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A B S T R A C T

Despite being one of the major issues that photovoltaic systems face worldwide, estimating the energy and 
economic magnitude of soiling of solar collectors still represents a challenge. This work presents a first European 
assessment of the soiling loss and of the cost-effectiveness of soiling mitigation. New soiling maps are generated 
through the interpolation of reanalysis data, calibrated against ground-measured losses from sensors installed 
across the continent. The results show that Europe experiences an average annual soiling loss of 0.9 % if rain is 
considered a perfect cleaning agent. However, if a cleaning effectivity by rain of 10 % is assumed, this annual loss 
increases up to 5.3 %. In some southern locations, soiling losses are markedly seasonal, while these are more 
consistent in central Europe. These losses can have repercussions on the economics of photovoltaics, increasing 
the levelized cost of electricity up to 4 % or 15 % depending on the cleaning effectivity of rain. The losses are also 
found to vary significantly in some sites from year to year, highlighting the need for continuous monitoring. The 
study concludes that implementing adequate soiling mitigation measures is strongly recommended in most of the 
regions due to the high electricity prices and the comparatively low cleaning costs.

1. Introduction

In Europe, the trajectory toward renewable energy sources, espe
cially photovoltaic (PV) energy, mirrors global trends but with a 
heightened emphasis. This emphasis is underscored by the policies and 
initiatives implemented by the European Commission, such as the 
REPowerEU plan [1], which aims to elevate annual PV capacity by 600 
GW by 2030, among other objectives. The report from SolarPower 
Europe [2] highlights that, within the European Union (EU), annual 
growth rates of PV capacity exceeding 40 %/year have been consistently 
recorded over the past four years. The growth in PV capacity has been 
accompanied by an increased awareness of the importance of operation 
and maintenance (O&M) tasks to maximize yield and performance.

The performance of PV systems can be significantly impacted by the 

accumulation of dirt, dust, and contaminants [3]. Airborne particles 
gradually accumulate on the surface of PV modules due to the interac
tion of various physical mechanisms, such as resuspension, deposition 
and cementation [4]. This phenomenon, known as soiling, reduces the 
intensity of the light reaching the PV cell and, therefore, the electricity 
output. It has been estimated to cause the loss of 4–7 % of the global PV 
energy yield [5]. Nonetheless, the impact of soiling on PV has been 
typically overlooked in Europe in comparison to other regions, like 
Northern Africa [6], Asia [7] and the Middle East [8], with the 
assumption that its effect on the final yield is negligible. However, 
research studies have revealed the contrary, showing that soiling can 
result in significant losses even in regions historically considered 
soiling-free due to their climatic conditions. For example, Riise et al. [9] 
conducted a study evaluating the impact of soiling on a PV system 
located at a farm in Norway, discovering that soiling losses occurred due 
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to agricultural activities in the vicinity of the PV site. Appels et al. [10] 
found that high pollen concentrations can cause a 3–4 % energy yield 
loss in Belgium. Furthermore, Saharan dust intrusions have been re
ported in both southern and northern European countries [11,12], and 
can accelerate the accumulation of soiling, leading to significant losses 
[13].

In light of these observations, acquiring precise knowledge of the 
magnitude of soiling losses becomes essential. This information can be 
obtained through either on-site monitoring, which typically consists of 
using either specialized sensors [14–18], or modeling approaches 
[19–22]. The use of models allows estimating the losses without the 
need of specific hardware and of data collection campaigns, as soiling 
can be estimated from widely available environmental datasets.

Because of their potentially easier implementation, several model
ling approaches have been proposed through the years. The study of 
Kimber et al. [23] pioneered the development of PV soiling models. 
Their model calculates the PV energy losses due to soiling by assuming a 
daily soiling rate, which indicates how much energy loss increases per 
day. It also includes a cleaning threshold (CT) for rainfall, which de
termines whether a rain event is sufficient to completely remove soiling 
from the surface of the modules, and a grace period, which represents 
the time the PV system remains clean after rainfall. While widely 
employed, the so-called Kimber model still requires the knowledge of 
the power derate caused by soiling. This information, however, might 
not be available, especially when soiling at a new site is assessed. For 
this reason, environmental-data-based soiling models were introduced, 
allowing to estimate also the power derate due to soiling from envi
ronmental parameters. The seeds of such models were those studies that 
identified the correlations between individual environmental parame
ters and specific soiling mechanisms [24–27]. For instance, Jiang et al. 
[24] conducted an indoor experimental investigation to correlate 

airborne dust deposition and the performance loss of PV modules. They 
found a linear relationship between the dust deposition density and the 
reduction in PV output efficiency, encountering a maximum drop of 26 
% with 22 g/m2 of dust density. Similarly, through an outdoor experi
ment, also Boyle et al. [25] found a linear correlation between the mass 
of dust accumulated on a glass and the loss in transmittance. Bergin et al. 
[26] studied the influence of both ambient and deposited particulate 
matter (PM) on the reduction of the available energy for solar power 
production. They also estimated the relative contribution of the different 
PM components to the decrease in PV module transmittance. Javed et al. 
[27] used an Artificial Neural Network approach to model the re
lationships between environmental variables, such as PM concentration, 
wind speed and direction, temperature and relative humidity, with the 
performance loss due to soiling. They found that both wind speed and 
relative humidity were the two environmental parameters that most 
affect the airborne dust accumulation on the surface on PV modules, and 
thus impact their energy output.

Following those studies, different multi-variable empirical models 
were developed to reproduce both the removal and deposition mecha
nisms, and therefore generating a soiling loss profile [19,20,28]. Coello 
et al. [19] presented a model that uses PM concentrations, the tilt of the 
PV modules and rain data to simulate the temporal evolution of soiling 
losses at a site. The model first calculates the accumulated mass on the 
surface of the modules, and then it estimates the transmission losses 
using an empirical equation. It assumes that any day with an average 
daily precipitation intensity higher than a certain threshold totally 
removes the accumulated mass. The model was initially tested using 
measured soiling data from seven locations across the southwestern 
United States. You et al. [29] presented an approach that estimates the 
dust deposition density as a function of the deposition velocity, the PM 
concentrations and the length of dry spells. Then, it models the loss in 

Nomenclature

Symbols
CAPEX Capital Expenditure [€/kW]
CoV Coefficient of Variation [− ]
CT Cleaning Threshold of precipitation [mm/day]
d Discount rate [%/year]
E0 Photovoltaic energy yield without soiling [kWh/kW]
Et Photovoltaic energy yield with soiling [kWh/kW]
Lat Latitude [◦]
Lon Longitude [◦]
LCOE Levelized Cost of Electricity [€/kW]
N Lifetime, in years, of the PV system
n Number of years since the commissioning of the PV system 

