
Towards a Cloud-native Tool for Model-based
Systems Engineering of Spacecraft

Dennis Eller1[0009−0009−9006−6460], Philipp Chrszon1[0000−0002−8785−0272],
Philipp M. Fischer1[0000−0003−2918−5195], and

Andreas Gerndt1,2[0000−0002−0409−8573]

1 German Aerospace Center (DLR)
Institute for Software Technology, Brunswick, Germany

{dennis.eller, philipp.chrszon, philipp.fischer, andreas.gerndt}@dlr.de
2 University of Bremen, Bremen, Germany

Abstract. The landscape of modeling tools for Model-based Systems
Engineering is largely dominated by desktop applications. While these
tools are highly advanced, their deployment is often challenging, especially
if used by large teams. For each machine they are used on, installation and
updating must be managed. Also, these applications often require con-
siderable hardware resources. Transforming MBSE tools to use web and
cloud technologies can alleviate these issues. We propose a cloud-native
architecture as an example for transforming Eclipse-based tools. It is
inspired by a set of requirements that have been identified by consulting
several experienced domain experts. A prototype implementation shows
that almost all of the must-be requirements can be fulfilled or partially
fulfilled by utilizing existing cloud-native technologies. Finally, we con-
ducted performance measurements, which showed that the overhead of
cloud technologies decrease with increasingly complex computations.

Keywords: Model-based Systems Engineering · Modeling Tool · Cloud-
native · Eclipse Rich Client Platform

Addressing Advancements, Limitations, and Customization of
MBSE Approaches in Space

1 Introduction

Model-based Systems Engineering (MBSE) fundamentally requires tool support
for creating, modifying, and sharing of models. Traditionally, MBSE tools have
been implemented as classical desktop applications, e.g., on the basis of the
Eclipse Rich Client Platform. One example for such a tool is Virtual Satellite [3],
which is developed by the German Aerospace Center (DLR) and is mainly used for
concurrent engineering studies in early lifecycle phases. In recent years, there has
been a trend to transform applications to individually containerized microservices
using cloud-native technologies, as this promises several advantages like high
scalability and availability as well as preventing vendor lock-in [2]. Furthermore,
they enable a web-based access using a browser on almost any device and thus
simplify the deployment as well as the maintenance of the application.



2 D. Eller et al.

In this paper, we propose and evaluate an architecture to transform an
application like Virtual Satellite to cloud-native technologies. First, we collected
requirements using surveys. Next, we evaluated which requirements can be fulfilled
in a prototype implementation using mostly existing cloud-native technologies.
Finally, the prototype has been utilized for conducting a performance evaluation
to determine the overhead of the proposed architecture.

2 Related Work

Tools and Frameworks. Since our architecture mainly targets usage in research
and requires high customizability, we focus on open-source tools for the implemen-
tation. MBSE tools, such as VSD, OCDT, COMET, Nanospace [4], Capella [1]
or Virtual Satellite [3] provide a web API or web-based user interface, but we do
not consider them as cloud-native. To create cloud-native IDEs, there exist tools
and frameworks, like Eclipse Theia and Eclipse Che. However, they are primarily
intended for software development and thus are not tailored for MBSE. Neverthe-
less, they may serve as a basis for implementing modeling tools, as exemplified by
RIDE [5], an IDE for the Reflex language for modeling cyber-physical systems,
or tCollab [9], which is used for defining requirements and generating diagrams.
For creating web and cloud based modeling tools, EMF.Cloud can be used.

Requirements Engineering. For gathering requirements, user stories [6] are a
popular choice, as they combine a formal specification with natural language de-
scriptions. Requirements can be divided into functional and quality requirements
by the ISO 25010 standard [7] and may be further classified into priority groups
using the Kano model [8], for which the table from Pouliot [10] may be applied.
According to the Kano model, requirements can be classified into the following
categories: Must-be requirements are taken for granted and result in dissatisfac-
tion when not fulfilled. One-dimensional requirements result in satisfaction if
fulfilled and dissatisfaction when not fulfilled. Attractive requirements are not
expected and result in satisfaction when fulfilled. Indifferent requirements do not
have an impact on satisfaction. It is recommended to combine multiple sources for
requirements engineering [6]. Must-be requirements can be derived from existing
systems and their documentation, one-dimensional requirements may be sourced
via surveys and attractive requirements can be derived via creative techniques.

