularities and ensure the safety of the vehicle
[126]. Therefore, developing methodologies that effectively identify these reflections is
essential, allowing robots to revisit affected areas for more reliable and comprehensive
inspections.

This thesis is completed in collaboration with the Deutsches Zentrum fiir Luft- und
Raumfahrt (DLR) at the Institute for Maintenance, Repair and Overhaul, Hamburg as
part of the ongoing research in autonomous inspections at the Robot-Assisted Inspection
and Repair group.

1.1 Problem Statement

Machine vision is one of the key technologies in the field of visual inspection systems
that enables automatic processing of images of an object through optical devices and
sensors. Its efficiency and reliability has significantly improved with the integration of
artificial intelligence. Due to this, it is possible that machine vision will partially replace
the current manually performed visual inspections. The Federal Aviation Administration
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(FAA) classifies visual inspections into four categories [24]|[126]: walk-around inspection,
general visual inspection, detailed visual inspection and special detailed visual inspection.

e Level 1: Walk-around Inspection (WAI) is a general check conducted from ground
level by either flight or maintenance personnel to identify discrepancies affecting
aircraft performance; it is performed periodically and requires the aircraft to be
clean and accessible. This includes checking for items that affect safety, legality,
efficiency and comfort [24], such as checking general condition of the paint, observing
the fuselage and aircraft wings and looking for major dents in the exterior of the
aircraft.

o Level 2: General Visual Inspection (GVI) involves a broader examination, often
requiring tools for accessing panels and ensuring the aircraft’s cleanliness, typically
conducted when a specific problem is suspected. This level goes beyond observing
and involves moving all parts possible, such as applying weight to load bearing com-
ponents and viewing the object under different light conditions [24]. The findings
of this level may lead to Level 3 or Level 4.

e Level 3: Detailed Visual Inspection (DVI) is an intensive evaluation of a specific area
or system, utilizing a variety of specialized tools and requiring thorough preparation
and documentation when further investigation is warranted. This requires reviewing
the aircraft history and accident reports. This inspection occurs when a problem
is detected, i.e corrosion or crack, and the surrounding area is inspected for failure,
damage or irregularity [24]. New discoveries in this inspection may lead to Level 4.

e Level 4: Special Detailed Visual Inspection (SDVI) focuses on intricate components
and often involves specialized techniques, complex disassembly, and advanced tools
to ensure airworthiness, particularly for damage-tolerant aircraft. This tier is typi-
cally invoked based on prior inspections or specific directives [126]. The procedures
carried out are centered on visual inspection but may incorporate Non-Destructive
Inspection (NDI) techniques, such as dye penetrant testing or borescope imaging,
to enhance the detection of irregularities in inaccessible areas. These inspections
often target portions of the aircraft that require disassembly to access, such as lap
joints and the interior surfaces of the aircraft wing skin [24].

Walk-around and general visual inspections are periodically performed by the aircraft
maintenance and operating personnel to check for damages. Most of the damages caused
to fuselages and the exterior of the aircraft are due to impacts with objects during flight
or maintenance with objects, hails, lightning strikes and birds [126].

Aerospace and aviation industries widely use metal alloys or composites which have
highly reflectively surfaces. These materials are often painted but the paint is also very
reflective. These industries have high requirements for surface quality [92]. Autonomous
inspection in this field are used to detect defects in metal and composite fuselage. An
industrial visual inspections system consists of three components: optical illumination,
image acquisition and image processing [92]. The hardware components are responsible for
optical illumination and image acquisition tasks, which include light source, illumination
modes, and image acquisition schemes used by the robot. While image processing is
the software-based component which is responsible to find useful information from the
captured images. These tasks include image preprocessing, classification, localization, and
segmentation of defects. In most autonomous inspections robots, the bright field forward
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lighting illumination mode (see Section 2.1.2) is employed wherein the light source and the
camera are located at the same side of the object. This illumination mode is preferred to
capture the surface details however it produces specular reflections on reflective surfaces
such as metal. Reflections are also created intentionally to identify some defects, especially
to show small deviations in the surface. However, in certain cases, specular reflections
can occlude the finer surface details which makes it challenging to reliably inspect the
surfaces and meet the high inspection standards. A depiction of two use cases involving
reflections - one where they are obstructive and another where they are intentional -
is shown in Figure 1.1. Figure 1.1(a) illustrates an image of a turbine blade where a
significant portion of the blade has reflections due to its proximity to the light source.
The reflection hides the surfaced details of the object, making it challenging to inspect it.
While Figure 1.1(b) illustrates a use case where reflections are intentional and helpful in
revealing details of the surface.

(a) Reflections hide details (b) Reflections reveal defects

Figure 1.1: Comparison of how reflections can either hide (left) or reveal (right) surface
details in inspection images. In the left image, reflections obscure critical details, making
it difficult to inspect the surface, while in the right image, reflections help highlight defects.

Various optical camera systems are widely used in industries to analyze strain and dis-
placement fields in various materials and structures. These optical systems are affected
by various external influences such as the test environment conditions and out-of-plane
motion, due to which it is a considerable challenge to obtain high quality images [87].
The lighting conditions in the testing environment vary based on the area under exam-
ination. External surfaces like airplane wings are subjected to both environmental light
and inspection lighting sources. In contrast, surfaces such as hydrogen fuel tanks are
inspected indoors under a single light source, devoid of natural light. In industries with
stringent surface quality standards, meticulous examination of the complete surface is
essential. Areas where reflections obscure details must be reexamined to ensure thorough
and reliable inspection. In autonomous inspection systems, it is vital to reposition the
camera to find an optimal angle that allows for surface inspection without the interference
of reflections. To achieve this, the system must first identify and localize reflections in
the image, using this data to guide the camera’s repositioning. This process enhances the
system’s reactive planning capabilities, enabling the robot to adjust its camera position
dynamically for a more accurate and effective inspection.
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(a) Image with Reflection  (b) Image without Reflection

Figure 1.2: Comparison of an inspection image with reflection hides details (left) against
the same image without reflection (right). In the left image, reflections make it difficult
to understand whether that portion of the turbine blade has any defects or not, while in
the right image captured from a different angle without reflection, it is easier to observe
that there are no visible defects.

1.2 Research Question

Deep-learning and machine learning have been gaining popularity in the field of visual
inspection. Recent rescarch within computer vision include detection of cracks [125] [58]
and aircraft dents [11]. Supervised deep-learning approaches are dependent on the quality
of the data used. The presence of reflections in the images may deter the reliability of the
results, which is detrimental for maintenance purposes.

The challenge of reflections in images has been studied across various domains, partic-
ularly in medical segmentation for procedures such as cervical cancer screenings [48] and
endoscopic procedures like colonoscopy [72] where reflections pose a risk of misdiagnosis.
The detection and removal of reflections in medical images has been widely researched,
yielding numerous state-of-the-art methods. However, these methods are often focused
on post-processing, where the primary goal is improving diagnostic accuracy after image
acquisition. While effective in controlled environments, these methods do not account
for real-time adjustments during image capture, which is crucial in other fields, such as
industrial inspections.

In contrast, reflection detection in autonomous visual inspections is essential for real-
time decision-making. Autonomous inspections necessitate the use of hybrid systems,
which integrate various components: data acquisition systems for capturing and digitiz-
ing the inspected parts, sensors for detailed data collection, robots to automate sensor
movement, and processing systems to analyze the data and detect irregularities or pat-
terns [126]. Reflections not only obscure defects but also hinder the inspection process,
requiring immediate intervention to ensure the inspection area is fully covered. The key
challenge lies in handling these reflections dynamically during inspections to avoid com-
promising the safety and efficiency of the process. Reflection detection plays a critical
role here—not just to enhance image clarity, but trigger reactive planning actions such
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as camera repositioning or adjusting inspection parameters. As environmental factors
like lighting conditions, surface materials, and object orientation vary significantly in in-
dustrial settings [87], it can create challenges that standard post-processing techniques
cannot address.

Therefore, the research question driving this work is:

How can semantic segmentation methods based on the U-Net architecture
be adapted and optimized to effectively detect and classify reflections in in-
spection images under varying light conditions to support reactive planning
in autonomous inspection systems?

1.3 Objective and Contribution of the Thesis

The primary objective of this thesis is to develop and evaluate a specialized reflection
detection system using different semantic segmentation techniques. Given the real-time
needs, semantic segmentation methods based on the U-Net architecture, offer a promis-
ing approach. U-Net’s pixel-wise classification ability is well-suited for distinguishing
reflections from key object features in images. However, the challenge is to adapt and
optimize these models to manage the conditions found in industrial environments, where
reflections can vary due to material properties and lighting changes. A key component
of this research is the creation of a specialized dataset that mimics real-world inspection
scenarios in aviation, focusing on reflection-heavy images taken under various conditions.
This novel dataset comprises of RGB images along with their corresponding binary seg-
mentation masks. Additionally, this thesis introduces a novel hybrid architecture that
integrates a Vision Transformer with a Convolutional Neural Network, termed UNETR
Attention Fusion (UNETR-AF).

To assess the effectiveness of different semantic segmentation models on this dataset,
the models are trained and evaluated on the newly created inspection image dataset as
well as on two existing datasets of specular reflection images of real-world objects captured
in varying light conditions. Although these datasets are not focused on inspection images,
it serves as a comparative baseline to determine the robustness and adaptability of the
models to different types of reflections.

The thesis contributes by comparing the performance of models trained on all the
datasets against a common test set of inspection images. This comparison reveals whether
models trained on the inspection-specific dataset yield superior performance for the task at
hand. Additionally, the thesis explores various semantic segmentation models to identify
the one that performs best in detecting reflections within inspection images, which is
critical for improving the accuracy and reliability of autonomous inspections.

1.4 Organization of the Thesis

This thesis is organized into several chapters that encompass a wide range of relevant
topics in both breadth and depth. Chapter 1, titled Introduction, outlines the problem
statement, research question, objectives, and contributions of the study, establishing a
clear context for the research. Following this, Chapter 2, Background Information, delves
into fundamental concepts related to light reflections and traditional image segmentation
methods, as well as modern deep learning approaches. It includes discussions on various
types of light reflections, illumination modes, neural network architectures, loss functions,
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optimizers, and evaluation metrics. Chapter 3, Related Works, reviews existing reflection
detection methods, both traditional and deep-learning-based, alongside available specular
reflection datasets relevant to the research.

In Chapter 4, Methodology, the thesis discusses the implementation details, covering
the novel contributions such as the proposed UNETR-AF method and Inspection dataset,
as well as other models employed, including U-Net, Attention U-Net, U-Net++, and UN-
ETR. Chapter 5, Experiments and Results, presents the experimental setup, including
datasets, model architectures, training processes, and the results obtained. The subse-
quent Chapter 6, Discussion, provides an in-depth analysis of the results, comparing them
to state-of-the-art and traditional methods while discussing the strengths and limitations
of each model. Finally, Chapter 7, Conclusion, summarizes the thesis’s findings and pro-
poses ideas for future work, reflecting on the overall contributions and implications of the
rescarch conducted.



Chapter 2

Background Information

Deep-learning involves a range of modules that assist in learning the task at hand, in
addition to the model architecture. This chapter covers the background information
needed to understand the components and functions implemented within the network
architecture in deep-learning, and traditional image segmentation methods as well as
fundamentals of the reflections in inspections.

2.1 Light Reflections

Inspections vary across different domains due to a number of factors like the shape and
material of the object being inspected, the light conditions, and the type of data being
captured. As the conditions for visual inspections differ depending on the application area,
so does the types of reflections produced for any inspection task. This section covers the
basic principles of reflections and the illumination modes used in machine inspections.

2.1.1 Types of Light Reflection

Light reflections occur when the light ray bounces off a surface instead of absorbing
or transmitting through it. The nature of the light reflection depends on the surface’s
properties and the angle at which the light ray strikes the surface, known as the angle
of incidence. This is explained by the law of reflections which states that the angle of
incidence is equal to the angle of reflection [94]. The angles of incidence and reflection
are measured with respect to a line perpendicular (normal) to the reflecting surface, as
shown in Figure 2.1.
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NORMAL
Angle of Angle of
Incidence Reflection
INCIDENT ¢ PR <D l’ REFELECTED
RAY .” R RAY

Point of
Incidence

PLANE REFLECTING
SURFACE

Figure 2.1: Law of Reflection: the angle of incidence is equal to the angle of reflection.
The angles are measured from the normal or the perpendicular. The image was taken
from [94].

There are two main types of light reflections: specular and diffuse. Specular reflection
takes place when light reflects off a polished and shiny surface such as a mirror or a
metallic surface in which the rays remain parallel [94] [108]. In this case, the angle of
incidence (6;) equals the angle of reflection (6,), both measured relative to the surface
normal (7). This creates a sharp and clear reflection. This is expressed mathematically
as:

Diffuse reflection, on the other hand, occurs when light strikes a rough or uneven
surface, causing the light rays to scatter and creating a blurred or soft reflection [94]. Tt
follows Lambert’s Cosine Law, [31], which states that the reflected light intensity (1) is
proportional to the cosine of the angle between the incident light direction and the surface
normal:

I = Iycos(h), (2.2)

where [j is the incident light intensity and 6 is the angle between the incident light
and the normal to the surface. This law is crucial for understanding how light interacts
with non-specular surfaces, such as in industrial inspection, computer graphics, and re-
mote sensing applications. According to the law, the illumination the surface is directly
proportional to the cosine of the angle between the illuminating source and the normal.
The concept is visualized in Figure 2.2.



2.1. LIGHT REFLECTIONS 9

N7\

Specular Reflection Diffuse Reflection

Figure 2.2: Light Reflection: Specular and Diffuse. The diagram is redrawn from [94].

Figure 2.3 illustrates the distinct appearances of specular and diffuse reflections in a
real-world scenario. Specular reflections are highlighted with red bounding boxes, while
diffuse reflections are indicated with blue bounding boxes. The object in the image com-
prises various materials. The specular reflections on the metallic screws make it challeng-
ing to discern its surface details. In contrast, surfaces with diffuse reflections reveal some
level of surface texture, providing more visibility of the underlying details.

[ Diffuse
=3 Specular

Figure 2.3: Light Reflection Example: Specular and Diffuse.

2.1.2 Fundamental Illumination Modes

There are numerous illumination options employed in industries in order to capture the
best possible images of an object depending on the purpose. Some of the fundamental
illumination modes are depicted in the Figure 2.4. The illumination modes reflect the
positional relationship between the light source, camera and the object [92]. There are
five key illumination modes: bright field forward lighting, dark field forward lighting,
coaxial forward lighting, scattering forward lighting of dome structure, also known as
diffuse lighting, and the back lighting, which are depicted in Figure 2.4.
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Figure 2.4: Types of Illumination modes: a) bright field forward lighting; b) dark field
forward lighting; ¢) coaxial forward lighting; d) scattering forward lighting of dome struc-
ture or diffuse lighting; e) back lighting based on [92].