[− ]
Nd Constant depreciation period [20 years]
NY Number of years in between two consecutive manual 

cleanings
NPV Net Present Value [€/kW]
OMEX Operation and Maintenance Expenditure [€/kW]
p Average price of electricity [€/kWh]
PM10-2.5 Particulate Matter concentration of particulates between 

2.5 μm and 10 μm [g/m³]
PM2.5 Particulate Matter concentration of particulates smaller 

than 2.5 μm [g/m³]
PRac Performance Ratio after a manual cleaning event [− ]
PRbc Performance Ratio before a manual cleaning event [− ]
PW [DEP] Present Worth of tax depreciation [€/kW]
PW [PVOM] Present Worth of operation and maintenance [€/kW]
rd Degradation rate [%/year]
rom Average annual increase rate of the OMEX [%/year]

rp Average annual increase rate of the electricity price 
[%/year]

SL Soiling loss [%]
SL Arithmetic mean soiling loss [%]
SL IW Irradiance-weighted average soiling loss [%]
SL E Energy-weighted average soiling loss [%]
Sm Cumulative soiling loss accumulated over a month [%]
Sm sum Cumulative soiling loss accumulated over a year [%]
SVI Soiling Variability Index [− ]
SR Soiling Ratio [%]
T Income tax rate [%/year]
t Accumulation period [s]
v10-2.5 Settling velocity of particulates between 2.5 μm and 10 μm 

[m/s]
v2.5 Settling velocity of particulates smaller than 2.5 μm [m/s]
w Total accumulated mass [g/m2]
WACC Weighted Average Cost of Capital [− ]
θ Tilt angle of the PV modules [◦]

Abbreviations
ADS Atmosphere Data Store
CAMS Copernicus Atmosphere Monitoring Service
EAC4 ECMWF Atmospheric Composition Reanalysis 4
ECMWF European Centre for Medium-Range Weather Forecasts
EU European Union
IRENA International Renewable Energy Agency
LED Light Emitting Diode
O&M Operation and Maintenance
PV Photovoltaics
PVGIS Photovoltaic Geographical Information System
USA United States of America
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efficiency of PV by considering the linear rate of 0.0139 %/g suggested 
by Jiang et al. [24]. They applied the model to various cities worldwide 
without further validation. Toth et al. [28] also proposed a model based 
on PM concentration and rainfall to predict daily soiling losses. How
ever, conversely to Coello’s one, this considers that rainfalls can only 
remove coarse particulates (particulates with a diameter higher than 
2.5 μm), while fine ones are only washed off from the surface of PV 
modules after artificial cleanings. The model presents two parameters 
that requires site-specific calibration. Originally, the authors fitted these 
parameters using measured soiling data from an urban-industrial loca
tion in Colorado, United States.

In recent years, several studies have been published in an attempt to 
compare, customize and assess the performance of the previously pre
sented models in different locations. Sharma et al. [30] compared three 
environmental-based soiling models with field soiling measurements in 
a semi-arid location in India. They found that Coello’s model over
estimated the losses, while Toth and You models slightly underestimate 
them. Bessa et al. [31] conducted a benchmarking assessment of four 
different environmental-based soiling models in Jaén, southern Spain. 
They used satellite-derived data as inputs and tuned the model co
efficients to align with the local conditions of the site. In addition, they 
conducted a sensitivity analysis to evaluate how different values of 
rain-cleaning threshold impact the soiling profile. They found that 
Coello and You models were the ones that performed the best, returning 
the lowest errors when compared against actual soiling measurements, 
for the selected location. Polo et al. [22] modeled the soiling losses of a 
PV system located in an area with nearby forest in Madrid, Spain using 
Coello’s model with dynamic deposition velocities and a cleaning 
threshold of 4 mm/day. They validated the simulations with measured 
soiling data and concluded that better agreements were found during the 
summer season, while the larger discrepancies occurred during periods 
with frequent rainfalls, thus highlighting the need for an appropriate 
selection of the cleaning threshold and casting doubt on the complete 
rain’s cleaning effectivity. Lara-Fanego et al. [32] presented a study that 
showed different possible parametrizations and adaptations of Coello’s 
model parameters to the realistic conditions of PV systems located in 
regions with different climates. Their work aimed to improve Coello’s 
model accuracy and global reliability.

More recently and based on previous approaches that rely on envi
ronmental parameters, new PV soiling models have been generated, 
such as the machine learning models proposed by Lopez-Lorente et al. 
[33] and tested in a location with a dry climate in Cyprus, the numerical 
model proposed by Redondo et al. [34], which was validated with 
specific soiling data from five different large PV systems in Spain, or the 
Artificial Neural Network method developed by Laarabi et al. [35] using 
data collected in Morocco.

However, as introduced earlier, modeling soiling patterns has 
traditionally relied on theoretical frameworks and data from a limited 
number of locations [36]. The present study leverages a novel empirical 
dataset, exploring the soiling dynamics across different spatial and 
temporal scales. The empirical data used in this study comprises an 
extensive set of field soiling measurements collected through specialized 
sensors deployed across diverse European locations. These allow the 
recalibration of the soiling deposition and removal model, thus 
enhancing its accuracy, as its default parameters were initially derived 
from observations at only seven sites across the USA [19]. Additionally, 
this study incorporates historical reanalysis-generated meteorological 
and environmental parameters for the past 15-year period. This way, the 
temporal variability of soiling can be assessed at different scales 
(seasonally and yearly) across a region of unprecedented extension.

In addition to the energy loss, the economic assessment of the soiling 
impact holds as well vital importance in order to make informed de
cisions related to soiling mitigation activities. An accurate understand
ing of the profitability and the cost-effectiveness of cleaning activities 
can determine whether it makes sense to remove the soiling from the PV 
modules at a certain moment. In this light, accurate and high-resolution 

maps of soiling can efficiently inform on the optimized cleaning 
schedules to enhance energy production. For this reason, this work also 
presents assessments of the economics of the soiling loss and soiling 
mitigation. This way, the economic viability of cleaning can be evalu
ated, in light of the current costs and of the expected benefits for the 
various locations considered in this study.

Overall, the key objectives of the present research are twofold: first, 
to map both energy and economic losses in PV systems due to soiling 
patterns, and second, to share with the community a modified version of 
a soiling model that allows to customize the cleaning effectiveness of 
rain, which could be reapplied in additional studies. The maps and the 
models not only offer insights into the spatial distribution of soiling, but 
also provide a valuable resource for stakeholders involved in decision- 
making processes related to maintenance planning, resource optimiza
tion, and environmental impact assessments. However, it is important to 
note that the used model provides information at high granularity, of
fering a regional perspective on the expected soiling losses, but does not 
account for the local conditions and therefore may not accurately 
reproduce the specific conditions of a site.