3 Methodology and Gathered Requirements

Methodology. To collect the requirements for the architecture, user stories are
used. Specifically, the following steps were taken:
1. Gather user stories via a survey with domain experts and own research.
2. Categorize user stories according to ISO 25010.
3. Conduct Kano questionnaire for priority assessment according to Pouliot.
4. Derive architecture based on the user stories.
5. Evaluate the proposed architecture if it is fulfilling the user stories.
6. Evaluate the performance of the architecture in comparison to local execution.

https://www.vsd-project.org/
https://ocdt.esa.int/
https://www.rheagroup.com/services-solutions/system-engineering/concurrent-design/download-cdp4-comet/
https://theia-ide.org/
https://eclipse.dev/che/
https://eclipse.dev/emfcloud/


Cloud-native MBSE Tool for Spacecraft 3

Gathered Requirements. In total, 7 experienced domain experts participated in
the survey and 52 requirements were identified. Functional requirements were
split into the groups Modeling, Concurrent Engineering, Interfaces & Export of
Data, Product Lines, Versioning & Synchronization, and Authentication & Autho-
rization. For non-functional requirements, ISO 25010 is referred. 19 Attractive, 20
Must-be, 3 One-dimensional, and 10 Indifferent requirements have been identified.
Table 1 shows a selection of requirements which are relevant for the architecture.
The assessment if requirements could be fulfilled were done by the authors in
regards to the acceptance criteria of the user story.

Table 1: Selection of requirements which are relevant for the architecture.
M: Must-be, A: Attractive, I: Indifferent; ✓: Yes, (✓): Partial, ✕: No
No. Requirement Kano Fulfilled

Functional Requirements

Concurrent Engineering

R1 Multiple engineers can simultaneously access the system model. M ✓

R2 A workspace can be shared with other engineers. A (✓)

Interfaces & Export of Data

R3 The system model can be accessed via a web API. A ✓

R4 The software can trigger web APIs of external software. I ✓

Non-functional Requirements

Performance Efficiency

R5 The software scales with the load. I ✓

Compatibility

R6 The software can exchange data with other software. A ✓

R7 The software can be used with existing hardware. M ✓

R8 The software can be used from different devices. M ✓

Reliability

R9 The software remains operational on high load. M ✓

R10 The software remains operational in the event of errors. M ✓

Security

R11 The software uses an encrypted communication channel. I ✓

R12 The software can be deployed on own hardware. I ✓

R13 The software can be used without an outside internet connection. M ✓

R14 The software can only be used by authorized engineers. M ✓

Portability

R15 The software provides easy access to the system model. M ✓

R16 The software runs on standard hard- and software. M ✓



4 D. Eller et al.

4 Derived Architecture

Fig. 1 shows the architecture which is derived from the requirements. We use
Kubernetes as an orchestration software to manage the containers in the proposed
service-based architecture. This ensures that the software runs on standard hard-
and software (R7, R12, R16) and it enables that the software remains operational
in the event of high loads or errors (R5, R9, R10). On top of Kubernetes, we
deployed Eclipse Che as a workspace server, because it fulfills many standard
requirements (R13) like user (R14) or workspace (R1, R2) management as well as
exposing individual services (R3, R4, R6, R11). A basic MBSE tool was developed
on the basis of Eclipse Theia and EMF.Cloud. It can be used by any device with
a web browser (R8, R15). It is packaged as an Eclipse Che workspace with the
help of a Devfile, that includes dependencies and software that the tool needs
to run (R1, R2, R8, R15). Also, we developed a mass calculation and a model
checking service as internal services which can be used by every workspace. An
internal service is a containerized application which provides functionality via a
web API. Providing an application as an internal service may be necessary in
case an application exceeds the hardware limits of a workspace. A command-line
interface (CLI) tool was developed to demonstrate the integration of external
tools as an additional way to access the system model (R6, R15). External
services like a version-control system (DLR Gitlab) for accessing project files and
collaboration (R2) or a public container image registry for deployment of the
cluster are needed. With the use of a version-control system, the system model
can also be modified outside the cluster without an internet connection (R13).
The private image registry contains images of self developed tools which shall
not be publicly available and is also needed in an offline scenario (R13).