Forward lighting is the most widely used method wherein the the camera and the light
source are placed on the same side with the object across them. It is mainly used as it
creates a good constrast and enhances the surface details. This is suitable for capturing
the surface texture and detecting surfaces defects. Depending on the angle in which the
light is reflected on the camera, this mode can be split into bright field forward and dark
field forward lighting. Bright field light is when the light is directly placed in front of the
object. This is the most commonly used approach for surface defect detection because
it provides uniform illumination and ensures that surface irregularities are prominently
highlighted, making defects easier to identify. Although it highlights the surface textural
details, it produces specular reflections in reflective surfaces. In dark field lighting, the
incident angle of the light is reduced, which helps to highlight the edges of the surface as
well as surface concavity and convexity |92]|. The difference between the two light settings
on a peanut brittle bag are shown in Figure 2.5.



2.1. LIGHT REFLECTIONS 11

Figure 2.5: Peanut Brittle Bag from [68]. Left: under bright field forward lighting. Right:
under dark field forward lighting - the seal is visible in this setting.

Coaxial light is another forward illumination mode that passes light through a half mir-
ror to avoid strong reflections. This is suitable for detecting bumps, cracks and scratches
on smooth surfaces. This is effective in illuminating textured features as instead of avoid-
ing specular glare, it uses the glare to find details about a feature of interest. Figure
2.6 demonstrates a use case where diffuse light is used to inspect damage in the sealing
surface of a bottle cap.

Figure 2.6: Sealing surface of two bottle caps under diffuse light from [68]. Left: Clean
and undamaged surface. Right: Damaged surface. The damage is observed in the discon-
tinuities within the white ring by the light.

Scattered forward lighting of dome structure or diffuse lighting is used to avoid direct
light on surfaces by illuminating against a dome structure. In this mode the light passes
through a diffuser which reflects or blocks part of the light, providing soft lighting to
illuminate the scene however it requires multi directional lights.
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Figure 2.7: Specular vs Diffuse Lighting example from [68]: a. Ring Light without Polar-
izers, b. Ring Light with Polarizers c. Ring Light with Polarizers and in Diffuse mode. a.
and b. are captured in bright field forward mode. a. produces strong reflection due to the
illumination mode and the lack of polarizer. b. produces little glare even with polarizer,
which filters out some of the reflections. c¢. produces no reflections due the combination
of Diffuse Lighting mode and Polarizers.

Another significant mode to avoid reflections is back lighting wherein the light source
is placed behind the object. This can highlight shadows of opaque objects and the interior
of transparent objects. Due to these properties, it is useful for object shape detection and
detecting the presence or absence of holes of gaps.

Mode Description | Advantages Disadvantages| Application

Bright Light  from | High contrast | Glare on reflec- | Surface inspec-

Field the front. for surface | tive surfaces. tion, label read-

features. ing.

Dark Field | Shallow angle | Reveals Ineffective on | Defect  detec-
light for sur- | scratches, non-reflective tion on shiny
face defects. defects. surfaces. objects.

Coaxial Light aligned | Reduces glare | Limited to flat | Inspection  of
with camera | and shadows. objects. reflective  sur-
axis. faces, glass.

Scattering | Diffused light | Eliminates Low  contrast | Shiny, curved

(Dome) from all direc- | shadows, reflec- | for small de- | objects like
tions. tions. fects. bottles.

Back Light placed | High contrast | No surface de- | Edge, hole de-

Light- behind  the | for edges, holes. | tails. tection, object

ing object. profiling.

Table 2.1: Summary of Illumination Modes in Machine Vision.

2.2 'Traditional Image Segmentation

Image segmentation is the process of dividing an image into regions based on high-level fea-
ture visual features like brightness or intensity. Traditional Image Segmentation methods
consists of machine learning algorithms which are simple, efficient and computationally
inexpensive. These include thresholding, edge detection, and region-based techniques.
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2.2.1 Thresholding

Thresholding is a fundamental technique in image processing used to segment images into
distinct regions by converting grayscale images into binary images. This process involves
setting a specific intensity value, called the threshold, to differentiate between foreground
and background pixels. Pixels with intensity values above the threshold are typically
classified as foreground, while those below are classified as background. There are several
thresholding methods, including global thresholding, where a single threshold value is
applied across the entire image, and adaptive thresholding, which adjusts the threshold
value based on local pixel neighborhoods.

Adaptive thresholding algorithms include Gaussian [18], mean [34], and Otsu [84]. In
Gaussian thresholding, the threshold is set based on the local average which is a weighted
average of the pixel values in the block, where the weights are a 2D Gaussian centered in
the middle. Similarly in mean thresholding, the threshold for a region is set by averaging
the pixel values. Otsu thresholding [84] selects the optimal threshold by maximizing the
variance between the two classes of pixels that are separated by the threshold.

Figure 2.8 shows the results from each of the thresholding method on an image of
coins, allowing for a visual comparison of how each technique segments the image.

Original Image Otsu Thresholding

Figure 2.8: Comparison of Thresholding methods. The input coin image is taken from
[56]. The segmentation were generated by me.

2.2.2 Edge Detection

Edge detection techniques identify the boundaries between regions by detecting the dis-
continuities in image intensities. The detected edges are linked together to form the
contours that outline the boundaries of the object. Edge detection operators like Sobel
[105], Canny [13] and Laplacian operators [67] are used to locate these discontinuities. The
discontinuities between the regions are detected based on the types of intensity change.
Sobel [105] is discrete differential operator used to compute the approximate gradient of



14 CHAPTER 2. BACKGROUND INFORMATION

an image. While canny [13] is an edge detection algorithm that combines edge detection,
non-maximum suppression, and hysteresis thresholding to produce high-quality edges.
Laplacian is a second-order differential operator used to detect zero crossings in an image,
which correspond to edges [30].

Original Image

Canny Edge Detection

Sobel Edge Detection

Laplacian Edge Detection

Figure 2.9: Comparison of Edge detection methods. The input coin image is taken from
[56]. The edge detection images were generated by me.

Although these methods are suitable for simple segmentation, they are ineffective to
segment regions with complex features. K-means clustering [65], which is primarily used
for clustering data points, can also be applied to image segmentation by treating pixels
as data points and clustering them based on their color or intensity values. This process
effectively groups pixels into regions based on their similarity.

2.2.3 Region-based Segmentation

Region-based segmentation is a technique in image processing that involves grouping
pixels based on shared characteristics, such as color, intensity, or texture. This method is
particularly useful for distinguishing objects within an image where such properties can
define clear boundaries. The two primary categories of region-based segmentation are
region-growing and region-splitting.

In region-growing, the process starts with selecting seed pixels, which act as the initial
points for segmentation. The algorithm then expands these regions by adding neighboring
pixels that exhibit similar properties to the seed pixels, effectively "growing" the region.
This approach is particularly effective in images with homogenous regions but may strug-
gle with noisy or complex backgrounds that lack clear boundaries [30, 2|. A visualization
of region-growing is shown in Figure 2.10.
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(b) (c) (d)

{e) (£

Figure 2.10: Illustration of the order dependency in the Seeded Region Growing (SRG)
algorithm taken from [70]. (a) A gray-scale test image with four initial seed points marked.
(b) Each pixel (x) is labeled with its corresponding value (3). (c) Result after 9 iterations
of the algorithm. (d) Result after 13 iterations. (e) Final segmentation result based on
one processing sequence. (f) Final segmentation result based on an alternate processing
sequence, demonstrating how the order of processing affects the segmentation outcomes.

On the other hand, region-splitting treats the entire image as a single segment and
recursively divides it into smaller regions based on predefined criteria. This method allows
for a more structured segmentation process, particularly in images with varied textures
or patterns. However, its effectiveness diminishes in cases where regions are not clearly
defined [30].

A notable example of a region-growing algorithm is the Watershed segmentation [10]
method. This technique models the image as a topographic surface, where the intensity
values correspond to elevation. It simulates the way water would flow over this surface,
accumulating in basins (regions) as it rains. This intuitive approach allows the algorithm
to delineate regions based on their natural contours and gradients, making it particularly
useful in applications like medical imaging, where anatomical structures may be difficult
to segment using traditional methods [30].

2.3 Deep-learning Image Segmentation

Deep-learning-based image segmentation implement neural networks to learn complex
features from the image data. This is widely used in computer vision tasks and different
types of image segmentation namely semantic and instance segmentation. Semantic seg-
mentation identifies and localizes an object in an image or a video. This process involves
labeling each pixel in an image to a class based on its semantic features (i.e dog, person).
It allows more precise locations and object boundaries, and adds more contextual infor-
mation. Detection of reflection lies within the domain of semantic segmentation. While
instance segmentation is specialized semantic segmentation that aims to distinguish be-
tween multiple instances of the same object class. There are numerous deep-learning
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architecture suitable for semantic segmentation, including Fully Convolutional Networks
(FCN) [123] [95] [64] [25] and U-Net [109] architecture. In recent years, semantic seg-
mentation has been a key component in diverse industries such as autonomous driving,
remote sensing, medical image segmentation, and robotic vision.

2.3.1 Fully Convolutional Network

Fully convolutional networks (FCN) are a pivotal architecture introduced for image seg-
mentation tasks, significantly improving the accuracy and efficiency of pixel-level predic-
tions. Unlike convolutional neural networks (CNNs) [51], which are designed primarily
for image classification, FCNs replace the fully connected layers with convolutional layers,
allowing for input images of arbitrary size and producing spatially dense outputs. This
transformation enables the network to make pixel-wise predictions, effectively segment-
ing images into distinct regions based on learned features [63]. This allows pixel-wise
prediction when trained end-to-end on a dataset and has less parameters as it does not
use dense layers. It consists of a downsampling path which extracts features and context
from the image and the upsampling path which allows localization and give an output
according to the size of the input image. Figure 2.11 shows the architecture proposed for
segmentation tasks.

forward/inference

backward/learning

21

Figure 2.11: FCN Architecture proposed in 2015 [63].

FCNs have led to the development of more advanced architectures in segmentations
tasks such as the U-Net.

2.3.2 U-Net

It is a fully convolutional network (FCN) architecture designed for image segmentation,
particularly in medical image analysis. Its name is coined due to its shape which resembles
a “U”. It is one of the state-of-the-art models in medical segmentation due to its high
accuracy in detecting objects with substantial shape variations, weak borders and inset
or overlapping objects [93]. It improves upon the FCN by applying an encoder-decoder
style of network that works in an end-to-end setting.

Encoder: it analyzes the image and derives the high-level features. The image size
reduces as it passes through the encoder. This is also known as the downsampling path.



2.3. DEEP-LEARNING IMAGE SEGMENTATION 17

Decoder: it takes the compressed image from the encoder and expands it back to
its original size. It incorporates information from the encoder through skip connections
which preserve information that could be lost during the down sampling of the image.
This is also referred to as the upsampling path.

U-Net has demonstrated remarkable performance across various applications, par-
ticularly in the medical imaging domain, where precise segmentation of structures like
tumors or organs is essential [93]. Moreover, the U-Net architecture has inspired nu-
merous variations and extensions, such as the U-Net++ [131] and Attention U-Net [82],
which integrate advanced techniques to enhance performance and adaptability in different
segmentation tasks. Recent works have explored its application beyond medical imaging,
including satellite image segmentation [85] and agricultural applications [133|, showcasing
its versatility and robustness.

2.3.3 Vision Transformer

The Vision Transformer (ViT) [21] is a novel architecture that adapts the transformer
model [114], originally designed for natural language processing, for computer vision tasks.
Unlike traditional CNN, which process images using convolutional layers, ViT treats an
image as a sequence of fixed-size patches. Each patch is flattened and linearly embedded
into a token, allowing the transformer to learn spatial relationships through self-attention
mechanisms.

ViT operates by stacking multiple transformer blocks, each consisting of multi-head
self-attention and feed-forward layers. This design enables the model to capture long-
range dependencies and global contextual information effectively. The positional encod-
ings added to the patch embeddings help the model retain spatial information, which is
crucial for understanding image content. For classification tasks, an additional learnable
"classification token" is introduced to the sequence to help the model focus on the classi-
fication task. The architecture follows a standard Transformer approach as described by
[114]. An illustration of the vision transformer is shown in Figure 2.12.

Vision Transformer (ViT) Transformer Encoder
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Figure 2.12: An image is split into fixed-sized patches into the Vision Transformer [21].
The Transformer encoder is inspired by the original Transformer in [114].
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ViT has demonstrated state-of-the-art performance on various image classification
and segmentation tasks, proving its effectiveness in leveraging the strengths of attention
mechanisms for visual data.

2.3.4 ResNet-50

ResNet-50 [36] is a widely used convolutional neural network architecture known for its
innovative use of residual connections, which address the vanishing gradient problem in
deep networks. With 50 layers, ResNet-50 is designed to enable the training of very
deep networks by introducing shortcut connections that skip one or more layers. These
connections allow gradients to flow more easily during backpropagation, facilitating the
training of deeper models without loss of performance.

The architecture consists of a series of convolutional layers grouped into residual
blocks, each containing two or three convolutional layers. The output of these layers
is combined with the input via identity mappings, creating a residual learning framework.
This is demonstrated in Figure 2.13.

X |
Y
weight layer
F(x) relu .
weight layer identity

Figure 2.13: Residual Learning Block [36].

ResNet-50 achieves high accuracy on image classification benchmarks and serves as a
strong backbone for various vision tasks, including image segmentation. Its efficiency and
effectiveness have made it a standard choice for many applications in computer vision.

2.4 Loss Function

Loss function are play a key role in designing the deep-learning methods as it defines the
learning process of an algorithm. It measures the error margin between the actual value
and the predicted value. The loss value returned reflects the accuracy of the model’s
performance. The range of this function is [0,1], with 0 denoting a perfect match and 1
indicating that nothing was learnt.

Binary Cross Entropy: Cross entropy is considered to be the difference between
two probability distributions for a given random variable or set of events. Binary cross
entropy [101] is one of the most commonly used loss functions in semantic segmentation
tasks. It is derived from the Bernoulli distribution [44]. In equation 2.3, y is the true
value and ¢ is the predicted outcome.

Lpce(y, 9) = —(ylog(y) + (1 —y) log(1 — 7). (2.3)
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The range of BCE values is [0, oo, this values is passed through the sigmoid activation
function which scales the loss value between 0 and 1. This prediction value corresponds
to the likelihood of a data sample belonging to a class which is denoted by 4. log(1 — )
represents the probability of the negative class. The entire expression is negated because
logarithms of probabilities produce negative values when the predicted probability is less
than 1. Thus, by negating, we ensure that the loss is a positive value. BCE penalizes in-
accurate results which results in higher loss values, motivating the model to minimize this
loss during training. Although, it is widely used in segmentation tasks, its limitation lies
its inability to consider class imbalances in the dataset. BCE treats all misclassifications
equally regardless of their class frequencies.