The paper is organized as follows. The methodological steps are 
described in Section 2. These include the procedures employed to assess 
the soiling pattern and to recalibrate the soiling model (2.1), the adap
tation of the employed model to consider the rain’s cleaning effectivity 
(2.2), as well as the methods used to conduct the economic analysis 
(2.3). The results are then presented in Section 3. These are comprised of 
a description of the novel recalibrated model inputs (3.1), an assessment 
of the energy loss magnitude and variability (3.2), a cost/benefit anal
ysis of soiling loss mitigation through cleanings (3.3), and a detailed 
discussion of the impact of rain’s cleaning effectivity on the results (3.4).

2. Methodology

2.1. Soiling metrics and model

The magnitude of the soiling losses can be estimated through models 
based on environmental parameters [36]. These do not only allow 
monitoring the losses without a soiling sensor, but make it possible to 
estimate soiling in any location where environmental data are available. 
Of the various approaches proposed in the literature, the present work 
makes use of the model developed by Coello and Boyle [19]. In this 
approach, the soiling loss is modeled to build up from the deposition of 
particulate matter (PM) on the surface of PV modules. The model as
sumes that the deposition rates can be estimated from the PM concen
tration, and that daily rainfall exceeding a certain threshold [mm/day] 
can completely wash off soiling. The PM concentration is typically 
quantified using two indicators, PM10 and PM2.5, which represent the 
masses of suspended particulates per m³ of air with diameters up to 10 
μm and 2.5 μm, respectively.

Equation (1) for calculating the magnitude of soiling loss (SL) [− ] on 
a d-day is given by: 

SL(d)=0.3437 • erf
(
0.17 • w(d)0.8473) (1) 

where w [g/m2] represents the total accumulated mass of particulates 
on the PV surface since the last cleaning event, which can be either a 
rainfall higher than a threshold or an artificial cleaning. This accumu
lated mass on a day d is calculated using equation (2): 

w(d)=
∑d

d0

[(v10− 2.5 • PM10− 2.5)+ (v2.5 • PM2.5)] • t • cos θ (2) 

where PM10-2.5 and PM2.5 represents the mass of particulates per m³ of 
air [g/m³] with diameters between 2.5 μm and 10 μm and lower than 
2.5 μm, respectively; v10-2.5 and v2.5 are the deposition velocities of 
PM10-2.5 and PM2.5 in m/s, t denotes the accumulation period expressed 
in seconds, and θ [◦] is the tilt angle of the PV modules. The 
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accumulation period starts on the d0-day, the first day after the last 
cleaning event.

In this work, the model was fed with daily EAC4 global reanalysis 
particulate matter data and ERA5 precipitation data for the 2005 to 
2019 period downloaded from the Copernicus Atmosphere Monitoring 
Service (CAMS) Atmosphere Data Store (ADS) [37]. In addition, a novel 
dataset of field soiling measurements gathered from various sites across 
Europe (see Table S 1) was employed to recalibrate the model. This 
recalibration was needed to incorporate in the model additional factors 
influencing soiling losses, such as changes in land use or human activ
ities. The necessity for fine-tuning environmental-data-based soiling 
models was previously highlighted in Ref. [38], where the authors 
demonstrated that soiling estimations produced with the same models 
can generate dissimilar results when fed with data from different 
sources.

As aforementioned, the recalibration was conducted by utilizing 
actual soiling data measured at nine different sites across Europe, whose 
distribution and measurements are shown in Fig. 1. That figure also 
includes a special case study from Switzerland, presented in the IEA 
PVPS Task 13 report on soiling [36]. At this site, located next to a rail
way station, significant soiling losses were observed despite the regular 
precipitations. Soiling losses were not directly measured, but were 
instead inferred by comparing the performance ratio of the PV system 
before and after manual cleanings. The purpose of including this site is 
to demonstrate one of the limitations of the original version of the 
soiling model used and to allow the estimation of the soiling losses for 
the case of incomplete cleaning by rain. A more detailed explanation is 
provided in Section 2.2.

The measurements of the average annual soiling losses, ranging from 
0.35 to 1.84 %, were obtained through specialized equipment, including 
an Atonometrics® soiling station [39] and DustIQ optical soiling sensors 
from Kipp&Zonen [40], except for the Swiss site, which was not used for 
recalibrating the original parameters of the model, but for adjusting a 
novel one (see Section 2.2).

Soiling stations often consist of two identical PV devices: one regu
larly cleaned and the other left to accumulate natural soiling. These 
stations calculate soiling loss by directly comparing the electrical output 
of both devices. On the other hand, DustIQ sensors estimate soiling loss 
through changes in scattering measurements. A modulated photodiode 
measures the amount of light emitted from an LED and reflected from 
the dust particulates deposited on the surface of a PV glass coupon. For 
sites equipped with DustIQ sensors, the raw data were corrected using 
calibration coefficients provided by the sensor operators. These co
efficients were obtained to account for the typical dust types present at 
the PV site. An Atonometrics® soiling station was only used in one of the 

Spanish sites. It was periodically calibrated during the experimental 
campaign to ensure accurate soiling measurements, thus avoiding a 
potential impact of mismatch between the two PV devices on the results. 
The reference device was automatically cleaned daily using a pressur
ized water spray. It is important to note that, despite the use of different 
soiling monitoring equipment, the final daily soiling loss values 
remained unaffected, as appropriate raw data pre-processing method
ologies were applied to each dataset. Further details about the experi
mental sites are displayed in Table S 1, in the Supplemental Material. 
The results of the recalibration process are presented and discussed in 
Section 3.1. The soiling loss data feature a wide range of tilt angles and 
one single-axis-tracking system. These tilt angles have been considered 
in the calibration procedure as lower tilt angles are generally associated 
with higher soiling losses [10]. Evaluating the specific impact of tilt 
angle on soiling accumulation is beyond the scope of this paper, as the 
employed soiling model accounts for the effect of angle. In this study, 
the soiling loss at each location is estimated for the optimal tilt and 
azimuth angles, calculated by PVGIS [41].

The annual average loss experienced by a site is typically expressed 
as the arithmetic mean of the daily values (SL), calculated by averaging 
all the measurements recorded by the sensors within 1 h of the solar 
noon as indicated in equation (3): 

SL =

∑T

d=1
SL(d)

T
(3) 

where SL(d) is the soiling loss [− ] on a day d and T represents the total 
number of days in the analyzed period.

