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Abstract
Multi-disciplinary design optimization (MDO) problems incorporate a number of coupled disciplines that need to be
simultaneously solved to achieve a complete solution. Such problems are common in turbomachinery blade design,
where MDO usually integrates constraints coming from aerodynamics and structural mechanics. In the present work, a
multi-disciplinary and multi-objective optimization problem is formulated and applied to a morphing blade cascade study.
An aero-structure coupling strategy is also integrated in the framework to take into account the interactions between
aerodynamics and structural mechanics. The morphed blade geometry is obtained by means of a shape memory alloy
(SMA) actuator that morphs and adapts the blade leading-edge shape to the inflow conditions in order to improve the
aerodynamic flow characteristics, and therefore the overall cascade performance. A surrogate-based optimization strat-
egy is applied to find the Pareto points representing the optimal blade configurations in terms of total pressure loss coef-
ficient at design and off-design conditions. Results show a decrease up to 55% in the total pressure loss coefficient at the
off-design condition with a Young’s modulus of about 100 GPa and an actuator length between 30 and 45 mm.
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1 Introduction

A multi-disciplinary problem involves several disci-
plines that are usually coupled and must be solved
together in order to achieve a complete solution. In the
past, multi-disciplinary design optimization (MDO)
has been successfully applied to turbomachinery design
(Panchenko et al., 2003; Idahosa et al., 2008; Ampellio
et al., 2016; Jha, 1999) to integrate in the problem defi-
nition not only aero- and thermodynamic performance
of turbines and compressors, but also geometrical
requirements, mechanical integrity, and manufacturing
costs Dornberger et al., 2020. Of particular interest are
the turbomachinery applications involving constraints
coming from critical disciplines like aerodynamics
and structural mechanics into the design process.
Even though there is a strong interaction between aero-
structural effects, several studies consider these two dis-
ciplines independent to avoid the burden of coupling
the respective numerical solvers. For instance, Talya
et al. (2000) integrated aerodynamic and heat transfer
design objectives along with blade geometry con-
straints, and developed a multi-disciplinary optimiza-
tion procedure for gas turbine blade design. Talya et al.
evaluated the aerodynamic loads by a Navier-Stokes

solver, and calculated the interior temperature with a
finite element analysis (FEA). Those aerodynamic and
structural results were finally combined into a single
MDO framework. Another example is available in
Dornberger et al. (2020) where the authors developed
an automated multi-disciplinary optimization environ-
ment that provides a generic interface to external soft-
ware (i.e. computational fluid-dynamic (CFD) and
FEA). Kosuke et al. (2004) used an inverse design
method combined with CFD and FEA to optimize the
performance of a centrifugal compressor and a radial
turbine stage of a microturbine system. Leonid et al.
(2004) conceived an optimization approach based on
reduced order models to optimize the design of axial
turbine blades with the final goal of achieving stage
maximal efficiency meeting both stress-strain and
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vibration reliability requirements. Pierret et al. (2006)
combined the use of a genetic algorithm (GA) with an
approximate model to accelerate the optimization pro-
cess of the NASA Rotor 67 at three different operative
conditions. Verstraete et al. (2007) coupled a GA with
an artificial neural network approach to optimize a
radial compressor for micro gas turbine application
using a 3D Navier-Stokes solver and FEA. All the
works mentioned above describe multi-disciplinary
optimization problems without a coupling strategy
between the disciplines involved; indeed, results coming
from different solvers are analyzed separately neglect-
ing the interactions between them.