Focal Tversky Loss: Focal Tversky loss [1] function is the focal loss function based
on the Tversky index, which was introduced to provide a better trade-off between the
precision and recall in semantic segmentation tasks. The Tversky index [111] is an asym-
metrical similarity measure that compares the variant and its prototype on sets. It is a
generalization of Dice score and addresses its limitations of class imbalance by allowing
penalizing False Negatives and False Positives.

|AN B
S B) = R B Y alA— B+ BB A| (24)
In equation 2.4, the a controls the penalty for False Negatives while the § controls
the penalty for the False Positives. This helps control class imbalance in applications like
segmentation tasks. The Tversky index is then adapted to a loss function by minimizing
Y. (1 —=T1I.) and parameterized with v in the range [1,3]. The Focal Tversky loss function
is depicted in equation 2.5.

FTL=Y (1-TL)". (2.5)
Cc

When v > 1, the loss function focuses on the less accurate predictions which have
been misclassified. In the Tversky index, when o« = § = 0.5, the F'TL equates to the Dice
coefficient, and when v = 1, FTL is equal to the Tversky loss. It is observed that as «
increases, it improves the model convergences by focusing on minimizing FN. According
to [1], the experiments with v = % performed the best. FTL is found to perform better
at learning hard examples with smaller regions of interest (ROI). In the study comparing
loss function for segmentation tasks [44], the use of Focal Tversky loss resulted in one of

the highest Dice score and Sensitivity results.
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Figure 2.14: The plot illustrates how varying gamma influences the performance of both
loss functions, highlighting the potential advantages of Focal Tversky Loss in handling
class imbalance in image segmentation tasks.

The relationship between Focal Tversky Loss and the Tversky Index is illustrated
in Figure 2.14. As shown, the gamma values significantly impact the behavior of both
loss functions. Higher gamma values tend to place more emphasis on challenging sam-
ples, thereby improving the model’s ability to handle class imbalance. This comparison
highlights how tuning gamma can affect the efficacy of Focal Tversky Loss in optimizing
segmentation performance.

2.5 Optimizer

Optimizers are using in the training phase, to adjust the parameters of the model to reduce
the loss function. They determine how the weights of the neural network are updated
based on the gradients calculated from the loss function on a given batch of data [74]. By
controlling the learning rate, optimizers help the model converge efficiently towards the
optimal solution, improving its performance in the given task. The optimizers covered
in this thesis are all gradient-based algorithms which update the model weights in the
direction that minimizes the loss. The choice of the optimizer can significantly affect the
training speed and the model’s performance.

Stochastic Gradient Descent [4] introduces randomness to update the model pa-
rameters based on the loss function, which helps converge the model faster. Along with
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the learning rate, SGD also uses Momentum to enhance its performance. Momentum
accumulates the gradient of the past steps to determine the direction to go to. This helps
accelerate convergence and the reduces oscillations, particularly in noisy gradients.

SGD without SGD with
Momentum Momentum

Figure 2.15: SGD with and without momentum. Redrawn from an illustration in [96].

Adam Adaptive Moment Estimation (Adam) [46] is a popular optimizer which com-
bines the advantages of RMSProp [37] and AdaGrad [22]. It maintains running averages
of both the gradients and their squares, allowing it to adaptively adjust the learning rates
for each parameter. This feature makes Adam particularly effective for a wide range of
problems and datasets. It typically requires less tuning than other optimizers and per-
forms well across various tasks, making it one of the most popular choices in deep-learning.
Adam is known for its efficiency in handling sparse gradients and is suitable for large-scale
datasets.

2.6 Evaluation Metrics

Evaluation metrics are crucial to measure the performance of any deep-learning model.
In semantic segmentation, the aim of these metrics is to calculate the correctly identified
and segmented regions within an image. Each metric presents a different interpretation
of the result. There are two key evaluation metrics in semantic segmentation.

2.6.1 Intersection over Union (IoU)

Intersection over Union (IoU) [43], also known as the Jaccard Index, measures the overlap
between the predicted region and the ground truth. The IoU is calculated by dividing
the area of intersection between the predicted segment and the ground truth segment
by the area of their union. IoU can also be expressed in terms of the confusion matrix,
considering true or false, positives or negatives.

|AN B TP
==l ToU = .
|AU B TP + FP + FN

The ToU value ranges from 0 to 1, where 1 indicates a perfect match, and 0 indicates
no overlap. IoU is one of the most useful metrics for evaluating the performance of
semantic segmentation models and is widely used in applications such as medical imaging,
autonomous driving, and remote sensing imagery.

TIoU

(2.6)
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2.6.2 Dice Similarity Coefficient

Dice similarity coefficient (DSC) [20] measures the similarities between the data. It is
particularly sensitive to small structures or regions, making it valuable in scenarios where
detecting small objects or regions is important, such as in medical segmentation.

2|AﬂB|, DSC — 2x TP . (2.7)
|A| + |B] 2x TP +FP+FN

Similar to IoU, the value of Dice coefficient ranges between 0 and 1, with 0 indicating
no overlap and 1 indicating a perfect overlap. Unlike IoU, the denominator |A|+|B| counts
the area of A and B separately. This means if there is any overlap, it will be counted
twice—once as part of A and once as part of B. This metric is particularly valuable in
situations where the primary goal is to accurately identify the segmented regions, with
less emphasis on the non-segmented areas.

DSC =

Intersection Intersection

Union

(a) (b)

Figure 2.16: Calculation of Segmentation evaluation metrics: (a) Dice Similarity Coeffi-
cient and (b) Intersection over Union, based on [47].

2.7 Transfer Learning

Transfer Learning (TL) is a machine learning technique that which uses a pre-trained
model from a machine learning task or dataset to improve the performance of a related
task or dataset [121]. It essentially transfers the knowledge from one model to apply
on a related domain. It is a widely used technique as it reduces the computational cost
of training a model from scratch. By reusing the pre-trained models, the new model’s
training time and the training data to achieve a desirable result are reduced while also
improving the performance. As highlighted previously, it is difficult to find publicly
available large datasets and more so for specialized domains and is producing a dataset
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by manually labeling the data can be time-consuming and expensive. Transfer learning
helps alleviate these difficulties. Moreover, TL also increases the model’s generalizability
since it involves retraining an existing model with a new dataset. This allows the model
to retain knowledge from multiple datasets and domain. Due to these reasons, TL is one
of the key domain adaptation methods applied in computer vision and natural language
processing.

Model A
Feature »  Classifier Prediction A
Source Extractor o
Dataset
Knowledge Transfer
Model B
Feature »  Classifier {  Prediction B
Target Extractor i |
Dataset

Figure 2.17: Schematic Representation of Transfer Learning. Source dataset is a larger
dataset for a general task, while Target dataset is a smaller dataset for a specialized task.
Knowledge transfer between the two domains allows the smaller model to learn from the
larger model to solve a different but related problem.

2.8 Attention Mechanism in Deep Learning

Attention mechanisms have revolutionized deep learning by allowing models to focus on
specific parts of the input data that are more relevant for the task at hand. By dynamically
weighting the importance of different features, attention helps improve model performance
across various applications, including natural language processing, computer vision, and
medical image segmentation. The attention mechanism is primarily divided into hard
attention and soft attention.

Soft Attention Soft attention computes a weighted sum of all input features, as-
signing probabilities that represent the importance of each part. This approach is differ-
entiable, making it easy to optimize through backpropagation, and allows the model to
softly attend to multiple relevant regions simultaneously [80]. For this work, soft attention
is used.

Hard Attention Hard attention, on the other hand, selects a discrete subset of
input regions, focusing only on specific parts. This approach is non-differentiable, making
it more challenging to optimize but can lead to computational efficiency, as it ignores
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irrelevant areas. Reinforcement learning methods are often used to train models with
hard attention [17].

Spatial Attention Spatial attention focuses on learning which regions of the input
feature maps are most important for a given task. By generating spatial attention maps,
the model can emphasize salient areas while suppressing less relevant regions. This is
particularly useful in image segmentation, where the model needs to identify and differ-
entiate various objects within an image. Spatial attention can be implemented through
convolutional operations that aggregate information across channels to create a weighted
representation of the spatial layout [122].

Channel Attention Channel attention operates by learning the importance of each
channel in a feature map, emphasizing features that are more relevant for a task while
downplaying less significant ones. It helps the network focus on informative channels
(e.g., texture, color) and suppress irrelevant ones, improving feature representation across
layers. Techniques like the Squeeze-and-Excitation (SE) block [39] implement channel
attention by squeezing global information into each channel and exciting important ones
[62] [106].

2.9 Attention Segmentation Modules

Attention segmentation modules are essential components in deep learning architectures
aimed at precisely identifying and delineating objects in images. Various attention mech-
anisms can be integrated into segmentation modules to improve their performance.

2.9.1 Attention Gate

Attention gates (AG) guide the model’s attention on the important regions while sup-
pressing feature activation other redundant areas by introducing additive soft attention
[82]. Tt is a light weight feature which does not significantly affect the model complexity
as very few parameters are added. The attention gate takes two input vectors: g and x.
The vector g comes from the next lowest level in the model containing better spatial fea-
ture representations, and has smaller dimensions. Vector x is the scaled skip connection.
The two vectors are are summed element-wise, which results in aligned weights becoming
larger and unaligned weights becoming smaller. The resultant vector is passed through
the ReLLU activation and a 1x1 convolution. This vector then goes through the sigmoid
layer which scales the vectors between the range [0,1] to produce the attention coefficient.
This coefficient represents how relevant the region is, with 0 denoting no relevance while
1 denoting high relevance. Trilinear interpolation is applied to upsample to the original
dimension of the input feature map x. The coefficient is multiplied clement-wise to the
original x vector, which is then passed along with the skip connection [82].
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Figure 2.18: Attention Gate [82].

2.9.2 Convolutional Block Attention Module

The Convolutional Block Attention Module (CBAM) [122] is a lightweight module de-
signed to enhance feature representation by applying both channel and spatial attention
sequentially. First, it computes channel attention, which emphasizes informative features,
followed by spatial attention to focus on significant regions in the feature maps. This dual
attention mechanism allows CBAM to effectively refine feature maps, improving segmen-
tation tasks by leveraging both spatial and channel information.
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Figure 2.19: Convolutional Block Attention Module, redrawn from [122].

In practice, the integration of CBAM into existing architectures has demonstrated
remarkable improvements in tasks such as image segmentation, object detection, and
action recognition [80]. The module’s lightweight nature ensures that it can be easily
incorporated into a variety of networks without significantly increasing computational
overhead, making it suitable for real-time applications in resource-constrained environ-
ments. Furthermore, CBAM’s effectiveness has been validated across multiple datasets



26 CHAPTER 2. BACKGROUND INFORMATION

and benchmarks, solidifying its position as a valuable component in enhancing model
performance in contemporary deep learning architectures.

2.9.3 Squeeze-and-Excitation Module

Squeeze-and-Excitation Networks (SE) [39] introduce an innovative mechanism for im-
proving feature representation in convolutional neural networks by modeling channel-wise
dependencies adaptively. The core concept of SE lies in the Squeeze-and-Excitation block,
which operates in two main steps: squeezing and excitation. In the squeezing step, global
average pooling is applied to the feature maps, generating a channel descriptor that sum-
marizes the global spatial information of each channel. This process condenses the feature
map into a compact representation, capturing the overall channel-wise information.

Next, in the excitation step, a fully connected layer is used to learn channel relation-
ships by applying a set of weights to the channel descriptors. This generates an attention
map that highlights the most informative channels while suppressing the less significant
ones. By recalibrating the channel responses, SE enable the model to focus on the fea-
tures that contribute most effectively to the task at hand, thus enhancing the overall
representational power of the network.
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Figure 2.20: Squeeze-and-Excitation Block, redrawn from [39].

2.9.4 Efficient Channel Attention

Efficient Channel Attention (ECA) is an advanced attention mechanism designed to en-
hance the representational power of CNN while maintaining computational efficiency. In-
troduced in 2020 [118], ECA improves upon traditional channel attention mechanisms by
simplifying the computation process. Instead of relying on complex operations like multi-
layer perceptrons (MLPs) to capture channel-wise dependencies, ECA uses a lightweight
1D convolutional layer, making it more efficient and faster. The core idea of ECA is to
exploit local cross-channel interactions without the need for extensive computations. This
is achieved by applying a kernel to aggregate channel information adaptively, allowing the
model to weigh the importance of different channels based on their contribution to the
feature maps. By leveraging this approach, ECA retains the ability to learn effective
channel representations while reducing the overhead typically associated with attention
mechanisms. The structure of ECA is depicted in Figure 2.21
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Figure 2.21: Efficient Channel Attention [118].

Studies have shown that ECA can lead to significant performance improvements in
various tasks, such as image classification and object detection, while also being less
resource-intensive than its predecessors. For instance, the authors demonstrated that ECA
outperformed several existing attention models on benchmark datasets while requiring
fewer computational resources, making it particularly suitable for real-time applications .

Segmentation Module Spatial Attention Channel Attention
Squeeze-and-Excitation (SE) v
Convolutional Block Attention Module (CBAM) v v
Attention Gate (AG) v

Efficient Channel Attention (ECA) v

Table 2.2: Comparison of Segmentation Modules and Their Attention Types.






Chapter 3
Related Works

Reflections in images have been a critical issue in computer vision and image processing
tasks like object recognition and localization [61]. The research on reflection detection
been conducted for decades with this topic being relevant across numerous domains like
medical segmentation [81] [6] [78], and inspections tasks [41] [130]. This chapter aims to
explain the key concepts relevant for this topic, and the existing research in reflection
detection across various domains.

3.1 Reflection Detection Methods

3.1.1 Traditional Methods

In exploring the historical evolution of techniques for detecting light reflections in images,
traditional methods have played a foundational role. This section will describe these
methods, tracing their development in the domain of image processing.

Thresholding Farly works of specular reflection detection were conducted in medical
image analysis which included traditional machine learning techniques like thresholding.
Thresholding usually consisted of three processes: a pre-processing step to reduce the
noise from varying lighting conditions, a thresholding algorithm to separate the reflected
areas based on computed thresholds, and a post-processing step to reduce the number of
false detections [73]. These techniques were applied on varying color spaces, like RGB
and HSV. RGB (Red, Green, Blue) is an additive color model used to represent colors
in digital formats by combining varying intensities of red, green, and blue light [104].
HSV (Hue, Saturation, Value) is a color model that describes colors in terms of their hue
(color type), saturation (intensity), and value (brightness) [104], making it more intuitive
for color selection and manipulation in applications like image processing. Past works
have implemented both global thresholding [113] and adaptive thresholding [6] to detect
specular reflections in RGB color. Although efficient, they detect regions which are more
bright and not specular reflections, leading to high false positives especially in light colored
or white surfaces.

