MAGNETOSPHERIC FORMATION PROCESSES OF THE DIFFUSE AURORA

DLR

International Space Weather Camp 2024

Katja Stoll

Katia Stoll, Institute for Solar-Terrestrial Physics, July 10, 2024

- 1. [Diffuse aurora](#page-2-0)
- 2. [Plasma waves, wave-particle interactions](#page-5-0)
- 3. [Calculation of wave-induced diffusion coefficients](#page-12-0)
- 4. [Results from event study](#page-13-0)

Different types of aurora

■ Discrete aurora

- Localized regions of intense auroral arcs
- Associated with field-aligned currents and acceleration of the electrons
- Diffuse aurora
	- **Broad regions of lower intensity emissions**
	- **Precipitation of magnetospheric plasma** involving wave-particle interactions

Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center

Diffuse aurora

- Diffuse auroral precipitation = major source of energy input to upper nightside atmosphere
- Latitudinal range and peak energy flux location varies with solar wind conditions and seasonal changes

Adiabatic invariants

- 3 types of cyclic motion for particles trapped in the geomagnetic field:
	- Gyration around magnetic field line
	- Bounce motion between the mirror points
	- Azimuthal drift around the Farth
- **Approximate conservation law** associated with each cyclic motion: adiabatic invariants

DLR

Walt (1994)

Adiabatic invariants

- 3 types of cyclic motion for particles trapped in the geomagnetic field:
	- Gyration around magnetic field line
	- Bounce motion between the mirror points
	- Azimuthal drift around the Farth
- **Approximate conservation law** associated with each cyclic motion: adiabatic invariants
- Electrons with $\alpha > \alpha_{\text{LC}}$ remain trapped
- Electrons with $\alpha < \alpha_{\text{LC}}$ are lost to the atmosphere: precipitation

DLR

Plasma waves

- Waves can interact resonantly with particles: $\omega k_\parallel v_\parallel = \frac{n\Omega_\sigma}{\gamma}, \, \Omega_\sigma = \frac{|q|B}{mc}$ *mc*
- **Describe the effect of wave-particle interactions on the particle distribution by** quasi-linear diffusion
- Diffusion coefficient $D_{\alpha\alpha}$ captures the effects of pitch-angle scattering
- Dominant source population for the diffuse aurora: central plasma sheet electrons of \sim 100 eV $-$ 10 keV

Plasma waves

Violation of first adiabatic invariant by plasma waves \Rightarrow Pitch-angle scattering into the loss cone and precipitation

Jaynes (2018)

Plasma waves

9 Katia Stoll, Institute for Solar-Terrestrial Physics, July 10, 2024

Magnetospheric waves contributing to diffuse aurora

- **Upper- and lower-band chorus waves:** intense on nightside and in the inner magnetosphere, weaker on dayside
- **Lower band chorus waves:** pulsating aurora
- **Electrostatic electron cyclotron harmonic (ECH) waves:** nightside, outer magnetosphere (beyond \sim 8 R_E), pulsating aurora
- **Electromagnetic ion cyclotron (EMIC) waves:** ion precipitation

Electrostatic electron cyclotron harmonic waves

11 Katja Stoll, Institute for Solar-Terrestrial Physics, July 10, 2024

Calculation of ECH wave-induced diffusion coefficients

- Use **Full Diffusion Code** to calculate bounce-averaged momentum and pitch angle diffusion coefficients (Ni et al., 2008; Shprits et al., 2009)
- Solve the hot plasma **dispersion relation** along with the **resonance condition**
- **Detailed information about the magnetospheric waves is required:**
	- Wave power spectrum
	- Wave normal angle distribution
	- Number of resonances
	- **Background magnetic field**
	- Plasma density
	- **Properties of the hot plasma sheet electrons responsible for wave excitation**

ECH wave event on 17 March 2013

ECH wave-induced diffusion coefficients $L = 2.4$ $L = 3.0$ $L = 3.4$ **DLR** $10²$ -10^{-4} $10^1\,$ $\rm E$ / $\rm keV$ 10^{0} $+10^{-5}$ 10^{-1} s^{-1} $10^{-2}\,$ $\left|D_{\alpha\alpha}\right|$ / $+10^{-6}$ $L = 3.8$ $\mathcal{L}=5.0$ $L = 4.4$ $10^2\,$ -10^{-7} $10^1\,$ \to / keV 10^{0} -10^{-8} $10^{-1}\,$

 60

 80

 20

 $\overline{0}$

 40

 α_{eq} / $^{\circ}$

 60

 80

 -10^{-9}

14 Katja Stoll, Institute for Solar-Terrestrial Physics, July 10, 2024

 40

 α_{eq} / $^{\circ}$

 60

 80

 20

 $\overline{0}$

 $\overline{40}$

 α_{eq} / $^{\circ}$

 20

 10^{-2}

 $\overline{0}$

Summary

- Precipitation of electrons with $0.1 10$ s keV produces diffuse aurora
- Resonant wave-particle interactions \Rightarrow Pitch-angle scattering into the loss cone
- \blacksquare Model the process by quasi-linear theory \Rightarrow calculate diffusion coefficients
- Diffusion coefficients depend on several wave and plasma properties
- Calculate event-specific diffusion coefficients