European Facility on Molten SALT technologies TO power and energy system applications GA Number: 101079303 European Research Executive Agency REA.C3

Deutsches Zentrum Für Luft- und Raumfahrt German Aerospace Center

Funded by the European Union

Fast Track School #3

Molten Salt technologies and energy system applications

Evora, 12.-14.11.2024

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

SALTOpower

Wenjin Ding, Thomas Bauer

Development and potential market launch of new molten salt technologies

Evora, 12.-14.11.2024

Contents

Motivation

- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

Applications of Molten Salt Technologies

= Commercial applications

= under demonstration

Next-Gen CSP Plants under R&D

Gen3 CSP (Next-Gen CSP) of DOE SunShot 2030 since 2018 Three pathways under R&D:

- Solid pathway ٠
- Liquid pathway (molten salt/liquid metal)
- Gas pathway ٠

2010 2020 2030 Cost Cost Goal (No storage) DOE CSP Target in 2030:

21¢

Low LCOE (≤5 ¢/kWh_e) for baseload CSP (≥12 hours of storage)

9.5¢

BASELOAD CSP

(≥ 12 hours of storage)

2030 CSP Scenarios to Achieve LCOE of 5¢/kWh

Compared to Benchmark 2018, main achievements are required for the target LCOE of 5¢/kWh,

- Higher power-cycle efficiency (≥40%, better ≥50%)
- Lower Power block cost (≤ \$900/kW)
- Lower solar field cost (\leq \$70/m²)
- Lower thermal energy storage (TES) cost (≤ \$15/kWh)

If **higher power-cycle efficiency** is achieved

 Higher costs of power block, solar field and thermal storage are acceptable Table IV. Benchmark parameters for a 100 MW CSP system with 14 hours thermal storage.³⁶

Parameter	2018 Benchmark ^{37,38}	2030 Low-Cost	2030 Balanced	2030 High-Performance
Net power-cycle efficiency	37%	40%	50%	55%
Rated thermal power	730 MW _{thermal}	675 MW _{thermal}	540 MW _{thermal}	491 MW _{thermal}
Power block cost	\$1330/kW _{ac-gross}	\$700/kW _{ac-gross}	\$900/kW _{ac-gross}	\$900/kW _{ac-gross}
Solar field cost	\$140/m ²	\$50/m ²	\$50/m ²	\$70/m ²
Site preparation cost	\$16/m ²	\$10/m ²	\$10/m ²	\$10/m ²
Tower and receiver cost	\$137/kW _{thermal}	\$100/kW _{thermal}	\$120/kW _{thermal}	\$120/kW _{thermal}
Thermal storage cost	\$22/kWh _{thermal}	\$10/kWh _{thermal}	\$15/kWh _{thermal}	\$15/kWh _{thermal}
Levelized O&M cost ³⁹	\$9/kW _{thermal} -yr	\$6/kW _{thermal} -yr	\$7/kW _{thermal} -yr	\$7/kW _{thermal} -yr
Levelized capacity factor	68.9%	69.2%	70.7%	71.0%
LCOE (2019 US\$) ⁴⁰	9.8¢/kWh	5.0¢/kWh	5.0¢/kWh	5.0¢/kWh

Target in 2030: LCOE (≤5 ¢/kWh_e) for baseload CSP

https://www.energy.gov/eere/solar/articles/2030-solar-cost-targets

Molten Chloride TES for Advanced Thermal Power Plants

Turchi, Craig. "Concentrating solar power: current cost and future directions." Colorado: National 32 (2017).

Advanced thermal power plants (ATPP) like Next-Gen CSP: advanced power cycle (e.g., sCO₂ Brayton) with higher effic. >50%

→ higher turbine inlet temperature ≥700 °C → higher TES temperature >700 °C

- But state-of-the-art commercial Nitrate-TES: NaNO₃-KNO₃ 60-40 wt.% (Solar Salt), limited to 565 °C by thermal decomposition
- Chloride-TES with operating temperature of >700 °C with excellent thermal stability of >1000°C

Main Challenges for Next-Gen Chloride-TES

1st challenge: Severe corrosion of molten chlorides

Nitrate-TES cost: 20-33 \$/kWh_{th} Chloride-TES with Ha 230 hot tank: 58\$/kWh_{th} Estimated Chloride-TES with SS hot tank: ~15\$/kWh_{th}

2nd challenge: Affordable structural materials

- Severe corrosion of alloys in molten chlorides due to corrosive impurities (e.g., OH⁺) formed by hydrolysis ٠
- Ni-based alloys needed for hot tank if corrosion control is not achieved \rightarrow High TES cost ٠
- Fe-based alloys used for hot tank under successful corrosion control (Chloride TES-cost ~15\$/kWh_{th}) ٠

M. Mehos et al. NREL/TP-5500-67464, 2017. *Target of DOE: Garcia-Diaz BL, et al. J.S.C. acad. sci.. 2016; 14(1): 4. C. Turchi et al. NREL/TP-5700-79323, 2021.