Specularities are by definition regions of an image where pixel intensity is very high
and where the color matches the illumination source. An early study on detection and
correction of reflections in endoscope images implemented intensity and saturation-based
thresholding [107]. To identify these areas, histogram decomposition is used by generating
three histograms, each representing red, green and blue intensity to match high-intensity
zones [98]. As specularities are more visible in the saturation component of HSV, a bi-

29
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dimensional histogram is built, where specularity is detected by the maximum value of
intensity and saturation. The intensity is derived as the average of the red, green, and blue
channels, while the saturation is computed by comparing the blue and red channels with
the green channel. Pixels are then classified as part of a reflective region if their intensity is
above 50% of the maximum intensity and their saturation is below 33% of the maximum
saturation. Similarly, there are many instances of thresholding-based methodology for
reflections detection such as subtracting minimum value of RGB plane from each pixel
[102], binarization of image using single threshold [32]. In recent years, thresholding is used
in combination with other techniques to produce highly accurate results. For instance,
Nie et al. [78] introduced a unique approach using adaptive thresholding and brightness
classification. The method categorized images based on average brightness and employs
brightness component enhancement for low-brightness images, demonstrating superior
performance and suitability for high-definition endoscopy images.

Figure 3.1: Results of real-time specular reflection detection in endoscopic images using
intensity and saturation-based thresholding from [107].

Dichromatic Reflection Model Another approach is the principle of the Dichro-
matic Reflection Model (DRM). The DRM is based on the principle that radiation is
composed of reflections from interface and surface body.
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Figure 3.2: Dichromatic Reflection Model from [5].
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The dichromatic model can be expressed with a linear sum of the spectra of the
specular and diffuse reflection model as follows:

I=1,+1, (3.1)

where I = (1., I, I.,), I, denotes the luminance of the specular reflection component and
I denotes the luminance of the diffuse reflection component [110].

The methods that apply this model aim to separate the combination of diffuse and
specular reflections. It has the advantage of separating the specular reflection component
from a single image in most instances however it cannot be separated from low-saturation
colors like gray as well as the chromacity of the light source must be known [110]. In
2006 [127], a specular reflection detection method was proposed wherein the value of
specularity invariant pixels and their ratio to separate diffuse components was calculated.
Although this method was faster than other methods at the time, its application is limited
to textured images and has reduced accuracy to approximation in normalization process.

Retinex Theory Retinex Theory is a computational model of color vision which
proposes that the human vision system perceives color based on the relative reflectance of
surfaces rather than absolute spectral properties [50]. According to this theory, unwanted
illumination effects can be removed from an image by separating it into two components:
reflectance and illumination [129]. The observed image can be expressed as follows [33]:

S(x,y) = R(z,y).I(z,y), (3:2)

where (.) denotes element-wise multiplication, S(z,y) os the captured image, R(z,y) is
the reflectance component and I(z,y) is the illumination component. To find the R(z,y),
a Gaussian kernel function G(z,y) is applied to estimate the illumination component. By
taking the logarithm on both sides of Equation 3.2 and shifting the items, it leads to the
following equation:

logR(x,y) = logS(x,y) — log|G(z,y) x S(x,y)], (3.3)

where * denotes the convolution operation.

In 2021, Asif et al. |7] presented a novel method based on intrinsic image layer sepa-
ration (IILS), consisting of three steps, namely, pre-processing, reflected layer separation
and specular reflection detection. The process begins by smoothening the image via a
low-pass filter. The image is then normalized via extraction of high gradient area, which
extracts the intrinsic layer containing all the reflected areas using the Retinex algorithm.
This process is repeated on the input image to separate reflected areas by the RGB
color model. Each layer is then subtracted from the first reflected layer to get all the
reflected pixels. The detected reflected pixels are converted to a magenta color. This
marked area is then reconstructed by image melding technique and a patch-based opti-
mization function. The iterative algorithm in this last step searches for a patch and votes
for a color at every scale. The experiment was conducted with 912 endoscopic images
from CVC-EndSceneStill. This method effectively separated and detected reflected areas,
demonstrating superior performance over other methods in detecting specular reflections
in endoscopic images.

Image Segmentation or Classification Another approach is to identify pixels as
reflections or non-reflections by image segmentation or classification. Levine and Bhat-
tacharya [55], used Retinex algorithm in combination with the region-based segmentation
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to separate specular and shadow regions by initialization of seed pixel. They imple-
mented the Support Vector Machine (SVM) [16] classifier to separate the reflected and
non-reflected areas based on the shadow boundary found. One of the merits of the tech-
nique at the time was that there was no need for any camera specification. However, as
the seeded region requires the seed as an additional input and the segmentation results
are dependent on the choice of seeds and the noise in the image can cause the seeds to be
placed poorly.
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3.1.2 Deep-learning-based Methods

The advancement of deep-learning techniques has catalyzed significant progress in spec-
ular reflection detection, leading to the development of various state-of-the-art methods
tailored to address the challenges in this domain. A wide range of research has been con-
ducted to detect specular light reflections in images across different surfaces with medical
imaging being one of the most common applications alongside machine inspections. Cur-
rent state-of-the-art methods incorporate various deep-learning architectures, including
fully convolutional networks (FCN), U-Nets and attention mechanisms to detect these
regions and even reconstruct the missing regions.

One notable approach is the SpecSeg network proposed by Anwar et al. [5], which is
based on the U-Net architecture and focuses on specular highlight detection in real-world
images from the Specular Highlight Image Quadruples (SHIQ) dataset. SpecSeg demon-
strated robust performance across diverse materials and lighting conditions, generating
masks closely resembling ground-truth images and surpassing classical methods in spec-
ular region detection. The encoder-decoder network performs downscaling and upscaling
operations. SpecSeg consists of five encoder blocks and four decoder blocks following the
classic U-net pattern. Each encoder block consists of two 2D convolutional layers with
filters (k) =3 and stride (s) =3 and uses the ReLU activation in the output of cach convo-
lution layer. To improve the robustness of the learned features, an incremental dropout of
10%, 20% and 30% are introduced between the convolution layers. The decoder performs
upscaling via 2D transpose convolution layers with filters k=2 and s=2. The network then
outputs mask images of the input. This network uses a linear combination of Dice similar-
ity coefficient (DSC), which measures the pixel-level similarity of two images, and Focal
loss, which addresses the class imbalance, as its loss functions. SpecSeg was successfully
able to detect specular regions across a wide range of materials and lighting conditions.
It was found that it could generate masks closely resembling ground-truth images and its
results were significantly better than other classical methods. The results are shown in
Figure 3.3.

)(,i'['
’

Figure 3.3: SpecSeg Results across different images [5].

Monkam et al. [72] introduced another prominent method is EasySpec, which employs
a hybrid strategy utilizing Scaled-UNet for detection and GatedResUNet for suppression of
specular reflections. It consists of two stages: detection and suppression. In the detection
stage, the Scaled-UNet employs the benefits of weakly supervised and transfer learning
concepts for specular detection. While the latter stage uses GatedResUNets which is
based on the gated convolutions and deep impainting theory to restore specular reflection
regions. The novel contributions of this paper include implementing gated convolutions
to differentiate between specular and non-specular pixels, leverage U-Net architecture to
mitigate the challenges of empirical parameter settings and to learn multi-level seman-
tic representative features. Also, extensive empirical analyses have been conducted on a
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diverse dataset to validate the proposed framework’s effectiveness. It was found that per-
formance of EasySpec was superior to those of the state-of-the-art approaches in specular
reflection suppression approaches.

Another U-Net based approach is the Efficient Two-Stage Highlight and Removal
Network (ET-HDR) [61], featuring a Channel Attention Refinement Network (CARNet)
and an efficiency spatial channel attention block (ESCAB) [128]. The first module is the U-
Net which learns the context features of different scales in the highlight image. The second
module is the Channel Attention Refinement Network (CARNet) which learns the spatial
details of the image. Additionally, a feature fusion block (FFB) is developed to enrich
the feature information. The Varifocal loss function is used to calculate the loss which
improves model’s ability to detect highlights leading to better training performance. A
novelty of this method is that in the U-Net, its MDTA module in the transformer module
was replaced with an efficiency spatial channel attention block (ESCAB) [128]. The
ESCAB helps reduce the computational resources used and improve the inference speed
of the model. The experiments were conducted on the Specular Highlight Detection and
Removal Dataset (SHIQ) [27] and compared against methodologies which are trained on
this dataset. The overall structure is depicted in Figure 3.4.
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Figure 3.4: Overall structure of ET-HDR [61].

Zhou et al. [130] introduced a novel deep-learning-based framework, called Deepln-
spection, for automated defect detection on specular vehicle surface. The framework
utilizes an attention-based fully convolutional neural network with Atrous Spatial Pyra-
mid Polling (ASPP) [15]. The architecture consists of three parts: an encoder which
learns the high-level features, an attention module which focuses on changing boundaries,
and a decoder which reconstructs the spatial information. The encoder network is built
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on VGG-16 [103], composed of 13 convolutional layers, 5 down-sampling layers, and 3
fully connected layers. The attention module uses the attention gate (AG) to recognize
salient regions in the image and retain the activations associated with the surface defects
by pruning feature responses. The decoder uses the transposed convolutions from the
encoder to reconstruct the spatial information. The feature maps derived from each com-
ponent are concatenated, followed by ASPP to encode the rich semantic information. The
experiment was conducted on the Deeplnspection160 dataset with 160 manually labeled
images. Various qualitative and quantitative assessments found that Deeplnspection per-
formed better than many state-of-the-art methods, by achieving an F1 score of 0.7513
(pixel level) and 0.8055 (component level).

In 2021, a multi-task network for Joint Specular Highlight Detection and Removal
(JSHDR) consisting of the Dilated Spatial Contextual Feature Aggregation (DSCFA)
module followed by the convolutional and ReLU layers to learn the attention map [27]. It
is an encoder-decoder framework that uses skip connections to pass information between
the encoder and decoder. It was found that the performance of JSHDR is comparable
to state-of-the-art methods, especially in terms of handling spatially varying highlights
via evaluation metrics like accuracy and bit error rate (BER). Furthermore, Esfahani
and Wang [23] presented a deep network architecture for robust glare detection, which
shares similarities with specular reflection detection. By considering both RGB and HSV
representations and utilizing a modified U-Net architecture, this method demonstrated
promising results for glare detection applications.

These state-of-the-art methods collectively showcase the advancements in specular
reflection detection by leveraging deep-learning architectures. However, there is one major
limitation in learning-based highlight detection. Typically, these methods are trained on
synthetic data or very small datasets which are limited to a specific scenario; therefore,
it is difficult to generalize the methods [27].
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3.2 Specular Reflection Datasets

Datasets play a fundamental role in the training, evaluation, and generalization of models.
Deep-learning models learn patterns, features and relationships within the data. In su-
pervised learning, datasets consist of labelled input-output pairs, where the model learns
to map inputs to the correct outputs based on the provided examples. A diverse and rep-
resentative dataset ensures that the model learns a wide range of features and generalizes
to new data. Datasets are split into training, validation, and test sets to ensure effective
model training, prevent overfitting, and evaluate performance. The training set is used
to teach the model, the validation set helps tune hyperparameters and select the best
model, and the test set provides an unbiased assessment of how the model performs on
unseen data. Standard datasets allow for benchmarking and comparing different models
and algorithms on the same data. This is essential for evaluating the relative performance
of different approaches.

Datasets in computer vision and image processing primarily consists of images and
videos for tasks such as object recognition, semantic segmentation and image generation.
Some of the most popular datasets in this domain are MNIST [52] and ImageNet [19].
There are varying annotated methods to label the images and videos according to the
application tasks. In object recognition, datasets are used to detect and localize multiple
objects within an image. Each object is annotated with a bounding box and a class
label. Semantic segmentation datasets are used to classify each pixel in an image into a
predefined class. This task involves detailed pixel-level annotations, typically in the form
of segmentation masks. However, it is difficult to find large datasets for specialized tasks
such as medical segmentation or reflection detection. Research in specialized fields often
requires generating custom datasets, such as for dent detection in aircraft using generative
adversarial networks (GANs) [86]. Given the high cost and labor involved in manual data
annotation, it is essential to train deep-learning models on existing, relevant datasets to
address specific problem domains effectively.

Recent years have seen the development of numerous datasets for detecting reflections
in images, spanning from medical imaging to real-world scenarios. Medical imaging con-
tains various high-quality datasets for detecting reflections including 2D and 3D data.
Some of the largest specular medical datasets include CVC-ClinicSpec [99] containing
ground truth labels of 612 colonoscopy images and the DYY-Spec [79], which contains
1000 endoscopic specular images from various organs. One of the largest, the Specular
Highlight Image Quadruples (SHIQ) [27], includes over 16,000 annotated images of specu-
lar highlights captured under various lighting conditions. Other notable datasets include
the paired specular-diffuse dataset [124|, the WHU-Specular dataset [26], and the multi-
illumination images in the wild [76], which cover real-world scenes with metallic and shiny
surfaces relevant for inspection tasks. These datasets will be used to evaluate proposed
methods, with a summary provided in Table 3.3.
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Dataset Year Category  Total Images Size
CVC-ClinicSpec [99] 2017 Medical 612 ]
Multi-Illumination |76] 2019 Real-world 25,000 6.7 GB
WHU-Specular [26] 2020 Real-world 4310 2GB
Specular Highlight Image Quadruples (SHIQ) [27] 2021 Real-world 16,000 10.8 GB
Paired Specular-Diffuse Image [124] 2021 Real-world 13,380 7.1GB
SIHRNet [120] 2022 Real-world 200 503 MB
DYY-Spec [79] 2023 Medical 1000 -

Table 3.3: Summary of Reflection Datasets.

Input Highlight-free Highlight Highlight mask

NN A DN - - l |

Figure 3.5: An illustration of the image quadruple in the SHIQ dataset containing high-
light mask and highlight free images of the input [27].

Input Highlight Mask

Figure 3.6: An illustration of the image pairs in the WHU-Specular dataset with the input
image and its corresponding highlight mask [26].
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Specular Diffuse

Figure 3.7: In PSD dataset [124], the images are captured in 2 polarization conditions,
one with fixed polarization angles and the other with random polarization angles.

3.3 Reactive Planning for Autonomous Systems

Reactive planning is an adaptive approach used in robotics and artificial intelligence where
systems respond dynamically to changes in their environment [29]. This is particularly
valuable in unpredictable environments where conditions can rapidly evolve, such as in
robot navigation around obstacles [9] or in unknown terrains [40]. In reactive planning,
agents employ a combination of sensing, reasoning, and action execution. These sensors
and data feed useful information to robots enabling them to plan their movements and
react to their environment effectively.

Cameras, often combined with computer vision algorithms, allow robots to interpret
visual information from their surroundings. They can detect objects, track movements,
and recognize patterns, aiding in path planning and reactive behaviors. This is essential
for applications in autonomous vehicles, where real-time object detection and classification
of pedestrians and obstacles are crucial for safe navigation [3] [57].

