Molten Chloride Salt TES for Next-Generation CSP Plants: R&D Progress in Corrosion Control and Process Upscaling

Dr. Wenjin Ding¹, MSc. Hem Barot¹, Dipl.-Ing. Ralf Hoffmann¹, Dr. Thomas Bauer²

- 1. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany
- 2. Institute of Engineering Thermodynamics, DLR, Cologne, Germany

30th SolarPACES Conference October 8-11, 2024 in Rome, Italy

October 8-11, 2024 Rome, Italy

30th SolarPACES Conference

Contents

- Background of Next-Gen CSP and Chloride-TES
- Corrosion Control of Chloride-TES
- Process Upscaling of Chloride-TES

BACKGROUND OF NEXT-GEN CSP AND CHLORIDE-TES

DLR

Next-Gen CSP Plants under R&D

Gen3 CSP (Next-Gen CSP) of DOE SunShot 2030 since 2018 Three pathways under R&D:

- Solid pathway
- Liquid pathway (molten salt/liquid metal)
- Gas pathway

DOE CSP Target in 2030:

 Low LCOE (≤5 ¢/kWh_e) for baseload CSP (≥12 hours of storage)

2030 CSP Scenarios to Achieve LCOE of 5¢/kWh

Compared to Benchmark 2018, main achievements are required for the target LCOE of 5¢/kWh*

- Higher power-cycle efficiency (≥40%, better ≥50%)
- Lower Power block cost (≤ \$900/kW)
- Lower solar field cost (\leq \$70/m²)
- Lower thermal energy storage (TES) cost (≤ \$15/kWh)

If **higher power-cycle efficiency** is achieved*

 Higher costs of key components and subsystems (e.g. power block, solar field, tower and thermal storage) are acceptable Table IV. Benchmark parameters for a 100 MW CSP system with 14 hours thermal storage.³⁶

Parameter	2018 Benchmark ^{37,38}	2030 Low-Cost	2030 Balanced	2030 High-Performance
Net power-cycle efficiency	37%	40%	50%	55%
Rated thermal power	730 MW _{thermal}	675 MW _{thermal}	540 MW _{thermal}	491 MW _{thermal}
Power block cost	\$1330/kW _{ac-gross}	\$700/kW _{ac-gross}	\$900/kW _{ac-gross}	\$900/kW _{ac-gross}
Solar field cost	\$140/m ²	\$50/m ²	\$50/m ²	\$70/m ²
Site preparation cost	\$16/m ²	\$10/m ²	\$10/m ²	\$10/m ²
Tower and receiver cost	\$137/kW _{thermal}	\$100/kW _{thermal}	\$120/kW _{thermal}	\$120/kW _{thermal}
Thermal storage cost	\$22/kWh _{thermal}	\$10/kWh _{thermal}	\$15/kWh _{thermal}	\$15/kWh _{thermal}
Levelized O&M cost ³⁹	\$9/kW _{thermal} -yr	\$6/kW _{thermal} -yr	\$7/kW _{thermal} -yr	\$7/kW _{thermal} -yr
Levelized capacity factor	68.9%	69.2%	70.7%	71.0%
LCOE (2019 US\$)40	9.8¢/kWh	5.0¢/kWh	5.0 ¢/ kWh	5.0¢/kWh

Target in 2030: LCOE (≤5 ¢/kWh_e) for baseload CSP

*https://www.energy.gov/eere/solar/articles/2030-solar-cost-targets

Molten Chloride Salt TES for Next-Gen CSP Plants

Turchi, Craig. "Concentrating solar power: current cost and future directions." Colorado: National 32 (2017).