To ensure the reliability of the measurements, data points affected by 
precipitation, dew, or frost were filtered out prior to calculation. This is 
considered to be acceptable as such conditions often occur for low ir
radiances. However, it must be acknowledged that the actual impact of 
soiling varies depending on the weather patterns. Indeed, if soiling oc
curs in the season of highest solar irradiance, its impact can be expected 
to be higher than that estimated from the arithmetic mean. For this 
reason, the soiling loss calculated as arithmetic mean of the daily data 
(SL) is here compared with the irradiance-weighted mean (SL IW) [− ], 
which is calculated using equation (4): 

SL IW =

∑T

d=1
SL(d) • POA(d)

∑T

d=1
POA(d)

(4) 

where T is the total number of days in the analyzed period, and POA(d) 
is the daily plane-of-array irradiation on a given day d.

In addition, one should consider that additional factors, such as the 
cell temperature, influence the output of the PV cell. Therefore, in order 
to evaluate the accuracy of the arithmetic and irradiance-weighted 
mean for soiling loss estimation, these are also compared with the 
soiling-induced energy loss (SL_E), calculated through equation (5): 

SL E =1 −

∑T

d=1
(1 − SL(d)) • E0(d)

∑T

d=1
E0(d)

(5) 

where E0 [kWh/day] is the daily energy yield on day d, excluding any 
loss due to soiling. This was downloaded for each location for the 2004 
to 2019 period from PVGIS [42]. Optimal tilt and azimuth angles were 
assumed, calculated by PVGIS [41]. Fixed losses of 12 % were set, 
removing the 2 % typically attributed to soiling from the 14 % default 
value [43]. The 15-year data have been repeated twice to generate a 
30-year long time series. This is indeed the standard reference period for 
climate assessment studies as it allows capturing both seasonal and 
long-term trends. However, it is acknowledged that this might not be 

Fig. 1. Locations of the experimental sites. The color and the size of the 
squared markers are indicative of the magnitude of the measured soiling loss. 
The Swiss site is represented with a circular marker as the soiling losses were 
not directly measured there, but only derived from PV performance data before 
and after the manual cleaning.
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able to capture future variations induced by climate change. Attempting 
to model these would have introduced additional uncertainty in the 
results.

In addition to the average yearly loss, additional characteristics of 
soiling have been assessed in this work, but, for the sake of simplicity, 
only for the original version of the model that considers full cleaning by 
rain above a certain threshold. Indeed, the soiling losses are not uniform 
over the year [44], but tend to concentrate in seasons with least frequent 
and intense rainfall and/or higher particulate matter concentrations. 
Additional factors can contribute to the seasonal variation of soiling, 
including, for example, human activities. In this work, the seasonal 
variation of soiling has been quantified through the “Soiling Variability 
Index” (SVI), an unitless index originally proposed in Ref. [45]. This 
metric, adapted from the seasonality index [46], a commonly employed 
index to evaluate the monthly accumulated rainfall values, is calculated 
as sum of the absolute deviations of the losses accumulated on a month 
from the monthly average, divided by the total yearly loss as shown in 
equation (6): 

SVI(site)=

∑12

m=1

⃒
⃒
⃒
⃒Sm(m) − Sm sum

12

⃒
⃒
⃒
⃒

Sm sum
(6) 

where Sm sum is the sum of the soiling losses (Sm) accumulated in each 
month m over a year. Sm sum and Sm are calculated by using equations (7) 
and (8), with nd representing the number of days in a month: 

Sm sum =
∑12

m=1
Sm(m) (7) 

Sm(m)=
∑nd

s=1
SL(d) (8) 

SVI varies between zero (no variability: same soiling in each month) 
to 1.83 (maximum variability: all losses occur in just one month).

In addition to seasonal patterns, soiling can exhibit also fluctuations 
over the years [44,47], a phenomenon that has been defined as 
interannual-variability. This variability is induced by multiple factors, 
which include climatic conditions, geographical location, land use, and 
human activities. In this work, the inter-annual variability of soiling has 
been quantified through the coefficient of variation (CoV), an unitless 
metric calculated as ratio of the standard deviation to the mean of the 
yearly averages as shown in equation (9): 

CoV(site)=
σSLy

SLy

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

SL(y) − SLy

)2/N
√

∑
SL(y)/N

(9) 

where SLy [%] is the mean soiling loss over the investigated period, σSLy 

[%] is the standard deviation, SL(y) is the mean soiling loss in the year y, 
and N is the number of investigated years.

2.2. Adapted version of the soiling model

The model presented above assumes a perfect cleaning after each 
rain day of intensity above the threshold. However, there are evidences 
that refute this hypothesis of rain being a perfect cleaning agent. For 
example, Javed et al. [48] found that the cleaning effectiveness varies 
depending on the soiling loss and on the rain intensity. Norde Santos 
et al. [49] found that in most cases rain did not completely remove the 
soiling accumulated on systems deployed in various West African loca
tions. Additionally, other types of soiling such as pollen, bird droppings 
and industrial pollutants are likely to stay adhered to the surface of PV 
modules until a proper artificial cleaning is conducted. Furthermore, in 
some cases, rain can also have a negative impact, e.g. by promoting wet 
deposition of aerosols particulates present in the atmosphere onto the 
modules [5].

For this reason, in the last part of this work, the soiling model is 
modified to consider the limited cleaning effectiveness of rainfall. The 
novel model is tested using data from a case study of a system located in 
a rainy location (>1000 mm year− 1) with a uniform precipitation dis
tribution in Switzerland, where losses of up to 10 % due to soiling were 
identified after artificially cleaning the system (see Fig. 2) [36]. The 
losses due to soiling are derived by comparing the performance ratio 
(PR) of the system, which represents the ratio of the actual and theo
retical power outputs, after and before a manual cleaning by means of 
equation (10). 

SL[%] =
PRac − PRbc

PRac
• 100% (10) 

where PRac and PRbc represent the performance ratio of the PV system 
after and before of a manual cleaning, respectively. The soiling loss 
reached one year after the last manual cleaning (SL avga ) is calculated 
according to equation (11): 

SL avgy [%] =
SL [%]

NY
(11) 

where NY is the number of years in between two consecutive manual 
cleanings.