A typical setup of a automatic visual inspection system consists of a robot manipu-
lator, optical illumination, image acquisition subsystem, and image processing. By in-
corporating reactive planning, autonomous inspection systems can adapt their actions
in response to real-time data, enhancing their flexibility and effectiveness. For example,
when a robot encounters an area that is difficult to inspect due to environmental factors
or unexpected conditions, reactive planning allows the system to modify its inspection
path, adjust its sensors, or change its focus to ensure thorough coverage. An instance
of this is demonstrated in a study about inspection of free-form specular surfaces [42].
The image acquisition subsystem captures the point cloud data and executes K-means
algorithm to segment the free-form regions. These irregular shaped regions are passed as
input to the path planning algorithm which outputs a scanning path based on the short-
est path criteria and the acquisition model of line scan camera [42|. This adaptability is
essential for maintaining high-quality inspections in complex and variable environments
where pre-planned paths might not account for all possible issues. An example of a robot
setup for inspection task in depicted in Figure 3.8.

The need for reactive planning arises from the unpredictability of real-world inspec-
tion scenarios and the deformities in the surfaces of the inspection objects. Without the
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Figure 3.8: Experiment setup of a robot inspecting an object [42].

ability to react and adjust on the fly, autonomous systems risk missing critical defects
or failing to adapt to unforeseen challenges, potentially compromising the inspection’s
accuracy and reliability. Reactive planning ensures that the system remains effective and
responsive, improving overall inspection performance and reducing the likelihood of er-
rors or omissions. Reflection detection aids reactive planning by identifying and localizing
where reflections obscure features during an inspection. This allows the system to adjust
the robot’s camera angles to capture these hidden areas from different perspectives. Con-
sequently, it ensures a more comprehensive and accurate inspection by revealing details
that were previously obscured.






Chapter 4

Methodology

This chapter explains the novel contributions of this thesis including the proposed transformer-
based segmentation model UNETR Attention Fusion (UNETR-AF) and the Inspection
dataset that consists of inspection images and its corresponding reflection highlight. This
chapter also delves into the other U-Net based segmentation models implemented in this
thesis. The source code and dataset for this thesis is available on GitHub .

4.1 UNETR-Attention Fusion (UNETR-AF)

The hypothesis for this study centers on the idea that semantic segmentation models based
on the U-Net architecture can be adapted and optimized to effectively detect and classify
reflections in inspection images. Most of the current state-of-the-art models for reflection
detection implement U-Net architecture as discussed in Chapter 3. Fully convolutional
networtks, particularly U-Net, have been highly effective in image segmentation tasks
across many ficlds which deal with segmentation tasks of varying sizes from biomedical
applications [8] [93] to inspection tasks [66]. Its design efficiently captures spatial informa-
tion, making it a logical choice for detecting reflections in inspection images, which often
feature subtle boundaries and irregular shapes. U-Net’s down-sampling encoder and up-
sampling decoder pipeline are instrumental in extracting features while preserving spatial
details, essential for precise reflection detection.

Detecting reflections under various lighting conditions requires distinguishing between
subtle changes in intensity and texture. Standard U-Net may struggle with this due to its
reliance on local receptive fields, which can limit its ability to capture global contextual
information in complex reflective environments. This limitation led to the inclusion of
variants that incorporate transformers, such as UNETR [35], TransUNet [14] and attention
mechanisms [82] to improve the model’s ability to detect nuanced features across different
scales and improve segmentation performance under varying illumination.

The Vision Transformer (ViT) [21] (see Section 2.3.3) has shown promise in capturing
long-range dependencies due to its attention-based architecture. By incorporating ViT
as the encoder in the U-Net, the model gains the ability to interpret relationships across
entire images, which is particularly beneficial in handling variations in lighting and re-
flection patterns. This is observed in, UNETR [35], which uses ViT as the encoder and
the TransUNet [14] which implements a CNN-ViT hybrid encoder. ViT’s global receptive
field enables it to understand contextual relationships that convolutional layers might

!Thesis GitHub Link: https://github.com/Aditi-Mhatre/reflection-detection
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miss, which is crucial for detecting reflections that may vary based on angle and intensity.
As a pure transformer cannot directly accept an image input (H x W), the image is di-
vided into patches (% X %) and which are converted to patch embeddings. These patch
embeddings are a key feature of ViT, which allows a pure transformer to process images
by applying a simple linear transformation to the flattened pixel values of the patch [21].
However as the patches (% X %) are smaller than the original image resolution (H x W),
it results in a loss of low-level details such as the boundaries and shape of the reflections,
even with the skip connections.

To address the identified challenges, the UNETR Attention Fusion (UNETR-AF)
model is proposed as an extension of the UNETR architecture [35]. This model leverages
the Vision Transformer (ViT) as its encoder, utilizing its 12 attention heads to achieve
a global context and capture dependencies across the entire image. To efficiently inte-
grate information from the encoder to the decoder, skip connections are added after every
three attention heads, linking to four convolutional decoder blocks (CNNs). These skip
connections allow the model to fuse detailed spatial information progressively from the
transformer encoder into the CNN-based decoder, which helps enhance the segmentation
of reflections. However, ViT-based architectures can struggle with local feature learning
due to the loss of image resolution in patches, especially in smaller datasets with reflec-
tions. This is where the need for additional attention mechanisms, such as spatial and
channel-wise attention, becomes critical. Attention mechanisms help refine and balance
both global and local features, ensuring that fine details are not lost during encoding and
decoding. By focusing on the most relevant channels and spatial regions, attention blocks
can compensate for ViT’s limitations in spatial localization during tasks that involve dense
prediction, like segmentation. In models that incorporate ViT within U-Net structures,
there is a trend toward embedding more attention mechanisms to improve performance
in segmentation tasks such as CFATransUnet [115|, which introduced channel-wise cross
fusion attention and TSCA-Net [28], that used spatial-channel attention blocks. A new
version of UNETR was also proposed recently called UNETR++ [100] which introduced
efficient paired attention (EPA) block to for improved spatial and channel attention in
volumetric medical data.

Therefore two attention modules are integrated, namely the Squeeze-and-Excitation
(SE) [39] module and the Convolutional Block Attention Module (CBAM) [122]—into
both the skip connections and decoder stages. These attention modules aim to balance
the global and local feature learning of the model.

Skip Connections with Squeeze-and-Excitation (SE): UNETR-AF retains the
powerful self-attention mechanism of ViT in the encoder, which excels at capturing global
dependencies in images. However, a known limitation of ViT is its difficulty in learning
local spatial features, particularly on smaller datasets. To address this, SE modules [39]
are integrated into the skip connections. These modules emphasize important channel-
wise features, allowing the model to selectively focus on the most relevant information
at each resolution level during the encoding process. This channel-wise refinement com-
pensates for ViT’s limited ability to capture local context. This allows the model to
emphasize important channels while suppressing less relevant ones, enhancing the fea-
ture maps transferred from the encoder to the decoder. SE modules adaptively refine
the features extracted at different layers, helping the model focus on the most critical
information as it progresses through the network.

Decoder with Convolutional Block Attention Module (CBAM): CBAM [122]
is used to enhance both spatial and channel attention in the decoder. By applying atten-
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tion hierarchically, CBAM refines spatial feature extraction during the upsampling stages,
where fine-grained details must be reconstructed. This spatial refinement is critical be-
cause ViT architectures tend to lose spatial resolution in upsampling, whereas CNN-based
decoders typically excel in reconstructing spatial details.

The UNETR Attention Fusion (UNETR-AF) is depicted in Figure 4.1 where the SE
blocks and CBAM module are included in the skip connection and the decoder.
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Figure 4.1: Proposed UNETR Attention Fusion (UNETR-AF).
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By combining SE for channel refinement in the skip connections and CBAM for spa-
tial and channel attention in the decoder, UNETR-AF achieves a balance between global
attention from the ViT encoder and local detail preservation in the CNN decoder. This
addresses a common challenge in hybrid ViT-CNN architectures, ensuring that both local
and global features are effectively represented, leading to improved segmentation results,
particularly in complex or noisy regions. This proposed architecture, UNETR-AF, is tai-
lored to optimize both global context and local detail in reflection segmentation, providing
a valuable tool for robust and reactive planning in autonomous inspection systems un-
der diverse environmental conditions. Morcover, CBAM and SE are lightweight modules
therefore it does significantly increase the model parameters and complexity compared to
UNETR.

4.2 Inspection Dataset

Datasets are required to train segmentation models as they provide ground truth to un-
derstand the regions that need to be segmented. Reflections in images is a specialized
field, which is further narrowed down in inspection images. As there are no publicly avail-
able datasets for reflections in inspection images, it is important to prepare an Inspection
dataset for this purpose. The preparation of this dataset is one of the novel contributions
of this thesis. The objective is to prepare an Inspection dataset containing inspection
images of different objects and materials captured under varying light conditions. This
section describes the preparation of the dataset from data collection, annotation to the
characteristics of the dataset.
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4.2.1 Design and Requirements

There are various existing datasets for reflections based on medical images or real-world
objects which are mentioned in Section 3.2. Most of these datasets, especially SHIQ
and WHU datasets, were referred to while designing this inspection dataset. The first
step was to conceptualize the illumination scenes, which included the object and the
light conditions under which it would be captured. The primary requirements were to
select objects composed of materials commonly found in aircraft inspections which were:
aircraft wing, fuel tank, turbine blade, other laboratory tools and equipment such as
screws, hexagon wrench, screw plate, swivel caster wheels, T-slot aluminium. These
objects are made of metals like aluminium and stainless steel, which are highly reflective
as well as non-reflective materials like polyurethane that produce softer reflections.

The next step was to define the light conditions and the illumination modes. From
figure 2.4, two illumination modes were incorporated: bright field forward and diffuse
lighting. Each of the objects mentioned were captured in different light conditions and
angles to produce a diverse dataset. For diffuse lighting, the objects were photographed in
a 60x60x60 light box, that had white LEDs fixed at the top of the box over a translucent
cloth which helped diffuse the light. The inner surface of the box was lined with alu-
minium foil which was covered with a black Polyvinyl Chloride (PVC) background film
for certain scenarios. These RGB images were captured by the RealSense D435i embedded
in the Eeloscope inspection robot and a mobile phone camera. The RealSense allowed to
photograph images with two settings: high exposure which also included an external light
source and the auto-exposure where no additonal light source was used. The Eeloscope is
equipped with a LED light within the robot that supports bright ficld forward lighting.
In addition, there were two more light sources, the flashlight of the mobile phone and a
LED video light panel. The light panel has a wide range of color temperature from 3200k
to 5600k as well as the light intensity, which ranges between 1 and 6. While collecting the
images, the light intensity was kept between 2 and 6, as it was the ideal range to produce
varying reflections. The light conditions in the scenarios included a mix of direct light
from the external light sources, natural light and low light.

Table 4.1 summarizes the scenarios for the dataset.

Object Material Light Conditions Camera

Aircraft Wing Metal Direct LED, Natural, Low light Mobile, RealSense
Fuel Tank Metal Direct LED, Low Light Mobile, RealSense
Turbine Blade Metal Direct LED, Natural, Diffuse Lighting | Mobile, RealSense
Hexagon Wrench | Metal Direct LED, Natural, Diffuse Lighting | Mobile

Swivel Castor Metal, Rubber Direct LED, Natural, Diffuse Lighting | Mobile

T-slot Aluminium | Metal Direct LED, Natural, Diffuse Lighting | Mobile

Screws Plate Metal, Composite | Direct LED, Natural, Diffuse Lighting | Mobile

Table 4.1: Dataset Preparation: Objects and Light Conditions.



4.2. INSPECTION DATASET 47

Image Ground Truth Ground Truth

Figure 4.2: A few sample image-mask pairs from the Inspection dataset. The images
captured here are of different inspection objects with varying levels of light reflections.

4.2.2 Data Collection and Annotation

Based on the scenarios in 4.1, a total of 1025 images were captured. These RGB images
depicted both specular and diffuse reflections as well as no reflections. Once this data
was collected, the next step was to process the images by renaming them according to the
identification numbers and recording the metadata such as light conditions, camera type.
The images are then annotated. The data was annotated using Labelbox [49], an online
data labelling platform. An annotation pipeline was created on the platform to annotate
the reflection and non-reflection segments for image segmentation tasks. The labelling
pipeline was divided into the following stages: to label and to review, which enabled to
verify the labels and redo the rejected tasks. Every image is segmented into "reflections"
and "no reflections" using the draw tool. The labelling guidelines were defined as follows:

1. A region is marked as "reflection" for specular reflections and for diffuse reflections,
when it is difficult to see the surface details. The rest of the region is marked as "no
reflection".

2. The regions labelled as "reflection" are colored in white (#FFF) and the regions
labelled as "no reflections" are colored in black (#000).

Moreover, metadata was added to each image to indicate its light conditions, color
temperature , in cases where the panel light was used, and the camera type. The labelling
data from the Labelbox was saved into JSON format for further post-processing. As a
smartphone was also used to capture the images, the orientation from Exchangeable Image
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File (EXIF) data was analysed and processed to ensure that orientation of the images and
the generated masks are consistent. The data collection and the labelling process of the
dataset is shown in Figure 4.3.

Data Annotation
Data Collection Upload images to Process EXIF | Save images and
Labelbox Orientation masks as PNG
C I —> P I —
apiure images rocess mages Create Labels Label Image Export as JSON
l ] Rejected
Review image
Accepted

Figure 4.3: Inspection Dataset Pipeline consists of two parts: Data Collection and Data
Annotation.

The binary segmentation masks generated are similar to the highlight masks of SHIQ
[27] and WHU datasets [26]. All the images and masks are saved in the portable network
graphics (PNG) format. The Inspection Dataset consists of 1025 image-mask pairs. An
illustration of an image-mask pair from the Inspection dataset is depicted in Figure 4.4.

Input Highlight Mask

Figure 4.4: An illustration of the image pair in the Inspection Dataset with the input
image and its corresponding ground truth.

The dataset is further split into train and test subsets in a ratio of 80:20. The train
subset contains 820 images and is used for training purposes due to the diversity of
reflections captured. The test subset consists of 205 images, most of which are of airplane
wing, the interior of hydrogen fuel tank and the turbine blades. The split was decided
based on the t-SNE (t-distributed stochastic neighbor embedding) [112] representation of
the dataset which is used for feature visualization of images.
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4.3 Models and Architecture

Various state-of-the-art models implement different U-Net architecture variants for seg-
mentation. In this section, the U-Net based models and architectures applied for this
thesis are explained. These architectures allow precise detection of reflections due to
their structure which effectively learns the features from the datasets discussed in the
previous section. The architectures mentioned are U-Net, Attention U-Net, U-Net++
and UNETR, which will be employed to evaluate the segmentation performance against
UNETR-AF.

4.3.1 U-Net

U-Net was originally proposed for localization tasks in biomedical image processing and is
based on a fully convolutional network (FCN), designed to achieve precise segmentation
with fewer training images and through data augmentation [93]. The network architec-
ture, illustrated in Figure 4.5, consists of a contracting path (left) and an expansive path
(right). The contracting path is a typical CNN architecture which includes repeated appli-
cation of two 3x3 convolutions, each followed by a rectified linear unit (ReLU), and a 2x2
max-pooling operation with stride 2 for downsampling. The number of feature channels
doubles at cach downsampling step, progressively capturing more complex features. In
the expansive path, each step starts with upsampling the feature map, followed by a 2x2
convolution that halves the number of feature channels. This is then concatenated with
the corresponding cropped feature map from the contracting path. Two 3x3 convolutions,
each followed by a ReLU, are applied. At the final layer, a 1x1 convolution maps each
64-channel feature vector to the desired number of classes [93]. As the contracting and
expansive paths are symmetrical, it results in the characteristic U-shaped architecture of
the network. One of its novelty is that it passes the contextual information throughout
the network, allowing it to segment objects using context from a broader surrounding
area.
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Figure 4.5: U-Net Architecture, redrawn from |93].