However, in the turbomachinery blade design, aero-
dynamics and structural mechanics are highly coupled
disciplines: aerodynamic loads generate stresses and
strains in the blade structure resulting in deformations
that in turn affect the aerodynamics itself. Moreover, it
is generally not recommended to use low-fidelity flow
solvers in such problems because they are not accurate
in the prediction of flow separation. Therefore, it is nec-
essary to use high-fidelity flow solvers which however,
are computationally expensive. Luo et al. (2009) studied
transonic compressor blades, and developed an auto-
matic multi-objective optimization approach using par-
allel multi-objective differential evolution (MDE)
algorithms combined with a non-uniform B-Spline
method to couple Reynolds-Averaged Navier-Stokes
(RANS) solutions with FEA. The B-Spline method is a
load surface technique able to transfer the aerodynamic
loads from the RANS solver to the finite element analy-
sis Lizhou Li (2006). In particular, this coupling
approach transfers the loads by a Bi-cubic B-Spline sur-
face fitted from the CFD results in a parametric space
where both CFD and FEA nodes are mapped Lizhou
Li (2006). When considering morphing aeronautical
elements, the coupling between aerodynamics and
structural mechanics becomes even more important
since these two disciplines impose contrasting require-
ments to the design process. On one hand, the structure
has to be stiff enough to withstand the aerodynamic
loads while maintaining the prescribed aerodynamic
properties; on the other hand, it has to be compliant
enough to allow shape changes. The result is a compro-
mise between the two requirements. For this purpose,
several fluid-structure interaction (FSI) methods have
been developed to achieve a more complete and reliable
design process of morphing devices Ricci and Terraneo
(2006); Potsdam et al. (2006); Heinrich R. (2008);
Gamboa et al. (2009); Molinari et al. (2011, 2014), but
all of these techniques are conceived to be used with
purely three-dimensional or two-dimensional solvers,
that is, CFD and FEA are both either 3D or 2D.
However in a blade cascade application, the 3D CFD
analysis can be simplified by considering its equivalent
2D problem in order to reduce the computational costs.
At this point, the aero-structure coupling has to link

the 2D CFD analysis with the three-dimensional struc-
tural model resulting in a 2D-3D coupling, where the
2D CFD computational grid is matched with the 3D
FEA mesh in order to transfer the aerodynamic loads
from the CFD analysis to the structural model. Such a
strategy has been presented and successfully tested in
Abate et al. (2021).

As mentioned before, high-fidelity flow solvers are
necessary to well predict flow separation but they nega-
tively affect the computational time. In the field of
design optimization with computationally expensive
function evaluation, surrogate-based optimizers are
some of the most suitable algorithms in order to reduce
the number of required function evaluations to identify
the possible global optimum. While the previous
publication (Abate et al. (2021)) only describes the
multi-disciplinary coupling, in the present work, the
2D-3D fluid-structure interaction framework is inte-
grated in a multi-objective optimization problem where
a surrogate-based approach is implemented to mini-
mize the total pressure loss coefficient of a morphing
blade cascade. The blade leading-edge geometry is
morphed by means of a shape memory alloy (SMA)
actuator placed on the pressure side of the blade, whose
actuation adapts the nose shape to the inflow condi-
tions Abate et al. (2021). The resulting design variables
are the blade Young’s modulus, and the dimensions
and location of the morphing device. More information
about blade geometry, SMA modeling, and CFD and
FEA settings are provided in Abate et al. (2021). In the
following sections, a detailed description of the optimi-
zation problem will be presented. In particular, Section
2 provides a description of the blade geometry and the
morphing device; in Section 4, there is an overview of
the optimization framework, and a detailed presenta-
tion of the optimization problem and the algorithm
implemented. Section 5 shows the final results; and
finally, the conclusion (Section 6) summarizes the
described work and the relevant results achieved.

2. Geometry and flow conditions

As detailed described in Abate et al. (2021), the base-
line cascade blade geometry is generated from the DLR
SC14-067 Reutter et al. (2014, 2017) airfoil coordinates
provided by the Institute of Propulsion Technology -
Department of Fan and Compressor of the German
Aerospace Center (DLR). The cascade has an airfoil
chord length of 70 mm and span of 120 mm (Figure 1).

A shape memory alloy actuator is integrated in the
blade pressure side surface (Figure 1) in order to
deform and adapt the blade leading-edge accordingly
to the inflow conditions. In particular, the actuator is
activated by heating the SMA up leading to a contrac-
tion of the material fibers – according to the material
properties – and therefore, to a bending of the blade
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leading-edge. More details about the SMA model
implemented in this work are presented in Abate et al.
(2021).

Other flow properties to consider are the inlet Mach
number of 0.65, and the inflow angle b1 (Figure 2) of
134 deg at the design condition where the flow over the
blade is mostly attached to the body surface (Figure
3(a)). On the other hand at off-design conditions
(b1=138 deg), the inflow angle increases, and a flow
separation may appear on the blade suction side
(Figure 3(b)) leading to a degradation in the cascade
performance. In order to reduce these negative effects,
the SMA actuator is activated to move downwards the
blade leading-edge (Figure 4), thereby obtaining a
reduction of the inlet metal angle with a consequent
improvement of the aerodynamic flow characteristics.

