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• The rise in global temperature has been 
accompanied by a rise in extreme weather events 
such as temperature anomalies.

• In western and central Europe, soils typically contain 
sufficient water to sustain high evaporation and limit 
surface sensible heating. In recent years, a decrease 
in soil moisture has been observed (Fig. 1.b.3.). This 
leads to soil-moisture temperature feedbacks, which 
can amplify hot extremes beyond greenhouse-gas 
induced global warming.

• Causal discovery methods can identify the underlying 
causal relationships between various climate 
variables to discern the factors contributing to 
unusual weather patterns.

• We frame the problem of uncovering soil moisture 
drivers in Western Europe using regime-specific 
causal discovery and apply Regime-PCMCI [1], 
implemented in the Tigramite Python package 
(https://github.com/jakobrunge/tigramite).

• Data with distribution shifts such as anomalies can 
have periods during which the data exhibits different 
statistical patterns.

• Each regime is characterized by its own set of 
statistical properties: the "normal" causal structure 
or causal mechanisms are altered, resulting in 
different regimes governing the "normal" and 
"anomalous" state, as exemplified in Fig. 2.

• We model each regime using a structural causal 
model (SCM), under the assumption that an 
exogeneous variable 𝑅 describes the 𝑁𝐾 regimes.

• The regime-specific SCM for regime 𝑘 with 𝑘 =
1,… , 𝑁𝐾 at time 𝑡 is written as 

𝑿𝑘,𝑡 = 𝑓𝑘 𝑃𝑎𝑘 𝑿𝑡 , 𝑼𝑘,𝑡

− 𝑃𝑎𝑘 𝑿𝑡 − the vector of variables which are 
direct causes of 𝑋𝑖,𝑡 ∈ 𝑿𝑡

− 𝑼𝑘,𝑡 − exogeneous noise.

• Regime-PCMCI [1] builds upon the PCMCI [2] 
algorithm. PCMCI uses an independence-testing 
approach adapted to the time-series case for 
constaint-based causal discovery, and additionally 
orients edges from past to future.

• Regime-PCMCI finds a regime assignment for each 
sample by alternating between two steps, as also 
depicted in Fig.1.c.:

1. Discovering regime-specific causal graphs using 
PCMCI. At first, a random assignment of 
regimes is used.

2. Detecting regimes: 

− At iteration 𝑞, predict ො𝑥𝑘,𝑡
𝑞

= 𝐺𝑡(𝑃𝑎𝑘(𝑿𝑘,𝑡 , Θ𝑡)

at time step 𝑡 using parents 𝑃𝑎𝑘 𝑿𝑡 for regime 
𝑘 using the functional with parameters Θ𝑡 .

− Predict the regime labels 𝛾𝑘 using the distance 
between the real and predicted data for a new 
iteration of the optimization, subject to 
constraints (1) and (2), where 𝑁𝐶 is the 
number of transitions between regimes (user-
defined):

arg𝑚 ሶ𝑖𝑛𝛾 σ𝑘=1
𝑁𝐾 σ𝑡=1

𝑇 𝛾𝑘 𝑡 𝑥𝑡 − ො𝑥𝑘,𝑡
𝑞
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1 σ𝑘=1
𝑁𝐾 𝛾𝑘 𝑡 = 1 ∀𝑡 𝑤𝑖𝑡ℎ 𝛾𝑘 𝑡 ∈ [0, 1]

2 σ𝑡
𝑇−1 |𝛾𝑘 𝑡 + 1 − 𝛾𝑘(𝑡)| ≤ 𝑁𝐶.

• The dataset contains daily values for the time period 
1950-2022 in Western Europe (see Fig.1.b.1.) from 
ERA5 [3] for the following:
− Mean air temperature 2m above ground (T2m),
− Root-zone (1m) soil moisture (SM),
− Surface sensible heat flux (SH),
− Surface sensible heat flux (SH), 
− Surface latent heat flux (LH),
− Large-scale circulation function at 250 hPa

(Stream), 
− Shortwave downward radiation (SW), 
− The vegetation-atmosphere coupling (VAC) index 

[4] computed using thresholding of SM and T2m 
anomalies as in Fig. 1.b.1.

• We search for the causal links between LH, SH, and 
SM in the moist and dry regimes. We hypothesize the 
unionized causal graph in Fig. 5:
− In the dry regime, drier soils lead to a reduction 

in LH flux (the energy used for evaporation), 
which leads to an increase in SH flux. These 
conditions can further exacerbate hot and dry 
conditions [5]. 

− In moist regimes, LH is mostly insensitive to SM 
variations. Evaporation is instead controlled by 
other factors, such as cloud cover or sunshine 
hours [6].

• We aggregate data points using three-day averages in 
the time period 1993 -2022. 

• We search for three regimes: dry, moist, and one 
regime for all samples that do not fit into the others.

• We present results for the moist regime (regime 1) 
and the dry regime (regime 2), as for regime 0 no 
further links were found.

• We discover the key causal links which characterize 
the moist and dry regimes in a simplified setting

• Regime-based causal discovery offers a promising 
approach to understanding anomalies, but can be 
particularly challenging when data stems from a high-
dimensional, strongly coupled system.

• Challenges also arise due to limitations of the 
Regime-PCMCI algorithm, such as:
− Strong assumptions for causal discovery, such as 

causal sufficiency, no unmeasured confounders, 
no acyclicity,

− Assumptions of the conditional independence 
tests,

− Sensitivity to selected time-scale,
− Computational complexity of the algorithm, as 

well as possible model and algorithm bias.

a. b. c.

1

3

2

Figure 1. a. Causal discovery can uncover causal graphs from observed time-series data. Taken from [7]. b.1. The dataset used in this tutorial contains daily values for the highlighted region in Western Europe across 
the period 1950-2022. b.2. Soil moisture and air temperature are used to generate the VAC index [4] using thresholding. b.3. The daily evolution of the VAC index (yearly values from March to September). c. The 
steps of the Regime-PCMCI [1] algorithm.
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Figure 2. Example of two regime-specific graphs and time-series 
data generated using these causal graphs. Taken from the Tigramite
repository.

𝑋𝑗 = 𝑓𝑗(𝑋𝑖 , 𝑈𝑗)

Figure 3. Example of a two-variable causal graph, where 𝑋𝑖 causes
𝑋𝑗. 𝑋𝑗 can be written as function 𝑓𝑗 of the parent 𝑋𝑖 and its

exogeneous noise 𝑈𝑗.
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Figure 5. The hypothesized (unionized) causal graph for the dry and 
moist regimes. Dotted lines indicate causal links to be found by 
Regime-PCMCI. For each of the dotted line, we indicate which 
regime it corresponds to.
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Figure 6. a. The two regimes of interest discovered with Regime-
PCMCI. b. Comparison of the regimes assigned by Regime-PCMCI 
(above) with the VAC index (below).
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