The energy function is computed using a pixel-wise softmax over the final feature map,
combined with the cross-entropy loss. The softmax function is defined as:

exp(ag(z))
> explap (2))

where ag(x) is the activation at pixel z € Q for class k, and K is the number of classes.
The softmax approximates a maximum function, with pg(z) ~ 1 for the class with the
highest activation and py(x) & 0 for all others.

The cross-entropy loss penalizes deviations of p;(,y(x) from 1, where 7 : @ — {1,..., K}
represents the true label of each pixel. The energy function is given by:

b= Z w(‘r) log(pT(gC)(x)), (4'2>

z€Q

pr(z) = (4.1)

where w(x) is a weight map that assigns different importance to each pixel during training.

U-Net has been applied as the base model to various areas of segmentation tasks for
including transparent object detection [59] [97], industrial defect detection systems [86]
[117] [69] [77], and medical images segmentation [48] [8].

4.3.2 Attention U-Net

In image segmentation, attention is used to highlight important regions in an image more
than other regions. This helps in increasing efficient use of computational resources by
not wasting it on irrelevant areas. Attention can be categorized into hard and soft. Hard
attention process only one region at a time, which makes it non-differentiable and difficult
to train. This means that for any given image, it can either pay attention or no attention
at all to a region. Soft attention is probabilistic and differentiable. It weighs different
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parts of the image by assigning weights to a region depending on its relevance. During
training, there is more focus given to regions with higher weights. As it is differentiable,
it can be trained with standard back propagation, which allows the model to be better
at deciding which regions to pay more attention as the training process continues. In the
U-Net, skip connections are used to preserve spatial information from the downsampling
path to the upsampling path, however this also transfers most of the redundant low-level
feature extractions that do not contribute to better segmentation [82]. To overcome this
issue, attention gates are introduced to add soft attention to the skip connections.
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Figure 4.6: Attention U-Net Architecture [82].

The authors in the original paper [82] visualized the attention mechanism in a grid,
which depicts the effect of soft attention as the training process continues.

Figure 4.7: Attention Coefficient during Training - the areas marked by red show soft
attention [82].

4.3.3 U-Net-++

U-Net++ is an advanced variant built upon the U-Net architecture which uses nested
and dense skip-connections to connect the encoder and decoder sub-network [131]|. It
introduces a nested U structure, re-designed skip pathways and deep supervision. The
aim is to reduce the semantic gap in the feature maps between the encoder and decoder
at different scales which would lead to learning the task more easily. The architecture is
illustrated in Figure 4.8.



52 CHAPTER 4. METHODOLOGY

Down-sampling
Up-sampling
Skip connection

Convolution

x”~':H[x“"’.U(x'“)J X“'ZIH[X("“,X“’].U(XI'I)J XUD\: H[x”~".x"~'.x“~3. U(XI‘:)J

U(X"O) U(X“) U(xl_.’.) U(xl.S)
(b) x04 = H[x00, x0.1 x02 x03, Ux!'9))]

Figure 4.8: UNet++ Architecture [131]. (a) The encoder and decoder are connected
through a series of nested dense convolutional blocks to bridge the semantic gap in the
feature maps with three convolution layers. The convolutional layers are depicted in green
with the dense skip connections on skip pathways shown in blue and deep supervision
indicated by red. The convolutional blocks in black are from the original U-Net structure.
(b) The first skip pathaway of UNet++ is visualized.

The architecture also incorporates two key features: re-designed pathways and deep
supervision.

Re-designed Pathways: Instead of directly passing the feature maps from the en-
coder to the decoder as in the original U-Net, U-Net++ applies multiple intermediate
convolutions at each level of the skip connection before being passed to the decoder. This
way, the feature maps passed through the skip connections carry more refined, semanti-
cally meaningful information. It is hypothesized that this would make the optimization
problem easier for the optimizer when the encoder feature map and the corresponding
decoder feature map are semantically similar [131]. This skip connection is depicted in
Figure 4.8b.

Deep Supervision: Deep Supervision is a regularilization technique introduced in
[53]. The core idea behind it is to apply intermediate loss functions at multiple stages
within the network, in addition to the final loss at the output. This encourages the model
to make accurate predictions at different levels of its architecture rather than only at the
final layer. In U-Net++, deep supervision allows the model to function in two modes: (1)
accurate mode, where the outputs from all segmentation branches are averaged for higher
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precision, and (2) fast mode, where the final segmentation map is obtained from a single
segmentation branch, with the branch selection controlling the degree of model pruning
and speed improvement [131].

4.3.4 UNETR

UNEt TRansformer (UNETR) [35] is a vision transformer-based deep learning architec-
ture originally proposed for 3D medical segmentation. The idea is to utilize the vision
transformer (ViT) [21] as the encoder and combine it with the original U-Net-based CNN
decoders. It leverages the powerful self-attention mechanism of transformers to capture
global dependencies in images, addressing some limitations of traditional CNN-based en-
coders used in U-Net. The encoder has 12 multi-attention heads with a skip connection to
the decode after every three attention heads. In the original paper, the skip connections
were for multi-head layers 3,6,9 and 12. The structure is represented in Figure 4.9.
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Figure 4.9: UNETR Architecture based on [35].

Since this thesis focuses on 2D images, the UNETR architecture has been adapted to
process 2D inputs and produce corresponding segmentation maps. The adapted UNETR
follows the same operations as the 3D UNETR but removes the depth dimension. The
ViT splits the input image into non-overlapping patches, using self-attention mechanisms
to capture long-range dependencies across the entire image. The encoder’s skip connec-
tions at different layers feed into the decoder, combining high-level global features with
fine-grained spatial details. In addition to its novel architecture, UNETR also benefits
from multi-scale feature learning, where the ability to combine global attention from the
transformer with the hierarchical decoding structure improves the segmentation of both
large and small structures in medical images. This ability to handle multi-scale features
makes UNETR highly effective for volumetric medical images. Furthermore, experiments
in the original paper demonstrated that UNETR significantly outperforms conventional
U-Net models on brain tumor and spleen segmentation tasks, showcasing its effectiveness
in real-world clinical settings.






Chapter 5

Experiments and Results

5.1 Experimental Setup

This chapter outlines the procedures and configurations used to conduct the experiments
in this work. It details the datasets, model architectures, training processes, and evalua-
tion methods applied to achieve the results. The experimental setup is designed to test
the performance of various models on different datasets, with a particular focus on the
segmentation tasks. Additionally, this section explains the hardware and software envi-
ronments used to facilitate the experiments, including pre-processing and post-processing
steps to ensure the reliability and robustness of the results. Through a structured method-
ology, the aim is to provide a clear understanding of the workflow that led to the final
outcomes.

5.1.1 Datasets

The outcomes of this study heavily rely on the characteristics of the datasets used for
experimentation. The experiments are run on three datasets, namely: Specular Highlight
Image Quadruples (SHIQ), WHU, and the Inspection datasets. The purpose of the thesis
is to detect reflections in inspection images, therefore the specialized inspection dataset is
introduced, which consists of objects and scenes found during industrial visual inspections.
The dataset contains 1025 images, which are partitioned into a training set of 820 images
and a test set of 205 images. The train set is further randomly split into 80:20 ratio, for
the training and model evaluation. As mentioned in Table 3.3, SHIQ dataset consists of
quadruple which also depicts highlight-free and highlight intensity images to aid in the
removal of specular highlight. However, as the aim of this study is to detect specular
reflections, only the input image and the highlight mask are used for the experiments.
The SHIQ dataset is divided into separate train and test subsets, with the test subset
used for validation in this study. Similarly, WHU is a dataset that captures reflections in
real world scenarios. The dataset consists of 5000 images, which were randomly split into
train and validation sets in 80:20 ratio for model training and evaluation purposes.
SHIQ and WHU were included for training because they are among the largest datasets
available for real-world reflection images. The goal was to determine whether models
trained on these gencralized datasets could accurately detect reflections in industrial in-
spection scenarios, which involve varied lighting conditions and a limited range of ma-
terials. The models trained on each of these datasets is tested on the test dataset of
inspection images to compare its performance. The aim is to observe how models trained

95
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on larger and generalized datasets like SHIQ and WHU perform on inspection images as
compared to the inspection dataset, and evaluate whether the domain shift between the
three datasets has any effect on the performance of the models.

t-distributed stochastic neighbor embedding (t-SNE) [112] is a nonlinear dimensional-
ity reduction method to visualize high-dimensional dataset on a lower dimensional space
of two or three-dimensional. The t-SNE visualization of the Inspection dataset is shown
in 5.1 (a). Based on this distribution, the dataset is divided into train and test. The three
clusters on the extreme right in the figure as well as the slightly larger cluster on top right
sampled as the test dataset, while the remaining are placed in the train dataset. t-SNE
is implemented to visualize the differences in the three datasets, and derive the domain
shift amongst from distributions. The differences are visualized in the Figure 5.1 below.

(a) Inspection Dataset (b) WHU Dataset (c) SHIQ Dataset

Figure 5.1: t-SNE Visualizations of Inspection, WHU, and SHIQ Datasets. The Inspection
dataset shows a more compact distribution, while the WHU and SHIQ datasets have wider
distributions.

5.1.2 Model Architecture

U-Net (see Section 4.3.1)is one of the models implemented in this study due to it being
the base architecture for the current state-of-the-art reflection detection methods. There
are five types of models implemented which can be categorized as CNN-based and ViT-
based. U-Net, Attention U-Net and U-Net++ are categorized as CNN-based models
while UNETR and UNETR-AF are ViT-based models. The U-Net implemented contains
4 encoder and decoder blocks along with a bottleneck and 4 skip connections between the
encoder and decoder based on the original paper in [93]. The Attention U-Net [82] has
the same structure as the U-Net but with an addition of an attention gate at each skip
connection to pass on additional information derived from the attention mechanism. The
U-Net++ [131] is built upon the U-Net by introducing nested dense skip connections which
further adds to the model complexity. The next architecture is UNETR [35] which retains
the original U-Net architecture but replaces the CNN encoders with Vision Transformer
(ViT) [21]. This forms the basic architecture of the proposed method UNETR-AF which
includes attention modules SE and CBAM to add channel and spatial attention between
the skip connections and the decoders.
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Figure 5.2: Model Architectures.

5.1.3 Training

The training process was conducted to optimize the performance of all the models on all
the datasets previously mentioned. The model architecture implemented were U-Net and
Attention U-Net, which are known to be effective for segmentation tasks. The inspection
dataset was split into training (60%), validation (20%), and test (20%), ensuring a bal-
anced distribution of images under varying lighting conditions and object types. The test
set was reserved for inference and model evaluation.

Pre-Processing: The images from the three datasets varied in both width and height.
To ensure compatibility with the model architecture, all images were resized to a uniform
dimension of 224x224 during the data loading process. This resizing step standardizes
the input sizes, enabling the model to process the images efficiently without sacrificing
the underlying structure required for segmentation. Moreover, the images and its corre-
sponding masks are normalized which helps standardize the pixel values of images across
the datasct

Data Augmentation: To increase the diversity of training samples and prevent
overfitting, various data augmentation techniques were applied, including rotations, and
flips. These augmentations simulate real-world variations and help the model generalize
better to unseen scenarios.

Training Configuration: The aim was to attain the best possible performance on
each model and each dataset by implementing different combinations of hyperparameters.
The models were trained using a hyperparameter sweep conducted via Weights and Bi-
ases. Random sweeps were performed with the number of epochs set to 20, 30, 50, and
100. The loss functions used were binary cross entropy and Focal Tversky, along with the
optimizers Adam and SGD. SGD was implemented with a momentum 0.9. For experi-
ments conducted with Focal Tversky loss, the alpha was 0.7, beta 0.3 and the gamma was
2. The batch size was 16 for all CNN-based experiments and 8 for ViT-based models.
Learning rates were initialized from a range of values: 3e-2, le-2, 3e-3, 1e-3, and le-4.
To prevent overfitting, early stopping was employed by monitoring the validation loss,
halting training if no improvement was seen over a predefined patience period. Moreover,
the models were trained from scratch across the datasets for U-Net and Attention U-Net.
While the UNet++ was trained with a ResNet-50 backbone and UNETR implemented
a pretrained ViT model. Both the models were pretrained on the ImageNet-21k [19]
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dataset, which consists of 14 million images and 21000 classes.

Transfer Learning Experiments: In addition to training models from scratch,
transfer learning was applied to further explore domain adaptation. In the first experi-
ment, a pre-trained U-Net model, initially trained on the SHIQ dataset, was fine-tuned
on the Inspection dataset by freezing the decoder layers, allowing only the encoder to
adapt to the new domain. A lower learning rate of le-4 was used to train for 200 epochs.
This method aimed to transfer the knowledge from a larger dataset within the real-world
reflection domain (SHIQ) to the Inspection dataset, which is a smaller dataset aimed at
reflections in inspection images.

In the second setup, the decoder layers were frozen, while the bottleneck and encoder
layers were fine-tuned. This allowed the model to leverage the SHIQ pre-trained decoder
to reconstruct outputs while adapting the encoder and bottleneck to better learn the
feature representations of the Inspection dataset. The intuition is that the deeper levels
in the U-Net capture more feature information which are relevant for the task, as the
bottleneck is the last level, retraining allows for further domain-specific fine-tuning which
can be derived from the SHIQ) dataset to handle the complexities of reflection detection in
inspection images. The two transfer learning strategies are demonstrated with schematic
diagrams in Figure 5.3.

A. Transfer Learning Strategy 1
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B. Transfer Learning Strategy 2 [ | Frozen Layers
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— ]
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Figure 5.3: Schematic Diagram of Transfer Learning Strategies: A. Only the encoder
layers are fine-tuned, the rest are frozen. B. The encoder and the bottleneck are fine-tuned
while the decoder layers are frozen. The strategies are applied on the U-Net architecture.
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Hardware and Environment: Training was performed using an NVIDIA GeForce
RTX 4070 SUPER GPU, utilizing the PyTorch framework. The duration of each exper-
iment varied depending on the dataset, with the SHIQ dataset taking approximately 18
hours, the WHU dataset requiring up to 24 hours, and the inspection dataset taking up
to 11 hours.

Performance Metrics: Throughout training, key performance metrics, including
training loss, validation loss, accuracy, Dice coefficient and IoU score were tracked using
the Weights and Biases library. The model’s convergence was monitored using valida-
tion loss, and the final model was selected based on the highest mean IoU score on the
validation dataset.