The SMA actuator has a thickness of 0.4 mm, and
the starting and ending x-coordinates of the actuator
(Figure 5) along the blade are the design variables of
the optimizer, as detailed described in the next section.

3. FEA and CFD overview

A quick overview of the FEA and CFD analysis is
given in this section. A detailed presentation of the
simulation settings is available in Abate et al. (2021).

3.1 FEA

The finite element analysis is conducted in Ansys
Workbench�. Aluminum alloy material is assigned to
the blade, and shape memory alloy to the actuator. A
simplified approach has been used to model the SMA
considering the complexity of the aero-structural
coupling. Therefore, the SMA has been modeled as an
isotropic material with linear material behavior.
Moreover, martensite and austenite stiffness as well as
the hysteresis have not been taken into account., and
the actuation of the SMA has been considered only in
one direction. The actuation of the SMA has been
considered only in one direction (chordwise direction)
such that when a temperature is assigned to the mate-
rial, the actuator contracts in that direction leading to

a downward bending of the blade leading-edge. As just
mentioned, the SMA needs a thermal condition to be
activated. This is modeled by using a thermal analogy
that simulates the voltage on the actuator leading to its
activation. In particular, a temperature of 100�C is con-
sidered for the active actuator, while 0�C corresponds
to zero strain.

Figure 1. Baseline blade geometry with the actuator on the
pressure side.

Figure 2. Airfoil cascade Abate et al. (2021).

(a)

(b)

Figure 3. Total pressure at design and off-design conditions for
the baseline blade Abate et al. (2021): (a) Design condition and
(b) Off-design condition.
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3.2 CFD

The computational fluid-dynamic analysis has been
carried out in Ansys Fluent�. It has been decided to
consider a simple two-dimensional problem to reduce
the computational cost. The flow conditions have been
already described in the previous section and more
details can be found in Abate et al. (2021). The mesh is
quadrilateral with 30 prism layers close to the airfoil
surface in order to have a wall y+\1. After a grid
independence study, the final mesh results to have
about 150,000 elements. The flow is steady, compressi-
ble, and fully turbulent; the k � v shear stress transport
(SST) turbulence model has been selected and coupled
with a y+\1 in order to solve the entire boundary
layer. Two outputs of the CFD analysis are saved and
used for the fluid-structural coupling: 2D mesh and
pressure distribution over the airfoil.

3.3 Fluid-structure interaction framework

The fluid-structure interaction (FSI) framework inte-
grated into the optimization process couples the 2D
structural analysis with the 3D aerodynamic problem.
A schematic representation of the FSI method is shown
in Figure 6. The process starts with the geometry gener-
ation of the 3D baseline blade with the SMA actuator
on the pressure side. This 3D geometry and the original
2D airfoil shape are used in the FEA and CFD analysis,
respectively. The challenging point in the FSI frame-
work lies on the ‘‘mesh matching’’ phase where the 3D
structural mesh coming from the FEA is matched with
the 2D CFD one such that the aerodynamic loads asso-
ciated with the CFD mesh nodes can be transferred to
the structural ones. The resulting ‘‘matched’’ FEA
nodes with the associated aero-loads are transferred to
the structural analysis which returns both the deformed
blade geometry and the new mesh as output. The steps
presented above are then repeated again in an iterative
process that stops when the difference in the leading-
edge displacement along the y-axis between to consecu-
tive iterations is less than 2 10�5 [m].

A detailed description of all the FSI phases is pre-
sented in Abate et al. (2021).

4. Multi-objective optimization problem

4.1 Problem formulation

The goal of this work is to maximize the performance
of a morphing blade cascade by changing the leading-
edge shape in order to adapt the blade geometry to the
inflow conditions. In particular, the optimization prob-
lem searches for the morphed blade configurations that
minimize the total pressure loss coefficient v both at
design and off-design conditions by changing the
Young’s modulus of the blade material (Eblade), xstart,
and xend of the SMA actuator. The total pressure loss
coefficient v is defined as:

v=
p01 � �p02

q1

ð1Þ

where p01 is the total pressure at the cascade inlet, �p02 is
the area-weighted average total pressure at outlet, and
q1 is the dynamic pressure at inlet. A reduction of v

means a reduction in the pressure losses, and therefore,
an enhancement in the cascade aerodynamic perfor-
mance. As introduced before, both design and off-
design conditions are considered in this study, and for
this reason, the objective function v must be minimized
at both design (vdes) and off-design (voff) conditions.
Therefore, the resulting optimization problem is a
multi-objective problem where vdes and voff are the two
objective functions. Even though no morphing occurs
at the design condition, it is important to evaluate the

Figure 4. Downwards displacement of the blade leading-edge
due to the SMA actuator Abate et al. (2021).