Fig. 1: Proposed architecture of the MBSE tool

5 Evaluation

Within the following evaluation, two research questions (RQs) are answered:

(RQ1) To what extent can the requirements for a space MBSE tool be satisfied
using available cloud technologies? In particular, are versioning, product-
line management, synchronization, confidentiality, and different views as
well as abstraction levels covered?

https://devfile.io/


Cloud-native MBSE Tool for Spacecraft 5

(RQ2) How does the utilization of cloud technologies influence the performance
of calculations and verifications?

For answering RQ1, we used the prototype implementation to check which of
the requirements can be fulfilled. To answer RQ2, we deployed the prototype
on Kubernetes as it would be deployed on a cluster. Two kinds of experiments
have been conducted. In the mass calculation experiment, the masses of the
system elements are aggregated, and in the model checking experiment, a state
machine is searched for deadlocks. To determine the overhead of the architecture,
we compare the performance of the experiments to a local deployment. In that
case, all functionality is invoked locally, without involving any cloud technologies,
web server, or network communication. The experiments have been executed on
a computer with an Intel Core i9 11950H processor, 64 GB of RAM, running
Windows 10 Enterprise and a virtual machine with Ubuntu 20.04 LTS. Each
performance measurement was carried out 1,000 times.

5.1 Results
We first consider the requirements listed in RQ1. In general, it is possible to model
a structure of a system and attach masses to the elements. The behavior can be
modeled with a flow chart and checked for deadlocks. Constraints on the flow chart
can be defined by a DSL and checked in a model analysis. Synchronization and
versioning of the model is covered by the utilized version-control system. Using
branching, simple product-line management can be realized. The confidentiality of
the data during communication is protected by encryption. But, the data storage
is unprotected in the current implementation. Providing different views on the
data model and different abstraction levels is possible by using EMF.Cloud and
EMF. They allow the definition of extensible data models as well as the creation of
different editors, e.g., tree editors and flow diagrams. Fig. 2 shows the fulfillment
of the requirements regarding their Kano categorization and requirement group.

Checking the requirements for RQ1 revealed that 28 requirements are fulfilled,
11 are partially fulfilled, and 13 are not satisfied.

Fig. 3 and Fig. 4 show the results of the performance measurements for a
sequential and a concurrent execution of the experiments, respectively. In the
diagrams, the median time and 99% percentile of the measurements are shown.
For the mass calculation, the cluster is significantly slower, while the model
checking shows similar performance, especially for concurrent execution.

Answering RQ2, we conclude that cloud technologies introduce a measurable
overhead in case the performed tasks are simple and fast. For longer lasting
computational tasks, the overhead diminishes.

5.2 Discussion
The evaluation of satisfied requirements showed that most of the non-functional
requirements are satisfied, but the satisfaction of several functional requirements



6 D. Eller et al.

Mod
elin

g

Con
curre

nt
Engin

eer
ing

Int
erf

ace
s &

Exp
ort

of
Data

Prod
uctl

ines
&

Vers
ion

ing

Authent
ificat

ion
&

Authori
zat

ion

Non
functi

on
al

ISO
250

10

5

10

15

20

4

4

1

2

2
6

1
1

3

4 4
2 3

1

14

Fulfilled Partly fulfilled Not fulfilled

Attr
act

ive

Must-
be

One Dim
ensio

nal

Indiffere
nt

Reve
rse

Quest
ion

ab
le

5

10

15

20

5

2

1

3

5

5

2

1
9

13

6

Fig. 2: Requirement fulfillment w.r.t. to categories (left) and Kano (right)

100 101 102 103 104

100

101

102

103

Number of system elements

T
im

e
in

m
s

Cluster
Locally

100 101 102 103 104 105 106106

102

103

104

105

106

Number of states

T
im

e
in

m
s

Cluster
Locally

Fig. 3: Sequential execution of mass calculation (left) and model checker (right)

100 101 102 103

100
101
102
103
104
105

Number of concurrent requests

T
im

e
in

m
s

Cluster
Locally

100 101 102 103

102

103

104

105

Number of concurrent requests

T
im

e
in

m
s

Cluster
Locally

Fig. 4: Concurrent execution of mass calculation (left) and model checker (right)



Cloud-native MBSE Tool for Spacecraft 7

is lacking. This means that there is no fundamental issue in utilizing cloud
technologies for MBSE tooling and that for reaching full functionality, more
implementation work is required. The performance measurements indicate that
cloud technologies indeed introduce an overhead. For practical sized models, the
overhead is still well below one second. With more compute-intensive operations,
the overhead is negligible.