To partially address this completeness of cleaning by rainfalls, a 
novel parameter, called “Cleaning Factor” has been introduced in the 
soiling model. It is calculated through equation (12): 

Cleaning Factor= 1 −
accumulated mass after rainfall > CT

total accumulated mass
(12) 

This dimensionless parameter represents the fraction of accumulated 
mass that can be washed off by a rain event with an intensity exceeding 
the CT. It can help improve the modeling of soiling accumulation and 
removal processes, particularly in locations where the soiling types are 
more resistant to the cleaning effect of rain. The recalibration of the 
model after incorporating this novel parameter is shown in section 3.1.1.

2.3. Economic analysis

The economic analysis presented in this work evaluates two of the 
most common economic metrics in PV studies. These were calculated by 
using the methodology and the input parameters described in Ref. [50].

The first economic metric is the levelized cost of electricity (LCOE), 
which expresses the cost of producing a kWh of electricity over the 
system lifetime. It is expressed in €/kWh and should be as low as 
possible. It was calculated as in Ref. [51] by using equation (13): 

Fig. 2. Soiling losses in a PV installation located close to a railway station in a 
rainy region in Switzerland. Significant soiling losses can be appreciated be
tween 1994 and 2010 by comparing measurements conducted before and after 
artificial cleanings. The vertical blue bars represent the years when artificial 
cleanings were conducted. Data extracted from Figure 28 in Ref. [36].
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LCOE=
CAPEX + PW[PVOM(N)] − PW[DEP(Nd)]

Et •
∑N

n=1

(1− rd)
n

(1+d)n

(13) 

where CAPEX, PW[PVOM(N)], PW[DEP(Nd)], Et, rd, N, and d are, respec
tively, the capital expenditure in €/kW, the present worth of operation 
and maintenance in €/kW, the present worth of tax depreciation in 
€/kW, the annual energy yield in kWh/kW, the annual system degra
dation rate (set to 0.75 %/year according to Ref. [52]), the lifetime of 
the system (equal to 30 years), and the discount rate [%/year], set equal 
to the organization’s weighted average cost of capital (WACC) [45]. Tax 
depreciation is assumed to last for a period Nd of 20 years [53]. The 
country-specific CAPEX values were taken from the 2023 IRENA report 
on renewable energy costs, and are reported in Supplemental Material 
(Table S 2) [54].

The lifetime operation and maintenance costs were calculated using 
equation (14): 

PW[PVOM(N)] =
∑N

n=1

OMEX • (1 − T)•(1 + rom)
n

(1 + d)n (14) 

where OMEX is the annual operation and maintenance expenditure in 
€/kW (also set in accordance with [54]), rom [%/year] is the rate at 
which it annually increases and T [%/year] is the income tax rate. The 
values of the last two parameters for each country were set as in 
Ref. [50].

The present worth of tax depreciation term was calculated through 
equation (15), assuming a 5 % linear and constant depreciation for 20 
years (Nd), as: 

PW[DEP(Nd)] =
∑Nd

n=1

5% • CAPEX
(1 + d)n • T (15) 

While providing information on the costs of energy generation, the 
LCOE does not assess the profitability of PV. This can be done through 
the net present value (NPV) [€/kW], which expresses the difference 
between the present values of the cash flows (in and out) generated 
throughout the lifetime of the project. A positive NPV is a necessary 
condition for a profitable investment. The NPV can be calculated as in 
Ref. [51] using equation (16): 

NPV = − CAPEX+ p • Et •
∑N

n=1

(1 − rd)
n

(1 + d)n •
(
1 + rp

)n

• (1 − T) − PW[PVOM(N)] + PW[DEP(Nd)] (16) 

where p [€/kWh] is the average price of electricity and rp [%/year] is its 
average annual increase rate. The average electricity price for each 
country was set equal to the mean of the daily values in the 2010 to 2021 
period, sourced from the websites of the country-s market operators 
[55–72]. Additionally, the yearly increase in electricity price (rp) was set 
equal to the average of the 2010 to 2021 inflation [50].

3. Results & discussion

3.1. Soiling model recalibration

As described earlier, the soiling model has been recalibrated using an 
extensive dataset of field soiling measurements from nine European 
locations (Fig. 1). The measurements taken by the soiling sensors were 
pre-processed and filtered according to the instructions provided by the 
manufacturers. Fig. 3 shows the procedure followed to calculate the 
daily average soiling loss from the raw measurements of the sensors. 
This eliminated the influence of factors such as incidence angle, dew, or 
rain, which could affect soiling measurements.

The recalibration involved identifying the optimal pair of values for 
deposition velocity and CT values that minimized the average modeling 

error across locations with measured data. To streamline the process, a 
uniform deposition velocity value for both PM10-2.5 and PM2.5 was 
considered. Regarding the CT, as mentioned earlier, previous studies 
have demonstrated that selecting a single daily accumulation value does 
not fit all cleaning events in PV systems [48,73]. This is because the 
effectiveness of cleaning depends on various factors, including the 
magnitude of soiling losses and the physical and chemical properties of 
the accumulated dust.

The methodology of the model recalibration comprised three stages. 
In the initial stage, the soiling profile of each site was modeled, 
considering various CTs: 0.2, 1.0, 3.0, and 5.0 mm/day. Through visual 
inspection and comparison against the measured data, it was observed 
that using a CT < 3 mm/day led to the detection of false cleaning events 
at some sites. Consequently, the two smallest CTs were excluded from 
the subsequent stages.

In the second stage, for CTs of 3.0 and 5.0 mm/day, the deposition 
velocity was systematically varied from 0.1 cm/s to 5.0 cm/s with a step 
of 0.1 cm/s. For each site and combination of CT and deposition ve
locity, the average modeled soiling ratio (1 – soiling loss) was calculated. 
The soiling ratio represents the ratio of the power output of a soiled 

Fig. 3. Flowchart of the approach followed to calculate the daily average 
soiling loss from the sensors’ raw measurements.
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module to that of a clean one under the same conditions. A ratio of 1 
means that there is no soiling. On the other hand, the soiling loss in
dicates the fraction of power lost due to soiling, thus, a value of 1 in
dicates that all the power is lost because of soiling.