Figure 5. x-coordinates of the SMA actuator.
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value of v even at this operative point because the pres-
ence of the SMA actuator changes the structural prop-
erty of the blade, therefore affecting the geometry and
the aerodynamic performance of the loaded blade. It is
well known that the result of a multi-objective optimi-
zation problem is given by a set of non-dominated solu-
tions that define the so-called Pareto front; for the
specific problem presented in this paper, the Pareto
points represent the morphed blade configurations with
optimized performance in terms of total pressure loss
coefficient at design and off-design conditions. The for-
mulation of the multi-objective problem solved in this
paper can be stated as follow:

minimize: f1 xð Þ=vdes xð Þ ð2Þ

f2 xð Þ=voff xð Þ ð3Þ

by changing: x= xstart, xend,Eblade½ � ð4Þ

subject to: 0:1c ł xstart ł 0:5c ð5Þ

0:6c ł xend ł 0:9c ð6Þ

70 � 109 Pa½ �ł Eblade ł 300 � 109 Pa½ � ð7Þ

where c is the chord length, xstart and xend are the
starting and ending actuator coordinates (Figure 5),
and Eblade is the blade Young’s modulus measured in
Pa. Geometric constraints are applied to the actuator
x-coordinates (equations (5,6)) in order to keep feasible
the resulting blade configurations, and an additional
constraint is also considered for the Young’s modulus
of the blade material (equation 7).

Such a problem can be solved with a genetic
algorithm or with a surrogate-based approach. Because
of the high computational costs of the analysis tools
(CFD and FEA) involved in the process, it has been
decided to implement a surrogate-based optimization,

in particular the MATLAB�surrogate-based algorithm
together with the e-constraint technique in order to
tackle the multi-objective formulation of the problem.
The e-constraint approach is known to be well suited
for multi-objective problems with two objectives like
the one presented in this article. Therefore, the number
of resulting single objective problems to solve exponen-
tially increases with the number of objective functions,
thereby making problems with more than two objec-
tives intractable with such a technique.

4.2 e-constraint method

The e-constraint approach finds an accurate discrete
representation of the Pareto front of the multi-objective
optimization solution by minimizing a primary objec-
tive (f1 xð Þ), and bounding the other objectives (f2 xð Þ) in
the form of inequality constraints with decreasing lim-
its. Therefore considering f1 and f2 equal to vdes and
voff, respectively, the previous optimization problem
can now be formulated as follow:

minimize: f1 xð Þ=vdes xð Þ
subject to: voff xð Þł e

0:1c ł xstart ł 0:5c

0:6c ł xend ł 0:9c

70 � 109 ł Eblade ł 300 � 109

where an additional constraint on voff is added in
order to exclude from the solution all the points in the
design space that do not satisfy that specific constraint.
Figure 7 shows an example of the e-constraint method:
starting from a given value of e (i.e. e0), the first run of
the e-constraint method excludes from the solution all
the points in the design space that do not satisfy the

Figure 6. Schematic representation of the FSI method. Abate et al. (2021).
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condition f2 xð Þł e0, in other words all the points above
the red line. Therefore, by running a single-objective
optimization for f1 xð Þ, it is possible to find the first
Pareto point on the red line passing through e0. The
second step consists in changing the value of e (for
example e1 in the figure) in order to move downwards
the search for all the Pareto points. The process is
repeated for all the selected e values. The number and
the value of e constraints should be defined by the user
with the goal of obtaining a uniform discrete represen-
tation of the Pareto front. In particular, the extreme
values e0 and en correspond to f2 evaluated at the opti-
mal designs resulting from the single objective optimi-
zation of f1 and f2, respectively.

