European Facility on Molten SALT technologies TO power and energy system applications GA Number: 101079303 European Research Executive Agency REA.C3

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Funded by the European Union

Fast Track School #3

Molten Salt technologies and energy system applications

Evora, 12.-14.11.2024

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

SALTOpower

Wenjin Ding, Thomas Bauer

Development and potential market launch of new molten salt technologies

Evora, 12.-14.11.2024

Contents

• Motivation

- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

Applications of Molten Salt Technologies

= Commercial applications = under demonstration

Next-Gen CSP Plants under R&D

Gen3 CSP (Next-Gen CSP) of DOE SunShot 2030 since 2018 Three pathways under R&D:

-
- Liquid pathway (molten salt/liquid metal)
-

DOE CSP Target in 2030:

baseload CSP (≥12 hours of

storage)

2030 CSP Scenarios to Achieve LCOE of 5¢/kWh

Compared to Benchmark 2018, Table IV. Benchmark parameters for a 100 MW CSP system with 14 hours thermal storage.³⁶ main achievements are required for the target LCOE of 5¢/kWh,

- Higher power-cycle efficiency **we are all asset thermal power** $(240\% , better \geq 50\%)$
- Lower Power block $\cos t$ (\leq solar field $\cos t$ \$900/kW)
- Lower solar field $cost \leq $70/m^2$ site preparation cost $$16/m^2$
- Lower thermal energy storage Tower and receiver cost (TES) cost (≤ \$15/kWh)

If higher power-cycle efficiency is Levelized capacity factor achieved

solar field and thermal storage are acceptable

Compared to Bertemant 2016,

main achievements are required for

the target LCOE of 5¢/kWh,

• Higher power-cycle efficiency

(240%, better 250%)

• Lower Power block cost (\leq

\$900/kW)

• Lower solar field cost (\leq 2018 2030 2030 2030 Benchmark^{37,38} Low-Cost **Balanced High-Performance** $37%$ 40% 50% 55% 491 MW_{thermal} 730 MW_{thermal} 675 MW_{thermal} 540 MW_{thermal} $$1330/kW_{ac\text{-}cross}$ $$700/kW_{ac\text{-}cross}$ $$900/kW_{ac\text{-}cross}$ $$900/kW_{ac\text{-}cross}$ $$140/m^2$ $$50/m^2$ $$50/m^2$ $$70/m^2$ Site preparation cost $$10/m^2$ $$10/m^2$ $$10/m^2$ $$100/kW_{thermal}$ $$120/kW_{thermal}$ $$137/kW$ _{thermal} $$120/kW_{thermal}$ $$22/kWh_{thermal}$ $$10/kWh_{thermal}$ $$15/kWh_{thermal}$ $$15/kWh_{thermal}$ \$9/kW_{thermal}-yr \$6/kW_{thermal}-yr \$7/kW_{thermal}-yr \$7/kW_{thermal}-yr 68.9% 69.2% 70.7% 71.0% 5.0 ¢/kWh $9.8 \cdot$ /kWh 5.0¢/kWh 5.0 ¢/kWh

Target in 2030: LCOE (≤5 ¢/kWhe) for baseload CSP

https://www.energy.gov/eere/solar/articles/2030-solar-cost-targets

Molten Chloride TES for Advanced Thermal Power Plants

Turchi, Craig. "Concentrating solar power: current cost and future directions." Colorado: National 32 (2017).

• Advanced thermal power plants (ATPP) like Next-Gen CSP: advanced power cycle (e.g., $SCO₂$ Brayton) with higher effic. >50%

 \rightarrow higher turbine inlet temperature ≥700 °C \rightarrow higher TES temperature >700 °C

- $\,$ But state-of-the-art commercial Nitrate-TES: $\rm NaNO_3$ -KNO $_3$ 60-40 wt.% (Solar Salt), limited to 565 °C by thermal decomposition
- Chloride-TES with operating temperature of >700 °C with excellent thermal stability of >1000°C

Main Challenges for Next-Gen Chloride-TES

1st challenge: Severe corrosion of molten chlorides and all ^{2nd} cha

Nitrate-TES cost: $20-33$ \$/kWh_{th} Chloride-TES with Ha 230 hot tank: 58\$/kWh_{th}
Estimated Chloride-TES with SS hot tank: ~15\$/kWh_{th}

2nd challenge: Affordable structural materials

- Severe corrosion of alloys in molten chlorides due to corrosive impurities (e.g., OH⁺) formed by hydrolysis
- Ni-based alloys needed for hot tank if corrosion control is not achieved \rightarrow High TES cost
- Fe-based alloys used for hot tank under successful corrosion control (Chloride TES-cost ~15\$/kWh_{th})

M. Mehos et al. NREL/TP-5500-67464, 2017. $*T$ arget of DOE: Garcia-Diaz BL, et al. J.S.C. acad. sci.. 2016; 14(1): 4. 8

R&D of Chloride-TES at DLR

R&D of Molten Salt TES at DLR

R&D from material to system level

-
- control; Molten salt pump, HX, …
-

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

2) Proposed Corrosion Mechanism **Proposed Corrosion Mechanism**

SS 310 in MgNaK chloride (700°C, 500 h)