The final stage involved comparing the modeled and measured 
average annual soiling loss for the set of sites. Linear regression was 
employed to fit the values, revealing that the combination of a CT of 5.0 
mm/day and a deposition velocity of 0.9 cm/s produced the most 
favorable results, with a slope equal to 1.00 and an R2 of 0.49, as it can 
be seen in Fig. 4. Additionally, the differences in the average values of 
soiling ratio between the measured and modeled profiles ranged from 
− 0.78 % to +0.84 %. The relatively high final CT value obtained 
compared to the model’s default value (1 mm/day) suggests that the 
model performs more effectively in regions with consistently low soiling 
losses throughout the year, such as Scandinavian countries. Conversely, 
in areas where soiling is predominantly seasonal, with the majority of 
losses occurring during summer months, days with precipitation below 
the CT can partially clean the modules. This is a factor not accounted for 
by the model, potentially leading to overestimations of losses. On the 
other hand, this first version of the model used in this work, which also 
considers full cleaning above the CT, might lead to underestimations of 
the losses in some cases. These disparities highlight the challenges in 
accurately estimating the soiling losses in PV systems, as local factors, 
such as the ground properties and the utilized measurement techniques 
of distinct parameters, can affect the reliability of the models. This 
emphasizes a further challenge: models developed and validated for 
specific climates may not be directly transferable to regions with 
different climatic conditions, or could, at least, result in greater un
certainties. Developing region-specific approaches for soiling modeling 
could potentially enhance their reliability and applicability across 
diverse climatic regions. All the aforementioned limitations also un
derscore the importance of both, a wide network of soiling monitors and 
the need for continuous validation of soiling models to increase their 
accuracy.

In addition, it is worth noting that the use of reanalysis data in
troduces some intrinsic uncertainties, that can lead to the deviations 
between modeled and actual data shown in Fig. 4. Datasets such as those 

used in this work offer a broad spatial and temporal coverage, but may 
not fully capture localized phenomena such as microclimates or site- 
specific soiling dynamics. These limitations can affect the accuracy of 
both input parameters (e.g., precipitation and particulate matters) and 
thus output predictions, especially in regions with highly variable 
environmental conditions. While reanalysis data are invaluable for 
large-scale studies, integrating them with site-specific measurements 
could significantly improve accuracy. This integration becomes partic
ularly important when such models are used for real-time monitoring 
rather than historical soiling assessment. The latter, which is the main 
aim of this work, can rely on historical data to generate typical soiling 
profiles for any location. The former, however, requires access to real- 
time data and, where available, short-term forecasts to produce high- 
accuracy, real-time soiling estimates.

3.1.1. Modified version of the model: calibration of cleaning factor using a 
case study from Switzerland

As explained in Section 2.1, the first version of the model employed 
to estimate the magnitude of the soiling losses assumes that rainfall 
events exceeding a certain threshold completely remove all the accu
mulated particulates, thus restoring the soiling loss to 0 %. However, as 
described earlier, different field studies have reported that rain cannot 
completely wash off soiling. For this reason, in this section, the soiling 
model is modified to limit the cleaning effectiveness of rain events and 
the novel cleaning factor parameter is calibrated by using the data re
ported for a system in Switzerland, which experienced, despite the 
consistent rainfalls, losses of up to 10 % due to soiling as shown in Fig. 2
[36]. At that site, which, on average, experiences more than 100 days 
per year with daily precipitations higher than the CT of 5 mm/day, 
assuming rain to be a perfect cleaning agent can lead to a clear under
estimation of the soiling losses – the original version of the model, fed 
with the parameters obtained after the recalibration displayed in Fig. 4, 
returns an average annual soiling loss of 0.47 %, which is over five times 
lower than the actual extracted value of 2.53 %. This finding aligns with 
previous studies mentioning rain’s limited ability to fully remove dirt 
from the surface of PV modules, thus highlighting the importance of 
assessing the completeness of cleaning by rain in soiling modeling.

To show the impact of accounting for the completeness of cleaning 
by rain in the model, the Cleaning Factor was calibrated to match with 
the extracted annual average soiling loss increase at the Swiss location of 
2.53 % between 2006 and 2010. A Cleaning Factor of 0.1 returned the 
best fit, while maintaining the same combination of CT (5 mm/day) and 
deposition velocity (0.9 cm/s) as previously determined (see Fig. 4). 
This value implies that a day with a precipitation exceeding the CT only 
removes 10 % of the accumulated mass from the surface of the PV 
modules, leaving 90 % still present after the rainfall. Although this 
scenario may not reflect the conditions at many sites, it can be feasible in 
locations like the one evaluated in this paper, where train brake dust 
with strong adhesion properties might be a main contributor to the 
soiling losses. In such a case, rain events might only remove a small 
portion of the accumulated mass. Consequently, important long-term 
soiling losses can occur if periodical manual cleanings are not 
conducted.

Fig. 5 shows the modeled soiling profile for that location using the 
abovementioned parameters. Only the first year of operation is dis
played without considering any manual cleanings. However, as already 
mentioned, if no specific cleanings are conducted, the magnitude of the 
soiling losses will exponentially grow in following years, therefore, 
leading to long-term soiling accumulation. This work also intends to 
inform the PV community about the importance of permanently 
assessing the soiling losses to avoid this negative scenario, which can 
notably reduce the performance of PV installations.

The modified version of the model is also used to evaluate both the 
soiling magnitude and the economic impact of soiling and cleanings in 
Europe by following the methodology detailed in Section 2.

Fig. 4. Recalibration result of the evaluated soiling model with optimized 
parameter values for cleaning threshold (5.0 mm/day) and settling velocity 
(0.9 cm/s). The markers represent the average measured and modeled soiling 
ratio (SRatio) values at the distinct locations. The red line represents the linear 
fit calculated using the function “linregress” of the “SciPy” Python library [74].
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3.2. Soiling: magnitude and variability

The distributions of soiling losses in the various European countries 
considering the original model and the modified model are shown in 
Figs. 6 and 7, respectively, also plotted in the maps reported in the 
Supplemental Material (Fig. S 1). The distributions are calculated from 
the average soiling loss modeled on each point of the grid. Specifically, 
the red bars show the arithmetic mean (SL), the blue bars show the 
irradiance-weighted mean (SL IW) and the green bars show the energy- 
weighted loss (SL E). Overall, one can see that the countries in the 
investigated region experience an average modeled annual soiling loss 
(red bars) of 0.9 ± 0.4 % (original model) and 5.3 ± 2.0 % (modified 
model), but the losses are not uniformly distributed. Indeed, peaks as 
high as 3.3 % (original model) and higher than 10.0 % (modified model) 
are registered in the southernmost European countries. Portugal, 
Türkiye, Spain, Italy, and Greece are the countries with the largest 
average losses, pushed by the drier climates, especially in summer. In 
particular, the peak losses (>12.0 % if the modified model is used) are 
found in selected locations of Spain and Greece. Conversely, the north
ern countries (Sweden, Norway, Ireland) and the alpine countries 
(Switzerland) show the minimum losses, with median values below 0.5 
% (original model) or below 3.0 % (modified model). All of these ob
tained values cast doubt on the typical soiling loss assumptions 
commonly utilized by PV modelers or on the assumed cleaning sched
ules. Soiling loss assumptions in PV modelling usually range between 1.0 
and 3.5 % [75]. In Nordic countries and in alpine regions, such as
sumptions would result in an overestimation of the losses, consequently 
leading to an underestimation of the final yield. Conversely, in certain 
locations across southern Europe, these assumptions may lead to un
derestimations of annual soiling losses.