4.3 Surrogate-based optimization

The single-objective problem resulting from the
e-constraint method is solved by the surrogate-based
optimizer surrogateopt available in MATLAB�. In the
first phase, the algorithm takes random points within
the bounds and evaluates the objective function f xð Þ
at these points. Then, it constructs the initial surrogate
of f xð Þ by interpolating a radial basis function through
these points (Figure 8(a)). In the second phase (Figure
8(b)), a merit function – which is based on the surro-
gate model MATLAB (2018)– is evaluated at several
thousand locations that are randomly sampled in a
trust region around the incumbent best point. The ran-
dom sample returning the lower merit function is cho-
sen as a candidate for the evaluation of f xð Þ in order to
update the surrogate and search again. The trust region
boundaries are updated and the process is repeated
until convergence is reached. More details about the
MATLAB� surrogateopt algorithm can be found in
MATLAB (2018).

The non-linear constraint given by the e-constraint
method is included in the optimization algorithm via

an external penalty function assigned to the objective
function f1. In particular, recalling that f1 is the total
pressure loss coefficient evaluated at the design condi-
tion (vdes), and f2 is voff which is the objective function

Figure 7. Example of the e-constraint approach.

(a)

(b)

Figure 8. The two phases of the MATLAB�surrogateopt
function MATLAB (2018): (a) Phase 1 and (b) Phase 2.
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v evaluated at the off-design condition, the optimiza-
tion problem is reformulated in the following way:

minimize: ~vdes

subject to: 0:1c ł xstart ł 0:5c

0:6c ł xend ł 0:9c

70 � 109 ł Eblade ł 300 � 109

where ~vdes is the penalized objective function defined
as:

~vdes =vdes +c vdes, eð Þ ð8Þ

=vdes + 0,
k voff � eð Þ

e

� �� �2

ð9Þ

with k = 100, and the second addend representing the
penalty function. When the constraint for voff is satis-
fied, the penalty function is 0, and therefore, ~vdes is sim-
ply equal to the original vdes; whereas when voff.e,
~vdes is the new penalized objective function in order to
exclude from thesolution all the points that do not sat-
isfy the constraint.

4.4 Multi-disciplinary problem

As mentioned before, the performance analysis of a
morphing blade cascade involves two highly coupled
disciplines: aerodynamics for the load evaluation, and
structural mechanics to calculate stresses and deforma-
tions due to both aero-loads and actuator. Therefore, it
is highly important to create a connection between
CFD and FEA solvers such that they can exchange
information and results to achieve a complete solution
of the overall performance analysis. An aero-structure
coupling method has been developed in Abate et al.
(2021) where a 2D CFD analysis is linked to a 3D

structural solver by matching the 2D CFD mesh nodes
with the 3D structural grid in order to transfer the
aerodynamic loads and find the corresponding
deformed blade shape. This 2D-3D aero-structure cou-
pling tool is now integrated in the multi-objective opti-
mization framework presented in the previous sections.
In Figure 9, a schematic representation of the optimiza-
tion loop with the iterative aero-structural coupling is
shown. The optimizer gives the design variables as
input to the fluid-structure interaction (FSI) frame-
work; those define the characteristics of each blade
configuration in terms of Young’s modulus of the blade
material, and dimensions and location of the SMA
actuator. The resulting blade is then simulated in both
CFD and FEA solvers inside the FSI process where the
aerodynamic analysis gives the aero-loads to the struc-
tural model and the structural analysis returns the
deformed blade geometry due to both aero-loads and
actuator effect. This deformed shape goes back to the
CFD solver, and the iterative loop between aerody-
namic and structural analyses is repeated until conver-
gence. More details about the FSI framework are given
in Abate et al. (2021). The iterative loop between CFD
and FEA returns the values of the two objective func-
tions (vdes, voff) needed by the optimizer for the func-
tion evaluation.