- Next-Gen CSP: advanced power cycle (e.g., sCO_2 Brayton) with higher efficiency >50% \rightarrow higher turbine inlet temperature >700 °C \rightarrow higher TES temperature >700 °C
- But state-of-the-art CSP with commercial Nitrate-TES: NaNO₃-KNO₃ 60-40 wt.% (Solar Salt), limited to 565 °C by thermal decomposition
- Chloride-TES with operating temperature of >700 °C with excellent thermal stability of >1000°C

Main Challenges for Next-Gen Chloride-TES

1st challenge: Severe corrosion of molten chlorides

2nd challenge: Affordable structural materials

- Severe corrosion of alloys in molten chlorides due to corrosive impurities (e.g., OH⁺) formed by hydrolysis
- Ni-based alloys needed for hot tank if corrosion control is not achieved → High TES cost
- Fe-based alloys used for hot tank under corrosion control (Chloride TES-cost \$~15/kWh_{th})

R&D of Chloride-TES at DLR

8

100 kg 100 kg 10 mg - 1 kg "... value chain research..." "... value chain research..." Component testing & plot plant Naterial Process technology (Upscaling) Image: State of the sta

R&D of Molten salt TES at DLR

R&D from material to system level

- Materials: focusing on nitrate/nitrite salts and chloride salts
- Upscaling and component testing: salt purification, corrosion control; Molten salt pump, HX, ...
- System: Molten salt TES used in CSP, Carnot battery, ...

CORROSION CONTROL OF CHLORIDE-TES

Proposed corrosion mechanism

SS 310 in MgNaK chloride (700°C, 500 h)

- Large amount of Mg and O detected in corrosion layer
- MgCr₂O₄ and MgO detected in oxides on surface

Corrosion mechanisms proposed by DLR:

- Cr dissolved preferentially
- Corrosion is driven by impurities mainly <u>MgOHCI</u>

- Corrosive impurities: H₂O, O₂, HCI, MgOHCI (high solubility in molten chlorides)
- Corrosion products: MgCr₂O₄, MgO, CrCl₃
- Corrosion control by controlling concentration of impurities

W. Ding, A. Weisenburger, et al., SOLMAT, 2018, 184: 22-30.

Mg Corrosion Inhibitor – Breakthrough by DLR

- Salt purified with Mg at 700°C in a patented process*
- Static immersion tests in purified molten salt at 500-800°C under Ar (up to 2000h): Almost no corrosion layers and Cr-depletion of Fe-based steels were observed
- Corrosion rate based on microstructural analysis (SEM) and mass loss: <15 μm/year for SS 310 and In 800H at 700°C; <15 μm/year for P91 at 500°C
- Breakthrough*: Experimental proof that <u>Fe-based steels</u> reach the target of <15 μm/year at 500 and 700°C

Q. Gong, T. Bauer, W. Ding, et al., Applied Energy, 324, 119708 (2022) Q Gong, T Bauer, W Ding, et al., SOLMAT, 253, 112233 (2023)

5

Mg Corrosion Inhibitor –

Competitive low TES-cost based on molten chlorides and Fe-based steels

Q. Gong, W. Ding, et al., Applied Energy (2022).

- Commercial Nitrate-TES cost estimated by NREL: 20 to 33 \$/kWh_{th}
- Estimation cost of chloride-TES with insulating fire bricks (IFB) or Ha 230 as hot tank by NREL (corrosion control not achieved): <u>40 to 58 \$/kWh_{th}</u>
- Competitive low cost of chloride-TES using Febased steels estimated by DLR (corrosion control achieved): <u>17 to 37 \$/kWh</u>th

Ha: Hastelloy for hot tank SS: stainless steel for hot or cold tank CS: Carbon steel (or similar price alloy like P91) for cold tank

PROCESS UPSCALING OF CHLORIDE-TES

CA.