5.1.4 Inference and Post-Processing

During the inference phase, the trained models were used to predict segmentation masks
on unseen data from the test set. To ensure consistency with the training process, the test
images were pre-processed in the same way, including resizing to 224x224. The models
generated predictions in the form of binary masks, which were then post-processed for
evaluation. For each dataset, the predictions were compared to the ground truth masks
using metrics such as IoU and Dice coefficient. These metrics provided a quantitative
assessment of the model’s ability to accurately segment objects under various lighting
conditions and image complexities. The inference speed and memory usage were also
tracked, providing insight into the practical feasibility of deploying the models in real-
world autonomous inspection systems.
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Figure 5.4: Inference Process Flowchart.

After inference, post-processing techniques were applied to extract valuable informa-
tion from the predicted segmentation masks. A key aspect of this process is identifying
the centroid coordinates of localized reflection segments, which is crucial for the reactive
planning of autonomous inspections. To achieve this, contours of the reflective areas are
drawn from the segmentation masks, enabling the calculation of centroids. To filter out
insignificant reflections that may not impact inspection decisions, a threshold is applied:
reflection areas smaller than 20 pixels are disregarded for centroid calculation, as they
are deemed too minor to warrant further attention. The resulting centroid coordinates
are initially derived from the 224x224 binary segmentation masks and are subsequently
rescaled to align with the original image dimensions. These coordinates serve as reference
points for navigating the robot, allowing it to re-inspect areas obscured by reflections
effectively. The post-processing steps are visualized in Figure 5.5.
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Figure 5.5: Post-Processing steps where s is the threshold set. Each step maps to its
corresponding image.

5.1.5 Real-Time Inference Using ROS 2 Integration

Once the models were trained and evaluated on images (including post-processing for
contours and centroid extraction), it was essential to test their performance in a real-time
scenario, mimicking actual inspection conditions. For this purpose, the RealSense camera
was used to capture image frames in real time, and a flashlight was employed to simulate
the reflective surface inspection environment. The inspection scenario involved both the
exterior and interior of an aircraft wing fuel tank.

To facilitate this, ROS 2 (Robot Operating System 2) [83] was used for integration.
The system utilized a publisher-subscriber framework, where the camera acted as the
publisher, streaming image frames at 30 frames per second to a dedicated topic. The
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trained neural network models subscribed to this topic to process the incoming frames,
detect reflections, and output the contours and centroids of the reflective regions in real
time. This setup provided valuable insights into the practical viability of the models
in terms of speed and accuracy under real-world conditions. Figure 5.6 illustrates the
real-time inspection of the interior of a fuel tank using the U-Net++ model. The model
accurately detects specular reflections, highlighting their contours and centroids, which
are critical for localizing reflective surfaces. This demonstrates the model’s capability to
operate effectively in practical inspection scenarios, providing reliable outputs for potential
robotic repositioning and adaptive planning.

Figure 5.6: Reflection Detection in a Real-Time Inspection Scenario.

5.2 Results

The results derived from the experiments conducted in the previous section are reported in
this section. The results are categorized as quantitative and qualitative. The quantitative
results are calculated with the evaluation metrics discussed in the previous chapters. The
qualitative results are the segmentation maps generated by the model when inferred on a
given image.

5.2.1 Baseline Result

Before evaluating the results of the implemented models, the algorithm from a traditional
segmentation method [107] was applied to understand whether saturation and intensity-
based thresholding is sufficient to reach the desired output. The sample inspection images
and the results are shown in Figure 5.7. Most of these techniques work only for its specific
use case and do not generalize well across different domains. For instance, this method
was originally applied for real-time detection of specularity in endoscope images, however
it failed to correctly identify the reflections in the sample inspection images as shown in
Figure 5.7.
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Figure 5.7: Results of the real-time intensity and saturation-based threshold technique
from [107] on two inspection images.

5.2.2 Quantitative Results

The quantitative evaluation of the models was conducted using key performance metrics
such as the Intersection over Union (IoU) and Dice coefficient. As the average of the
IOU score is calculated on the test dataset, the mean IoU (mloU) is reported. These
metrics were computed for the validation sets across all the datasets and the test set from
the Inspection dataset, providing a comprehensive measure of the models’ segmentation
accuracy. The results of all the models are demonstrated in Table 5.1.

Model Dataset Validation Test
Acc | mIoU | DSC | Acc | mloU | DSC
SHIQ 98.5 57.5 72.4 | 89.46 | 29.65 | 40.18
U-Net [93] WHU 99.3 47.2 63.8 | 89.55 | 32.14 | 41.48
Inspection | 93.5 41.0 58.0 | 95.30 | 43.8 | 53.76
SHIQ 98.5 55.6 70.8 | 93.32 | 34.68 | 45.95
Attention U-Net [82] | WHU 99.2 36.9 53.2 | 90.01 | 35.00 | 43.70
Inspection | 90.8 41.9 56.3 | 96.96 | 44.63 | 53.24
SHIQ 98.5 | 55.43 | 70.7 | 88.60 | 25.3 | 34.27
U-Net ++131] Tnspection | 94.28 | 44.32 | 61.18 | 97.72 | 48.65 | 58.13
Inspection | 93.38 | 34.95 | 51.14 | 89.23 | 12.90 | 17.38
UNETR [35] SHIQ 98.34 | 49.85 | 65.12 | 89.97 | 26.06 | 34.86
Inspection | 93.38 | 34.95 | 51.14 | 89.33 | 17.94 | 24.66
UNETR-AF (Ours) SHIQ 98.34 | 37.89 | 53.39 | 89.20 | 19.02 | 26.63
All 98.34 | 37.89 | 53.39 | 89.06 | 22.06 | 30.44

Table 5.1: Optimized Results of all the U-Net variants across different datasets.

Table 5.2 provides the configuration parameters used for all the models including U-
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Net, Attention U-Net, U-Net++, UNETR, and UNETR-AF, across different datasets:
SHIQ, WHU, and the Inspection dataset. The configuration includes the number of
training epochs, the optimizer algorithm, the learning rate, and the batch size used in
each experiment.

Model Dataset Epochs | Loss | Optimizer | Learning Rate | Batch Size
SHIQ 100 BCE Adam 3e-2 16
U-Net [93] WHU 30 BCE SGD le-2 16
Inspection 100 BCE Adam le-2 16
SHIQ 100 BCE Adam le-2 16
Attention U-Net [82] | WHU 100 BCE SGD le-2 16
Inspection 50 BCE SGD 3e-3 16
SHIQ 50 BCE Adam le-3 16
U-Net -+ [131] Tuspection | 50 | BCE |  Adam 1e-3 16
SHIQ 100 FTL Adam le-3 8
UNETR [35] Inspection 100 FTL Adam le-3 8
SHIQ 100 FTL Adam le-3 8
UNETR-AF (Ours) Inspection 100 FTL Adam le-3 8

Table 5.2: Configuration Parameters for Optimized Models on Each Dataset.

There were additional transformer configurations used for the transformer-based mod-
els: UNETR and UNETR~AF. The transformer models were configured with an input im-
age size of 224x224 pixels to ensure uniformity and compatibility with pre-trained weights.
Each image was divided into 16x16 pixel patches to strike a balance between detail and
computational efficiency. The embedding dimension was set to 768, providing sufficient
space for representing each patch, while 12 attention heads were used to capture multiple
features from different image regions simultaneously. A Multi-Layer Perceptron (MLP) di-
mension of 3072 was selected to capture complex, non-linear relationships, and the model
depth was set to 12 transformer layers to maintain a balance between representational
power and generalization. The configuration is listed out in Table 5.3.

Parameter Configuration
Input Image Size 224x224 pixels
Patch Size 16x16 pixels
Embedding Dimension 768
Attention Heads 12

MLP Dimension 3072
Transformer Depth (Layers) 12

Table 5.3: Transformer Model Configuration.

For the U-Net and Attention U-Net models, additional experiments were conducted
using transfer learning. While the model trained on the SHIQ dataset performed better
than that on the Inspection dataset during validation, it did not yield similar results on
the test dataset, likely due to a domain shift between the two datasets. Therefore, it
was decided to utilize the SHIQ-trained U-Net and retrain the model with the Inspection
dataset to assess the impact on performance. Given that the SHI(Q) dataset is considerably
larger and had previously performed well during validation, it was selected as the base
model for training. The transfer learning results are demonstrated in Table 5.4.
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Model Configuration | Dataset Validation Test
Acc | mIoU | DSC | Acc | mIoU | DSC

U-Net (93] gecoder frozen, | SHIQ ?Lnd 94.3 43.2 60.0 | 93.89 | 37.11 | 48.24

ncoder + | Inspection

Bottleneck fine-

tuned

Decoder and | SHIQ and | 94.3 | 43.2 60.0 | 96.00 | 47.36 | 57.23

Bottleneck Inspection

frozen, Encoder

fine-tuned
Attention | Decoder frozen, | SHIQ and | 93.73 | 34.49 | 51.10 | 97.01 | 42.76 | 52.26
U-Net [82| | Encoder + | Inspection

Bottleneck fine-

tuned

Table 5.4: Transfer Learning Results of U-Net on SHIQ and Inspection Datasets.

Three different configurations were tested with transfer learning:
e U-Net:

— Decoder frozen, Encoder + Bottleneck fine-tuned

— Decoder and Bottleneck frozen, Encoder fine-tuned
e Attention U-Net:
— Decoder frozen, Encoder + Bottleneck fine-tuned

To mitigate overfitting, a lower learning rate of 1 x 10~* was employed, and the model
was trained for extended periods of 100 and 200 epochs. The batch size, optimizer, and
loss function remained consistent throughout the experiments. It was observed that the
configuration with only the encoder fine-tuned yielded the best performance, enhancing
the mloU score of the Inspection-trained U-Net from 43.8 to 47.36 and improving the
DSC from 53.76 to 57.23.

Model Config Dataset Epochs | Optimizer | Learning Rate | Batch Size
Only  Encoder SHIQ & nd 200 Adam le-4 16

U-Net [93] . Inspection
Fine-tuned
Encoder and IS HIQ t_a nd 100 Adam le-4 16
Bottleneck Fine- | PeCHOn
tuned

étf\?;tl[%g] Encoder and IS EI%C t'&:) nd 100 Adam le-4 16

) Bottleneck Fine- | - oPeeHol

tuned

Table 5.5: Configuration Parameters for Transfer Learning Experiments.

The real-time inference times of all trained models were evaluated to assess their com-
putational efficiency in practical scenarios. Table 5.6 summarizes the measured inference
times (in milliseconds) for each model.
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Model Inference Time (ms)
U-Net [93] 1.37
Attention U-Net [82] 1.76
U-Net++ [131] 3.40
UNETR [35] 351
UNETR-AF (Ours) 4.61

Table 5.6: Inference times of the models in a real-time inspection scenario.

Among the tested models, the U-Net exhibited the fastest inference time of 1.37 ms,
owing to its relatively lightweight architecture. The Attention U-Net followed closely at
1.76 ms, reflecting the minor additional computational overhead introduced by the atten-
tion mechanisms. The U-Net++ model demonstrated a significant increase in inference
time, taking 3.40 ms, primarily due to its nested dense skip connections, which increase
computational requirements.

The transformer-based models, UNETR and UNETR-AF, required the longest in-
ference times, with 3.51 ms and 4.61 ms, respectively. While their inference times are
comparable to U-Net+- in practical terms, the additional delay in UNETR-AF can be
attributed to the inclusion of attention mechanisms such as CBAM and Squeeze-and-
Excitation modules.

5.2.3 Qualitative results

In addition to quantitative metrics, a qualitative analysis was performed to visually as-
sess the segmentation outputs. Sample predictions from each model were compared to
the ground truth masks, highlighting the models’ ability to detect intricate reflections.
The visual results illustrate the strengths and limitations of the models, particularly in
scenarios with complex lighting and occlusions.

The segmentation output undergoes post-processing where the centroids of the seg-
mented areas are calculated and returned. For demonstration purposes, the final results
are shown using a sample prediction from the SHIQ model, with contours drawn around
the reflection areas and centroids marked. Since the models produce a segmentation
mask at 224x224 resolution, the centroid coordinates are scaled to match the original
image dimensions.

Figure 5.8 shows the size of the image at each stage, as well as how the image is
processed in the post-processing stage with contours and centroids.

Input Image Predicted Mask Centroid (224x224)

Centroid on Original Image Size

Figure 5.8: Inferring U-Net on a Test Image.

The segmentation map generated from the models are shown in Figure 5.9.
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Figure 5.9: Qualitative Results of all the models.
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5.2.4 Ablation Study

An ablation study examines the performance impact of individual components within a
deep-learning model by selectively removing or modifying them, thereby identifying each
component’s contribution to the system. In this study, only the Inspection dataset was
used to assess the role of each component in the model architecture. First, for the U-Net
and Attention U-Net models, the loss function was changed from BCE to Focal Tversky
Loss to observe any potential improvement in performance. Results showed a decrease
in performance by approximately 30% to 33%, with the mIoU score for U-Net dropping
from 43.8 to 31.44 and that of Attention U-Net falling from 44.63 to 29.49.

Subsequently, skip connections between the encoder and decoder were assessed. All
U-Net-based models in the primary experiments use four skip connections, so an ablation
test was conducted by removing two of these connections. For the UNETR-AF model,
two additional experiments examined the effects of removing one of the attention modules.
In the first experiment, CBAM was removed from the decoder, leading to a significant
drop of 50% in performance, with DSC decreasing from 23 to 10.33 and mlIoU from 16 to
7.31. In the second experiment, the SE blocks were removed from the skip connections,
resulting in improved performance. These findings are detailed in Table 5.7.

Model Dataset Change Acc | mIoU | DSC
U-Net [93] Inspection Focal = Tversky | 93.30 | 31.44 | 41.37
Loss
U-Net 93] Inspection Remove 2 skip | 88.95 | 9.80 | 14.59

connections
Attention U-Net | Inspection Focal = Tversky | 91.91 | 29.49 | 38.97
[82] Loss
UNETR-AF Inspection Remove CBAM | 89.94 | 7.31 | 10.33
(Ours) Block
UNETR-AF Inspection Remove SE | 90.13 | 22.17 | 30.98
(Ours) Block

Table 5.7: Ablation Study Results.
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Discussion

In this chapter, the models and results reported in the previous chapter are discussed to
understand their implications. According to the results for U-Net and Attention U-Net in
Table 5.1, both models trained with SHIQ) [27] performed best on the validation dataset.
However, the models trained on the Inspection dataset achieved the best results on the
test data. Among all the architectures, those trained on the SHIQ dataset performed
best in the validation datasets, while those trained on the Inspection dataset excelled in
the test dataset. This difference in performance can be attributed to the variation in size
and distribution of the datasets. As previously noted, the SHIQ dataset contains over
16,000 images of specular reflections in real-world environments and objects, while the
Inspection dataset is smaller, with only 1,025 images, further split into an 80:20 ratio
for training and testing. Due to its specific use case, it may be challenging for models
trained on the Inspection dataset to generalize well to other datasets. Moreover, the
domain shift between datasets is important to consider. Since the test dataset comes
from the Inspection dataset, it belongs to a different domain compared to SHIQ and
WHU. Therefore, despite the validation metrics (such as accuracy, mloU, and DSC) being
higher for the SHIQ dataset, the performance fell short of meeting or surpassing that of
the Inspection-trained models on the test dataset.