5. Results

The Pareto front resulting from the multi-objective
problem is plotted in Figure 10 that reports the varia-
tion of the total pressure loss coefficient in percentage
evaluated at design and off-design conditions. In par-
ticular, the performance variation of the i-th geometry
is calculated as the difference between v of the simu-
lated morphed blades and v of the baseline blade (orig-
inal undeformed blade without actuators):

Figure 9. Schematic representation of the optimization process with the integrated FSI framework.
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Dvi =
vi � vbase

vbase
100 ð10Þ

where vi is the v of the optimization case i, and vbase is
the baseline v value. As mentioned, the Dv is calculated
at both design and off-design conditions, and plotted
on the x and y axes in Figure 10. In this figure, each
dot represents a case generated by the optimizer and
simulated in the aero-structural coupling loop; the red

points are the solution of the multi-objective optimiza-
tion problem namely the Pareto points. As it is possible
to see, all the blade configurations in the Pareto front
show an expected but negligible increase in the total
pressure loss coefficient at the design condition; on the
other side, a relevant performance improvement is
noticeable at the off-design condition where the total
pressure loss coefficient decreases up to 55%. This is
due to the improved aerodynamic characteristics of the
flow showing a delayed separation on the suction sur-
face of the morphed blade compared to the original
one. Indeed, the morphing leading-edge makes it possi-
ble to adapt the blade shape to the inflow conditions in
order to modify the inlet metal angle of the blade and
to decrease the flow separation originally due to a high
incidence angle. An example of the morphing effects on
the flow characteristics at off-design conditions is given
in Figure 11 where the total pressure is plotted for both
baseline (undeformed) and a morphed blade with a
decrease in the loss coefficient of about 50%.

The solution of the multi-objective optimization
problem gives also important insights into actuator
length and Young’s modulus of the blade material. In
particular, Figure 12 shows that an actuator length
between 30 and 45 mm is the best choice to get a reduc-
tion of the total pressure loss coefficient especially at
off-design conditions; moreover, the most promising
length to achieve a good compromise between design
and off-design results seems to be of about 30 mm.
About the value of the Young’s modulus, Figure 13
shows that most of the blades on the Pareto front are
characterized by a value of about 100 GPa which is a
common value for the Titanium alloys.

6. Conclusion

In the present work, a multi-disciplinary and multi-
objective optimization problem has been applied to a
morphing blade cascade study. In particular, an aero-
structural coupling strategy previously developed
Abate et al. (2021) has been integrated in the optimiza-
tion framework in order to consider the interactions
between aerodynamics and structural mechanics in the
cascade performance analysis. An SMA actuator on
the pressure side of the blade has been used as morph-
ing device to bend the blade leading-edge downwards
in order to adapt the shape to the inflow conditions
leading to an improvement in the aerodynamic
characteristics of the flow, and therefore, in the overall
cascade performance. In this study, it has been decided
to work only with one morphing device at the bottom
blade surface since it has been noticed a positive aero-
dynamic effects when the blade is bent downwards;
however in some circumstances, aerodynamic improve-
ments can be achieved also by bending the blade
upwards, and therefore, by activating an SMA actuator
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Figure 10. Pareto front and total pressure loss variation plot.

Figure 11. Total pressure on baseline and morphed blades at
the off-design condition Abate et al. (2021).
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on the suction side of the blade. This is part of planned
future works. The optimization problem has been set
to minimize the total pressure loss coefficient at both
design and off-design conditions, and considering the
Young’s modulus of the blade material, and the dimen-
sions and location of the actuator as design variables.
Because of the high computational costs of the analysis
tools (CFD and FEA) involved in the process, the
multi-objective problem has been successfully solved by
means of a surrogate-based optimization (MATLAB�

surrogateopt) with the e-constraint method and penalty
function. The solution shows a relevant decrease up to
55% in the total pressure loss coefficient at off-design
conditions when the blades are characterized by a
Young’s modulus of about 100 GPa, and an actuator
length between 30 and 45 mm.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

ORCID iD

Giada Abate https://orcid.org/0000-0002-4320-4447

Data availability statement

Data sharing not applicable to this article as no datasets were
generated or analyzed during the current study.

References

Abate G, Riemenschneider J and Hergt A (2021) Aero-struc-

tural coupling strategy for a morphing blade cascade

study. ASME Journal of Turbomachinery 144: 061002.

DOI:10.1115/1.4053174.
Ampellio E, Bertini F, Ferrero A, et al. (2016) Turbomachin-

ery design by a swarm-based optimization method coupled

with a cfd solver. Advances in Aircraft and Spacecraft Sci-

ence 3(2): 149.
Luo C, Liming S, Jun L, et al. (2009) Multiobjective optimi-

zation approach to multidisciplinary design of a three-

dimensional transonic compressor blade. ASME Turbo

Expo 2009: Power for Land, Sea and Air.
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Figure 12. Actuator length results.
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Figure 13. Blade Young’s modulus results.
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