6 Summary and Outlook
In this paper, it was investigated what engineers expect from an MBSE cloud
tool. It was shown that with current cloud-native technologies, an MBSE tool
can be created. In the proposed architecture, compute-intensive operations scale
better than simple operations. In future work, the architecture could be deployed
in a real cloud environment as well as tested in a concurrent engineering study.

References
1. Calio, E., Giorgio, F.D., Pasquinelli, M.: Deploying Model-Based Systems Engineer-

ing in Thales Alenia Space Italia. In: INCOSE Italia Conf. on Systems Engineering
(2016)

2. Carrión, C.: Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges.
ACM Computing Surveys 55(7), 1–37 (Dec 2022). https://doi.org/10.1145/3539606

3. Fischer, P.M., Lüdtke, D., Lange, C., Roshani, F.C., Dannemann, F., Gerndt,
A.: Implementing model-based system engineering for the whole lifecycle of a
spacecraft. CEAS Space Journal 9(3), 351–365 (Jul 2017). https://doi.org/10.1007/
s12567-017-0166-4

4. Gateau, T., Senaneuch, L., Cordero, S.S., Vingerhoeds, R.: Open-source Framework
for the Concurrent Design of Cubesats. In: 2021 IEEE Intl. Symp. on Systems En-
gineering (ISSE). pp. 1–8 (2021). https://doi.org/10.1109/ISSE51541.2021.9582549

5. Gornev, I., Liakh, T.: RIDE: Theia-Based Web IDE for the Reflex Language. In:
2021 IEEE 22nd Intl. Conf. of Young Professionals in Electron Devices and Materials
(EDM). IEEE (Jun 2021). https://doi.org/10.1109/edm52169.2021.9507678

6. Herrmann, A.: Grundlagen der Anforderungsanalyse: Standardkonformes Require-
ments Engineering. Springer Fachmedien Wiesbaden (2022). https://doi.org/10.
1007/978-3-658-35460-2

7. ISO/IEC 25010: ISO/IEC 25010:2011, systems and software engineering — systems
and software quality requirements and evaluation (square) — system and software
quality models (2011)

8. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must-be
quality. The Journal of the Japanese Society for Quality Control 14, 39–44 (01
1984)

9. Saini, R., Bali, S., Mussbacher, G.: Towards Web Collaborative Modelling for the
User Requirements Notation Using Eclipse Che and Theia IDE. In: 2019 IEEE/ACM
11th Intl. Workshop on Modelling in Software Engineering (MiSE). IEEE (May
2019). https://doi.org/10.1109/mise.2019.00010

10. Shahin, A., Pourhamidi, M., Antony, J., Park, S.: Typology of Kano models: A
critical review of literature and proposition of a revised model. Intl. Journal of
Quality & Reliability Management 30, 341–358 (03 2013). https://doi.org/10.1108/
02656711311299863

https://doi.org/10.1145/3539606
https://doi.org/10.1145/3539606
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1109/ISSE51541.2021.9582549
https://doi.org/10.1109/ISSE51541.2021.9582549
https://doi.org/10.1109/edm52169.2021.9507678
https://doi.org/10.1109/edm52169.2021.9507678
https://doi.org/10.1007/978-3-658-35460-2
https://doi.org/10.1007/978-3-658-35460-2
https://doi.org/10.1007/978-3-658-35460-2
https://doi.org/10.1007/978-3-658-35460-2
https://doi.org/10.1109/mise.2019.00010
https://doi.org/10.1109/mise.2019.00010
https://doi.org/10.1108/02656711311299863
https://doi.org/10.1108/02656711311299863
https://doi.org/10.1108/02656711311299863
https://doi.org/10.1108/02656711311299863

	Towards a Cloud-native Tool for Model-based Systems Engineering of Spacecraft