To address the issue of a smaller dataset, the U-Net model trained on the larger SHIQ
dataset was used as a base model for transfer learning, retraining U-Net and Attention
U-Net with the Inspection dataset. Two different configurations were employed: in the
first, the decoder was frozen while the encoder and bottleneck were fine-tuned, and in
the second, the decoder and bottleneck were frozen, allowing only the encoder to be fine-
tuned. It was observed that performance metrics for mloU and DSC improved when only
the encoder was fine-tuned, whereas performance decreased when both the encoder and
the bottleneck were fine-tuned. The performance of Attention U-Net remained relatively
unchanged, but it improved for U-Net. Compared to U-Net trained only on the Inspection
dataset, transfer learning from SHIQ to Inspection improved the mloU score by 3.5 and
the DSC by 4.

The next set of experiments involved the U-Net+-+ [131] architecture with a ResNet-50
[36] backbone. ResNet-50 was pretrained on the ImageNet [19] dataset. The performance
metrics for the validation dataset were comparable to those of the previous models, but
the test dataset metrics were higher when trained with the Inspection dataset. It achieved
the highest evaluation metrics among all experiments, including those with transfer learn-
ing, with DSC and mloU scores of 58.13 and 48.65, respectively. However, there was a
significant drop in DSC and mloU scores of 6 and 4 points, respectively, for U-Net-+
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trained on the SHIQ dataset. This drop indicates that domain shift has a considerable
impact on U-Net++ performance.

The next experiments were conducted with the transformer-based UNETR [35]. The
Vision Transformer (ViT) encoder was pretrained on the ImageNet dataset [19]. Com-
pared to the other models, it had a much lower mIoU and DSC scores with 11 and 22
respectively on the validation datasets of both SHIQ and Inspection datasets. This could
be due to ViT’s limitations in effectively segmenting images when trained on smaller
datasets. ViT generally perform well on larger datasets, which may explain why it under-
performed compared to other models. Additionally, in the original paper [35], UNETR
was applied to 3D medical segmentation, whereas in this study, it was adapted for 2D
image segmentation. This change in data type may also have affected its performance, as
less information about the data is processed. Similarily, UNETR-AF struggled to match
the performance of the CNN-based models. However, when trained on the SHIQ dataset,
the attention-focused model performed slightly better than the UNETR as the DSC score
improved from 22 to 26.62.

In terms of qualitative results, models trained with the Inspection dataset outper-
formed those trained on SHIQ, particularly in detecting light reflections. As shown in
Figure 5.9, the U-Net++ model and the transfer-learned U-Net (SHIQ + Inspection)
demonstrated more precise detection of smaller reflections. The ground truth highlights
four areas of reflection, and all model predictions were able to detect the smaller reflection
at the base of the turbine blade. However, many models inaccurately identified larger ar-
eas at the base as reflections, whereas U-Net-++ and the transfer-learned U-Net provided
a more precise identification of this subtle reflection.

In general, the predicted segmentation maps across all models demonstrated high pre-
cision in detecting reflections. Interestingly, while the ground truth annotations focused
on larger reflection areas, omitting finer details such as the fading reflection in the back-
ground of the turbine blade, the model predictions captured these nuanced effects more
effectively. For instance, in the first input image in Figure 5.9, reflections with varying
intensities are visible, some stronger and others gradually fading out. While the ground
truth did not label these subtler areas— because only the coordinates of larger reflections
are necessary for reactive planning—most models, especially U-Net--+ and fine-tuned U-
Net, captured these effects accurately. Since these subtle differences between the ground
truth and the model predictions are not reflected in the evaluation metrics (mloU and
DSC), it suggests that the actual performance of these models might be higher than what
the current metrics indicate.

It was also noted that the CNN-based models were able to detect the larger reflec-
tions precisely with higher mIoU and DSC, compared to ViT-based models, particularly
UNETR. This can be observed in more scenarios captured in Figure 6.1.
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Figure 6.1: Qualitative results with Inspection dataset: the segmentation maps depict
results of all the models trained on the Inspection dataset in two different scenarios.

A notable advantage of transformer-based models is their versatility in segmenting
3D data, as demonstrated by the original UNETR, which was designed for 3D medical
image segmentation. This capability could prove highly beneficial when using RGB-D
images, allowing the capture of more precise distance information and enhancing reactive
planning in autonomous inspections.

Model Name

Strengths

Limitations

Observations

U-Net [93]

Strong  performance
on various datasets

Limited detail in very
small reflections

Good baseline for

comparison

Attention U-Net
82

Effective in capturing
fine details

Higher computational
cost

Better at identifying
nuanced features than
standard U-Net

U-Net++ [131]  Excellent for captur- Higher computational Achieved the best
ing fine details cost overall performance
UNETR [35] Good at detecting Struggles with larger ViT-based model
smaller reflections reflections needs larger datasets
for effective training
UNETR-AF Improved perfor- Lower overall perfor- More effective than
(Ours) mance in detecting mance compared to UNETR in detecting

small reflections

CNN models

minute details

Table 6.1: Comparison of Model Characteristics and Insights.

In terms of model complexity, there is a significant difference in computational de-

mands and parameter sizes across the U-Net variations.

Due to the difference in its

structure and modules, such as addition of attention modules and nested dense skip
connections, the models have varying model complexity which ultimately affects their
performance. Model complexity is a key to understand the capabilities and limitations
of a model. The factors that influence this include the number of parameters and filters
in a model, as well as the data complexity [116]. The number of parameters are the sum
of the weights and biases in the neural networks. Parameters "learn" the training data
in the network and is referred to as a measure of how well the model performs. The
higher the number of parameters, the higher is the model complexity. A higher number
of parameters generally leads to better performance but increases the risk of overfitting
on smaller datasets [116].
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The number of Multiply-Accumulate operations (MACs) are computed to understand
the computational complexity of the model. MACs estimate the number of arithmetic
calculations that involve multiple two numbers and adding the results. This operation
is often used in linear algebra for computations such as convolutions, dot products, and
matrix multiplication, which are fundamental to various deep-learning models. This pro-
vides useful insights into the energy consumption and memory resources required by the
model to process the input and produce meaningful results. The number of MACs and
parameters not only provides a measure of model complexity, but also offers insights into
the expected computational load, often serving as an indicator of how long it may take for
a neural network to train on a given dataset. Generally, models with higher MACs and
parameters require more computational resources and longer training times, particularly
when working with large or complex datasets [45]. To compare the model complexity, the
number of parameters and MACs are computed and summarized in 6.2. The MACs are
calculate based on a RGB image of size 224x224.

Model MAC (G) | Parameters (M) | Inference Time (ms)
U-Net 93] 10.95 31.04 1.37
Attention U-Net [82] 11.60 31.74 1.76
U-Net++ [131] 35.28 48.99 3.40
UNETR |[35] 41.61 105.26 3.51
UNETR-AF (Ours) 41.62 105.34 4.61

Table 6.2: Computational complexity, model size and inference time of the U-Net Versions.

As illustrated in Table 6.2, the standard U-Net is the most computationally efficient,
requiring only 10.95 billion MACs and about 31.04 million parameters. In contrast, UN-
ETR, which incorporates the ViT [21], requires a substantial increase in computational
resources with 41.61 (G) MACs and 105.26 million parameters. This jump in complex-
ity highlights the heavy computational burden of transformer-based architectures, which,
while effective at capturing global dependencies, demand significantly more resources.

Attention U-Net, despite its integration of attention mechanisms, is relatively effi-
cient with 11.60 (G) MACs and 31.74 million parameters. While it presents a notable
increase in complexity compared to the standard U-Net, it remains more manageable
than UNETR. The figures for U-Net++ lies between U-Net and UNETR, given its dense
skip connections which notably adds more MACs compared to attention modules. The
differences in complexity among the models are crucial when considering their practical
applications. While UNETR and UNETR-AF can yield accurate results by capturing
detailed spatial information, their increased computational cost may limit their usabil-
ity in real-time or resource-constrained environments. Therefore, it is essential to bal-
ance performance improvements with computational efficiency when selecting a model
for deployment. Additionally, vision transformers require substantial datasets for optimal
learning; given the smaller sizes of the datasets used in this study, their performance
—even with pre-trained weights — was not as effective as anticipated. Furthermore, the
training epochs for transformer models were comparable to those for CNN-based models,
suggesting that transformer architectures might need extended training periods to achieve
results comparable to CNN-based U-Nets.

When comparing inference times in real-time inspection environment, which are listed
in Table 6.2, the standard U-Net achieves the fastest time of 1.37 ms, reflecting its rel-
atively lightweight architecture. Attention U-Net computes results in 1.76 ms, which is
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slightly longer than U-Net due to the addition of attention gates. U-Net++-, on the other
hand, has nearly double the inference time of Attention U-Net at 3.40 ms. Interestingly,
despite having a larger parameter count, the UNETR achieves an inference time of 3.51
ms, which is comparable to U-Net++, with only a difference of 0.11 ms. Although the
ResNet-50 encoder in the U-Net++ has fewer parameters than the ViT in UNETR, the
nested skip connections in U-Net++ significantly increase the computations, leading to
a higher MAC count, while most of the MACs of UNETR are due to the computations
performed by the ViT and not its skip connections. UNETR-AF has the highest infer-
ence time of 4.61 ms. Despite UNETR and UNETR-AF having a similar number of MAC
operations and parameters, there is a difference of 1.1 ms between their inference times.
This difference is due to the addition of the attention modules: CBAM and Squeeze-and-
Excitation.

Testing in real-time highlighted that all models processed the frames efficiently, with
only minor differences in inference time, demonstrating their suitability for rapid decision-
making in inspection scenarios. The detected contours and centroids can be pivotal for an
inspection robot to achieve reactive planning. Once the reflection’s centroid is identified
in the camera’s frame, it can serve as a reference point for positioning adjustments. This
data can be integrated into a feedback loop for the robot to reposition itself dynamically,
ensuring optimal inspection angles or better lighting conditions for further analysis. The
integration also underscores the potential for broader use cases, such as optimizing robotic
movements during inspection tasks or improving inspection accuracy in environments with
limited visibility. By incorporating this real-time feedback loop, inspection systems can
achieve greater adaptability and efficiency.






Chapter 7

Conclusion

This thesis conducted experiments with different architectures and methods, catego-
rized as CNN-based and Transformer-based. These included U-Net, Attention U-Net,
U-Net++, UNETR, and UNETR-AF, which were evaluated on the test dataset of the
Inspection dataset. The U-Net and Attention U-Net were trained across three datasets:
SHIQ, WHU, and Inspection dataset, while the transformer-based UNETR and UNETR-
AF were trained with SHIQ and Inspection. The SHIQ [27] and WHU |[27| are large
specular reflection datasets that capture reflections on different materials and objects
found in the real-world environment. On the hand, an Inspection dataset is introduced
which captures reflections in different illumination modes of the inspection objects. Due
to the different domain and distribution of the three datasets, the best performing U-
Net trained on SHIQ was used for transfer learning with Inspection dataset. The thesis
adapts the UNETR architecture [35], which was originally implemented for 3D medical
segmentation to a 2D image segmentation. The thesis also proposed an extension of
the UNETR architecture, named UNETR Attention Fusion (UNETR-AF), which incor-
porates squeeze-and-excitation (SE) blocks and the convolution block attention module
(CBAM) in the skip connections and the decoder for improved channel attention.

7.1 Findings

This thesis performed U-Net based semantic segmentation to detect specular light re-
flections in inspection images. A comparison of the quantitative results revealed that
the U-Net trained on the SHIQ dataset produced the highest mIoU and DSC scores when
evaluated on the test dataset. However, when considering models adapted from the U-Net
architecture, it was found that the U-Net-++4 model outperformed all others, achieving
superior metrics in both the validation and test datasets. The experiments highlighted
the limitations of the UNETR-AF model, which, despite its innovative architecture incor-
porating Squeeze-and-Excitation (SE) blocks and Convolutional Block Attention Modules
(CBAM), did not yield satisfactory results. This performance may stem from its adapta-
tion from the UNETR architecture, initially designed for 3D medical segmentation, and
the use of a pretrained Vision Transformer (ViT) encoder. The ViT’s performance on
smaller 2D datasets appeared to be a significant factor in this underperformance. Despite
this, the proposed UNETR-AF outperformed UNETR in detecting medium-sized reflec-
tions, which is attributed to the additional spatial and channel attention modules in the
skip connections and the decoders. Moreover, all the models were also tested in a real-time
inspection scenario, wherein all the models demonstrated efficient performance, detecting
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reflections in a timely manner. The differences in inference times between the models
were minimal, only a few milliseconds, indicating that all models are viable for real-time
deployment in inspection tasks. In summary, while the U-Net model demonstrated solid
performance, particularly with the SHIQ dataset, the U-Net++ model proved to be the
most effective for this application. The findings suggest that while transformer-based
models like UNETR and UNETR-AF hold potential, their integration into specific tasks
requires careful consideration of architectural suitability and dataset characteristics.

7.2 Future Work

This section takes a look at future work that could further improve upon the challenge
addressed. Firstly, there is a need for larger, diverse and high-quality datasets consisting
of inspection images to achieve state-of-the-art results. These diverse datasets can be
generated with the help of variational autoencoders (VAEs) [75] and generative adversar-
ial networks (GANs) [60] that can create realistic images and allow data augmentation.
Similarly, synthetic images with specular reflections can be produced using raytracing
simulators [38][132], which facilitate the automatic creation of large datasets by identify-
ing specular reflection rays. Moreover, the model can be trained on limited data with the
help of few-shot or zero-shot learning [12] [91]. Few-shot learning can also be applied to
detect reflections in the images which learns to segment in a query image based on a few
pixel-wise annotated support images [119] [125].

Future work could focus on processing RGB-D data in deep-learning networks, as the
inclusion of depth information would enable better extraction of spatial and geometric de-
tails, improving the system’s ability to accurately localize reflections and support robust
reactive planning. By combining RGB-D inputs with reflection contours and centroids,
methods such as stereo triangulation [90] could be employed to calculate optimal repo-
sitioning strategies, allowing robots to dynamically adjust their position for improved
inspection angles and thorough evaluations. Integrating the proposed models with real-
time inspection systems and robotics platforms offers promising applications, as reflection
localization data could guide inspection robots to adapt to changing conditions, such as
varying light sources or obstructed views, while enhancing both efficiency and coverage
through reactive planning. Expanding the model’s capabilities to detect additional use
cases, such as surface defects or environmental anomalies, could significantly broaden its
industrial applications, optimizing maintenance and repair operations in aviation.
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