5

DLR

7 Process Upscaling of Chloride-TES

Achieved

Ongoing

Materials research with <1 kg salt: corrosion control, structural materials pre-selection, ... (TRL 1-3)

Upscaling with ~100 kg salt: salt purification and corrosion control loop tests, structural materials selection (TRL 4-5)

Target

Pilot plant with ~100t salt & Component testing (TRL 6-7)

Industryapplication (TRL 8-9)

DLR seeks industrial partners for upscaling

15

Molten Chloride Test Facility (MOCTEF) of DLR

- Under construction and will be operation in the starting of 2025
- **Two test units**: one for salt purification, one for loop tests close to conditions in real applications.
 - ~100 kg MgCl₂-NaCl-KCl is used
 - Designed test temperatures >700°C
- **Highlights**: patented corrosion control system, salt and gas phase in-situ analysis, ...

7

First results -

Corrosion test of DMV 310N in purified salt at 800 °C

- First test*: 500h static immersion test at 800°C in salt purified with MOCTEF salt purification unit in kg-scale
- Corrosion rate via mass loss: < 50 μm/year
- Chromium depletion depth: ~ 10 μm (mainly at crystal boundaries)
- 2000h static immersion test at 800°C is ongoing, while loop test in MOCTEF at >700°C is planned.

*H Barot, oral presentation in Enerstock Conference 2024, Lyon France, 2024.

Thanks for your Attention!

Dr. Wenjin Ding: Wenjin.Ding@dlr.de

Acknowledgement:

This work is performed in the project funded by DLR **Department of Technology Marketing**: Smart Technologies for Molten Salt Health Assessment in Long-Duration Energy Storage Systems (**SmaTeAs**), and the DAAD-DLR fellowship project.

DLR Smart Technology for Molten Salt Health Assessment (SmaTeAs)

The flyer on DLR molten salt health assessment solutions can be found at DLR exhibition stand!

Promising MgCl₂+KCl+NaCl and its Salt Properties

*W. Ding, et al., SolarPaces **2018**. **C. Villada, W. Ding*, et al. *Solar Energy Materials & Solar Cells*, **2021**, 232(1):111344.

After screening, MgCl₂-KCI-NaCI salt mixture (<0.35 USD/kg, <3 USD/kWh_{th})* is selected for TES at 420-800°C. Following considered:

- Thermal properties of single chlorides,
- Hydrates phases (hygroscopicity to lead severe corrosion),
- Large-scale prices of single chlorides,
- Vapor pressures of single chloride salts (cost of tanks),
- Melting temperatures of eutectic salt mixtures (freezing risk).
- Salt properties for engineering this salt are recommended**.

MgCl ₂ +KCl+NaCl		Recommendation**
Salt composition		Eutectic 47.1-22.7-30.2 mol. % (56.5-21.3-22.2 wt.%)
Min. melting temperature (°C)	T _m	385
Min. working temperature (°C)	T _{min}	420
Max. working temperature (°C)	T _{max}	800
Vapor pressure (kPa)	p_v	700-1000°C: 3.1×10 ⁻⁰⁸ ·e ^{0.0214·T(°C)}
		400-700°C: <0.1, 800°C: 1
Heat capacity (J/g °C)	C _p	1.10 (420-800 °C)
Density (g/cm³)	ρ	1.76-1.60 (420-800°C), 1 .94 – 4.2 \times 10 ⁻⁴ T(°C)
Thermal conductivity (W/(m °C))	λ _I	0.47-0.42 (420-800°C), 0.53-1.32×10 ⁻⁴ ·T(°C)
Dynamic viscosity (mPa s)	η	6.01-1.51 (420-800°C) 27.728 e ^{-0.00364 T(°C)}

C. Villada, W. Ding, et al., Front. Energy Res. 2022, 10:809663.

1

5

Mg Corrosion Inhibitor – Structural materials for cold parts

- Salt purified with Mg at 700°C
- >2 months immersion tests at 500°C: Almost no corrosion layers and Cr-depletion were observed
- Corrosion rate based on microstructural analysis (SEM) and mass loss: <15 µm/year for P91 at 500°C
- Experimental proof that <u>low-cost Fe-based steels</u> reach the target of <15 μm/year at 500°C