R&D of Chloride-TES at DLR

R&D of Molten Salt TES at DLR

R&D from material to system level

- Materials: focusing on nitrate/nitrite salts and chloride salts
- Upscaling and component testing: salt purification, corrosion control; Molten salt pump, HX, ...
- System: Molten salt TES used in CSP, Carnot battery, ...

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

2 Proposed Corrosion Mechanism

SS 310 in MgNaK chloride (700°C, 500 h)

- Large amount of Mg and O detected in corrosion layer
- MgCr₂O₄ and MgO detected in oxides on surface

Corrosion mechanisms proposed by DLR:

- Cr dissolved preferentially
- Corrosion is driven by impurities mainly <u>MgOHCI</u>

- Corrosive impurities: H₂O, O₂, HCI, MgOHCI (high solubility in molten chlorides)
- Corrosion products: MgCr₂O₄, MgO, CrCl₃
- Corrosion control by controlling concentration of impurities

W. Ding, et al., SOLMAT, 2018, 184: 22–30.

5 Mg Corrosion Inhibitor – Breakthrough by DLR

- Salt purified with Mg at 700°C in a patented process*
- Static immersion tests in purified molten salt at 500-800°C under Ar (up to 2000h): Almost no corrosion layers and Cr-depletion of Fe-based steels were observed
- Corrosion rate based on microstructural analysis (SEM) and mass loss: <15 μm/year for SS 310 and In 800H at 700°C; <15 μm/year for P91 at 500°C
- Breakthrough*: Experimental proof that <u>Fe-based steels</u> reach the target of <15 μm/year at 500 and 700°C

5 Mg Corrosion Inhibitor –

Competitive low TES-cost based on molten chlorides and Fe-based steels

- Commercial Nitrate-TES cost estimated by NREL: 20 to 33 \$/kWh_{th}
- Estimation cost of chloride-TES with insulating fire bricks (IFB) or Ha 230 as hot tank by NREL (corrosion control not achieved): <u>40 to 58 \$/kWh_{th}</u>
- Competitive low cost of chloride-TES using Febased steels estimated by DLR (corrosion control achieved): <u>17 to 37 \$/kWh_{th}</u>

Ha: Hastelloy for hot tank SS: stainless steel for hot or cold tank CS: Carbon steel for cold tank

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

Process Upscaling of Chloride-TES

Achieved

Materials research with <1 kg salt: corrosion control, structural materials pre-selection, ... (TRL 1-3)

Ongoing

Upscaling with ~100 kg salt: salt purification and corrosion control loop tests, structural materials selection (TRL 4-5)

Pilot plant with ~100t salt & Component testing (TRL 6-7)

Target

Industryapplication (TRL 8-9)

DLR seeks industrial partners for upscaling

Molten Chloride Test Facility (MOCTEF) of DLR

- Under construction and will be operation in the starting of 2025
- Two test units: one for salt purification, one for loop tests close to conditions in real applications.
 - ~100 kg MgCl₂-NaCl-KCl is used
 - Designed test temperatures >700°C
- **Highlights**: patented corrosion control system, salt and gas phase in-situ analysis, ...

Corrosion Test of DMV 310N in Purified Salt at 800 °C

- Pre-test*: 500h static immersion test at 800°C in salt purified with MOCTEF salt purification unit
- Corrosion rate via mass loss: < 50 μm/year
- Chromium depletion depth ~ **10** μm (mainly at crystal boundaries)
- 2000h static immersion test at 800°C is ongoing, while loop test in MOCTEF at >700°C is planned.

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

DLR Molten Salt Products/Services for Security Controls

Qualification of Product Developments

All the molten salt products/services

- to be qualified in pumped loop with TESIS or MOCTEF (MOlten Chloride TEst Facility, in building)
- then licensed to industries or distributed via DLR Spin-Offs

Development utilizes experience from continuous operation of the DLR *Test facility for thermal energy storage in molten salts* (TESIS) with approx. 100 tones of nitrate salt since Jan. 2019

Institute of Engineering Thermodynamics, Department Thermal Process Technology - This document and the information contained therein are confidential and must only be used as contractually agreed.

Corrosion Control by DLR Molten Salt Products & Services

Corrosion control achievements with DLR molten salt products/services

- Corrosion rate (CR) of Febased alloys <30 µm/year at extreme high temperatures
- Ensuring safe operation of molten salt systems in designed lifetime

Institute of Engineering Thermodynamics, Department Thermal Process Technology - This document and the information contained therein are confidential and must only be used as contractually agreed.

SALTOpower

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Dr. Wenjin Ding, Wenjin.Ding@dlr.de Dr. Thomas Bauer, Thomas.Bauer@dlr.de

please feel free to contact us for joint developments of sensor technology!

Thank you for your attention!

Evora, 12.-14.11.2024