Fig. 6 shows that, on average, the arithmetic mean underestimates 
the soiling-induced energy losses (SL E) by 16.3 ± 5.5 %rel. This means 
that this approach can lead to a severe underassessment of the impact of 
soiling, which can also have economic repercussions if the costs/benefits 
of soiling mitigation are miscalculated. Indeed, in Greece and Türkiye 
the annual energy loss due to soiling reaches peaks higher than 3.5 %, 
which are up to 1 % higher than the losses estimated through the 
arithmetic mean (SL). The reason behind the arithmetic mean underes
timation is due to the typical soiling profile in Europe (i.e., the seasonal 
pattern of soiling). Losses are indeed higher in summer, where aridity 
and less frequent precipitations boost soiling deposition and limit 
removal. At the same time, irradiation is also higher in summer. This 
means that the larger soiling losses in summer obtain a higher weighting 

factor than the soiling losses in winter because of the greater irradiance 
that could be converted by the modules. Therefore, the energy weighted 
soiling losses are higher than the arithmetic average of the soiling losses 
in such cases.

Using the irradiance weighted mean allows reducing the miscalcu
lation, leading to a slight overestimation of 2.4 ± 1.5 %rel (blue bars in 
Fig. 6). Similar trends can be seen also for the modified model, in Fig. 7. 
This overestimation is possibly due to the effect of the temperature, 
which is typically higher in summer and which negatively affects the PV 
performance, partly counteracting the summer irradiance-driven in
crease in energy yield.

Below, the soiling losses variability is assessed by considering only 
the original version of the soiling model, which does not account for the 
completeness of cleaning by rain. The seasonality of the soiling losses is 
shown in the top plot of Fig. 8 where a distinct contrast in the seasonal 
patterns of soiling is noticeable between southern and northern coun
tries. Indeed, losses are predominantly seasonal in Türkiye, Portugal, 
Albania, Southern Italy, Spain, and Greece, because of the aforemen
tioned long dry summer periods in which most of soiling accumulates. In 
these areas, indeed, most of the losses occur in August, toward the end of 
the dry summer. Conversely, in countries like France, Germany, Ireland, 
and the Benelux, losses tend to be relatively consistent (SVI <0.4) due to 
frequent rainfall throughout the year. The higher values recorded at 
Nordic latitudes, compared to central Europe, are possibly due to the 
low soiling losses. As the average soiling loss decreases, small seasonal 
variations in soiling accumulation patterns become more influential in 
the SVI.

The map in the bottom plot of Fig. 8 shows the interannual vari
ability of the losses, expressed through the coefficient of variation of the 
annual losses calculated at each location. The larger the value, the 
higher the variability from one year to another. Interestingly, the loca
tions with the highest losses are also those with the highest variability 
and the losses can vary by more than 100 % in some sites. The country 
experiencing the most variability is Portugal, with a median close to 70 
%. This means that the loss varies to a significant extent relative to the 
mean and that monitoring is essential to assess the actual level of soiling. 
Countries such as Spain and Portugal are particularly exposed to 
Saharan dust intrusions [76], phenomena during which large portions of 
dust and sand are suspended and transported onto the European conti
nent. If the suspended dust deposits on the modules, significant soiling 
losses can be registered even after the sky has cleared out [13]. Their 
stochastic nature, in terms of magnitude and frequency, is an additional 
possible reason for the high inter-annual variability registered in the 
southernmost countries. The lowest values (<10 %) are, on the other 

Fig. 5. Simulated annual soiling profile for the Swish location (latitude: 47.14◦N, longitude: 7.25◦E) using the modified version of the model with the following 
inputs: deposition velocity of 0.9 cm/s, cleaning threshold of 5 mm/day and cleaning factor of 0.1. The vertical blue bars represent the dates with a precipitation 
higher than the threshold.
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hand, found in countries experiencing lower losses, such as Ireland, 
Norway and Sweden.

3.3. Economic impact of soiling and cleanings

The plots in Fig. 9 show the economic impact of soiling across Europe 
if no soiling mitigation measures are taken. The presence of soiling re
duces the energy yield and this leads to increases in the cost of electricity 
of PV. Similarly, soiling reduces the NPV, especially in those regions 
where both soiling losses and electricity prices are high, such as Türkiye, 
where any missed kWh has the maximum impact on this metric. High 
revenue losses are reported also in the southernmost areas of Greece, 
Italy, and Spain, regions of high energy yields and intense soiling.

Soiling is a reversible loss in PV. Therefore, it can be removed or 
prevented. As aforementioned, cleaning is the most common soiling 
mitigation technique. However, in order not to affect the cost- 
competitiveness and the profitability of PV, cleaning of the solar col
lectors has to lead to an adequate increase in energy yields and generate 

revenues higher than the cleaning costs. Ilse et al. [5] reported cleaning 
costs for some of the countries investigated in this work, with values 
ranging from a minimum of 0.07–0.09 €/m2 in Türkiye to a maximum of 
0.46–0.92 €/m2 in the Netherlands. Assuming an electrical efficiency of 
21.4 %, these correspond to cleaning costs of 0.3 €/kW to 4.3 €/kW.

The cost-effectiveness and the profitability of cleaning therefore 
change depending on a number of conditions: magnitude of the losses, 
electricity price and cleaning costs. Fig. 10 compares the actual cleaning 
costs reported in the assessment presented by Ilse et al. [5] with the 
maximum allowed costs. These maximum costs ensure that cleaning 
expenses do not raise the Levelized Cost of Energy (LCOE) or lower the 
Net Present Value (NPV). In other words, the maximum LCOE cleaning 
cost ensures that any increase in energy output from recovered energy 
offsets the cost increase due to the cleaning. Similarly, the maximum 
NPV cleaning cost is equal to the additional revenues one could achieve 
from the energy recovered through cleaning (and, therefore, does not 
reduce the NPV).