Ar sweep gas

-
- $MgCr₂O₄$ and MgO detected in oxides on surface

Corrosion mechanisms proposed by DLR:

- Cr dissolved preferentially
- Corrosion is driven by impurities mainly MgOHCl

- solubility in molten chlorides)
- Corrosion products: $MgCr_2O_4$, MgO, CrCl₃
Corrosion control by controlling concentration of
- impurities

W. Ding, et al., SOLMAT, 2018, 184: 22–30.

Mg Corrosion Inhibitor – Breakthrough by DLR 5) Mg Corrosio

-
- layers and Cr-depletion of Fe-based steels were observed
-
- 800H at 700°C; <15 µm/year for P91 at 500°C
Breakthrough*: Experimental proof that Fe-based steels reach the target of <15 µm/year at 500 and 700°C

Mg Corrosion Inhibitor – 5

Competitive low TES-cost based on molten chlorides and Fe-based steels

- **Others** Commercial Nitrate-TES cost estimated by NREL: Allorides and Fe-based steels
• Commercial Nitrate-TES cost estimated by NREL:
• Estimation cost of chloride-TES with insulating fire 20 to 33 \$/kWh_{th}
- $\frac{\text{ss}}{\text{cs}}$, $\frac{\text{ms}}{\text{cs}}$, $\frac{\text{ss}}{\text{cs}}$, $\frac{\text{cos}}{\text{cs}}$ (corrosion control not achieved): <u>40 to 58 \$/kWh_{th}</u> Estimation cost of chloride-TES with insulating fire **• Commercial Nitrate-TES cost estimated by NREL:**

• Commercial Nitrate-TES cost estimated by NREL:

• Estimation cost of chloride-TES with insulating fire

• bricks (IFB) or Ha 230 as hot tank by NREL

(corrosion contro bricks (IFB) or Ha 230 as hot tank by NREL
	- CS Purified+ N₂) Competitive low cost of chloride-TES using Febased steels estimated by DLR (corrosion control achieved): 17 to 37 \$/kWh_{th}

Ha: Hastelloy for hot tank DLR SS: stainless steel for hot or cold tank CS: Carbon steel for cold tank

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

7 Process Upscaling of Chloride-TES The Process Upscaling of Chloride-TES

Achieved Ongoing Target

Target

Materials research with <1 kg salt: corrosion control, structural materials pre-selection, … (TRL 1-3)

Upscaling with \sim 100 kg

ealthcal in unification and

Pilot plant with salt: salt purification and corrosion control loop tests, structural materials
extention (TDL 4.5) testing (TRL 6-7) selection (TRL 4-5)

 \sim 100t salt & **Component**

Industryapplication (TRL 8-9)

Molten Chloride Test Facility (MOCTEF) of DLR

- Two test units: one for salt purification, one for loop tests close to conditions in real applications.
	- ∼100 kg MgCl₂-NaCl-KCl is used
	- Designed test temperatures >700°C
- **Highlights: patented** corrosion control system, salt and gas phase in-situ analysis, …

Corrosion Test of DMV 310N in Purified Salt at 800 °C

-
-
-
-

Contents

- Motivation
- R&D progress in Corrosion Control of Chloride-TES
- R&D progress in Process Upscaling of Chloride-TES
- Potential Market Launch

DLR Molten Salt Products/Services for Security Controls

Qualification of Product Developments

All the molten salt products/services

- to be qualified in pumped loop with **Ilification of Product Developm**
the molten salt products/services
to be qualified in pumped loop with
TESIS or MOCTEF (MOlten Chloride
TEst Facility, in building)
then licensed to industries or
distributed via DLR Spin-O
- then licensed to industries or distributed via DLR Spin-Offs

Development utilizes experience from continuous operation of the DLR Test facility for thermal energy storage in molten salts (TESIS) with approx. 100 tones of nitrate salt since Jan. 2019

Corrosion Control by DLR Molten Salt Products & Services

Corrosion control achievements $\frac{1}{\frac{1}{2}}$ with DLR molten salt with DLR molten salt products/services

- Corrosion rate (CR) of Febased alloys <30 µm/year at substance extreme high temperatures $\qquad \circ \circ$
- Ensuring safe operation of

molten salt systems in

designed lifetime

designed lifetime
 $\frac{5}{8}$
 $\frac{2}{8}$
 $\frac{5}{8}$
 molten salt systems in designed lifetime

SALTOpower Dr. Wenjin Ding, Wenjin.Ding@dlr.de

Dr. Thomas Bauer, Thomas.Bauer@dlr.de

POLR für Luft- und Raumfahrt
 Dr. Wenjin Ding, Wenjin.Ding@dlr.de

Dr. Thomas Bauer, Thomas.Bauer@dlr.de

please feel free to contact us for joint

developments of sensor technology! **Dr. Wenjin Ding, Wenjin.Ding@dlr.de
Dr. Thomas Bauer, Thomas.Bauer@dlr.de**
**ease feel free to contact us for joint
developments of sensor technology!**

Thank you for your attention!

Evora, 12.-14.11.2024