The results in the top plot of Fig. 10 show that, for the results derived 

Fig. 6. Distribution of modeled soiling losses across the considered countries using the original soiling model. The distributions are created from the average soiling 
loss estimated for each location modeled in each country. The red bars indicate the soiling losses calculated from the arithmetic mean of the daily values (SL). The 
blue bars represent the irradiance-weighted mean (SL IW). The green bars indicate the energy loss due to soiling (SL E).
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from the original model, cleaning, under the assumed conditions and in 
the seven countries for which cleaning costs are available, is cost- 
effective in Türkiye and most parts of Italy and Spain. This is due to 
the high energy yields and the high soiling losses experienced in these 
areas. Furthermore, locations with high soiling seasonality tend to 
benefit more from cleaning, because the losses reach higher values and 
therefore cleanings allow for recovering a larger portion of energy yield. 
In Türkiye, the low cleaning costs and the high electricity prices favor 
the soiling mitigation activities. Despite the relatively low soiling, 
cleaning can be also cost-effective in the United Kingdom, because of the 
higher electricity prices and the lower cleaning costs compared to other 
non-Mediterranean countries. For the other countries, the actual 
cleaning costs are above those limited by LCOE and NPV. This reflects 
the impacts of both the soiling model’s assumption of perfect cleaning 
by rain and the frequent rainfall in those countries.

On the other hand, the bottom plot of Fig. 10 shows the results if the 
modified version of the model with a cleaning completeness by rain of 
10 % is applied. In this case, the results show that cleaning is cost- 

effective in most locations of the seven evaluated countries.
Even if cleaning is the most common mitigation technique, addi

tional solutions can be put in place to reduce the accumulation of soiling. 
These include, for example, anti-soiling coatings, thin layers of material 
deposited on the PV module surface to reduce the soiling deposition rate 
and favor its natural removal [5]. Differently from cleaning, anti-soiling 
coatings are preventive solutions impacting the capital expenditure of a 
PV system. Future works should evaluate the cost-effectiveness of these 
solutions and provide a more comprehensive overview of the soiling 
mitigation potentials and challenges.

3.4. Impact of the effectiveness of rain in cleaning soiling

Table 1 compares the results between the original version of the 
model and the modified version that considers that rain events above the 
CT only remove 10 % of the accumulated soiling.

The comparison between the original and modified versions of the 
model reveals significant differences in the simulations. The original 

Fig. 7. Distribution of modeled soiling losses across the considered countries using the modified soiling model. The distributions are created from the average soiling 
loss estimated for each location modeled in each country. The red bars indicate the soiling losses calculated from the arithmetic mean of the daily values (SL). The 
blue bars represent the irradiance-weighted mean (SL IW). The green bars indicate the energy loss due to soiling (SL E).
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model assumes total completeness of cleaning by rain. In contrast, the 
modified version considers a partial effectiveness of rain, with only 10 % 
of the accumulated soiling being removed. This results in much higher 
values of soiling losses. On average, the modified model returns results 
that are approximately five and three times greater than those of the 
original version for average and peak values, respectively. This suggests 
that the original model may fail to account for the persistence of soiling 
even after significant rainfalls in some occasions or sites. On the other 
hand, the modified model, which assumes rain plays a minor role in 
soiling removal, can give a more realistic idea of how soiling can build 
up over time even in locations with consistent precipitations, but where 
soiling types have strong adhesion properties. In most of the PV in
stallations, the completeness of cleaning by rain likely falls somewhere 
between the two extremes analyzed in this work, depending on local 
environmental conditions and the specific nature of soiling.

The profitability of manual cleanings is also largely affected by the 
rain’s cleaning effectivity. While assuming a perfect cleaning effectivity 
can result in manual cleanings not being profitable in regions with low 
electricity prices and high cleaning costs, the opposite extreme (only 10 
% cleaning effectivity) leads to manual cleaning being cost-effective in 
most locations.

4. Conclusions

This work presents a first continental techno-economic assessment of 
the soiling losses across Europe. A novel and extensive set of soiling 
measurements is used to calibrate the model used for soiling estimation, 
returning average annual energy losses up to 3.5 % or up to 14.0 % if a 
10 % cleaning effectivity of rain is considered in some Mediterranean 
countries. This low cleaning effectivity was derived from an exemplary 
site in Switzerland and may represent the difficulty in cleaning some 
soiling types, such as brake dust. Notably, the analysis shows that 
calculating the impact of soiling using an arithmetic average of the daily 
values leads to significant underestimation of the losses. More reliable 
results are obtained, on the other hand, if the losses are calculated using 

Fig. 8. Soiling Variability Index (top plot) and coefficient of variation (bottom 
plot), proxy of the interannual variability of soiling.

Fig. 9. Increase in LCOE (top row) and loss in revenues (bottom row) due to soiling if no soiling mitigation measures are taken. The plots in the left column 
correspond to the original version of the soiling model that assumes perfect cleaning by rain, while the plots in the right column represent the modified version of the 
soiling model assuming only partial cleaning.
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an irradiance-weighted mean because, frequently, the highest soiling 
losses are registered during the seasons with the greatest solar 
irradiation.

This work also evaluates the temporal variability of soiling, 
analyzing seasonality and interannual fluctuations. The regions with the 
highest losses are typically also those with the highest seasonality, 
because of the long and arid summers with usually only a few precipi
tation events, which can contribute in some cases to the natural cleaning 
of the solar collectors. This study introduces a modification of the soiling 
model that allows to account for the completeness of cleaning by rain. 
This novelty in the model can help better model those sites where there 
are important and/or long-term soiling losses despite the frequent 

precipitations.
In addition, the evaluation of the interannual variability of soiling 

presented in this study shows that the zones with the highest losses are 
also those with the greatest inter-annual variability (Türkiye and some 
southern regions within the Mediterranean countries of Greece, Italy, 
and Spain). An analysis of cleaning cost-effectiveness shows the signif
icant profits achievable through soiling mitigation in several European 
countries for the assumed cleaning costs.

Future investigation should expand the present analysis by further 
improving the soiling estimation process using real-time data and short- 
term weather forecasts. Particular care should be given to understanding 
the mechanisms of natural cleanings, and to including additional 

Fig. 10. Comparison of actual cleaning cost (taken from Ref. [3]) with the maximum allowed cleaning costs not to increase the LCOE or the NPV. Only countries 
whose cleaning costs were available in Ref. [5] are shown. Top plot: original version of the soiling model. Bottom plot: modified version of the soiling model 
assuming only partial cleaning by rain.
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parameters in the soiling deposition and removal modeling. These re
sults would allow improving and updating the presented maps for a 
better estimation of the energy and economic impact of soiling and 
cleanings. The results and conclusions of this study will be updated in 
the future, as the presented findings are expected to promote the 
deployment of soiling monitors in additional sites. This will enable 
further refinement and validation of the methodology used.

CRediT authorship contribution statement
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