

IEA Task 39 – Quiet Wind Turbines Status of the NACA63018 serration benchmark

Andreas Fischer, Franck Bertagnolio, Oliver Ackermann Lylloff (DTU) Alexandre Suryadi, Michaela Herr (DLR) Daniele Ragni, Tercio Lima Pereira, Salil Luesutthiviboon (TU Delft) Marijn Sanders (University of Twente) Nanyaporn Intaratep (Virginia Tech) Roxana Donner, Gert Herold (TU Berlin)

Outline

- Active Partners
- Objectives
- Wind tunnel models and serrations
- Facility overview
- Update low Reynolds number team
- Update high Reynolds number team
- Conclusions

Active Partners

Image: A state of the state

DTU Wind and Energy Systems

UNIVERSITY OF TWENTE.

Objectives of the benchmark exercise

- Cross compare acoustic measurements in a wide range of aero-acoustic facilities for a low noise aerofoil configuration
- Align testing and post-processing methods
- Identify reason for the scatter of the data and try to reduce it
- Investigate the scalability of the results for small and large facilities
- Provide a data base for model validation
- Provide uncertainty estimates representative for aero-acoustic testing of low noise aerofoil configurations

Two NACA 63₃-018 aerofoils

Low Reynolds number Model

High Reynolds number Model

Serration geometries

Name	S 0	S4	SI
type	Saw-tooth	Saw-tooth	Iron
Height (2h)	0.1 chord	0.1 chord	0.1 chord
Wavelength ()	h	h	h
Flap angle ()	0 deg	4/8 deg	0 deg

DTU Wind and Energy Systems

DTU

Facility and measurement overview (Update with TU Berlin)

Low Reynolds number Facilities																
Facility Test section					Model			Measurements								
Name	Institution	Hard	Kevlar wall (anechoic)	Kevlar wall (integrated)	Open iet	Test section	Max free stream velocity (m/s)	chord length [m]	span [m]	Serrations	aerofoil pressure	wake rake	Surface Microp	Boundary layer (HW, PIV or BLPR)	Parabolic mirror (far field)	Microphone array (far field)
A-Tunnel (AT)	TUD		(4114611610)	(X	0.4 x 0.25/0.7	75/35	0.2	0.4	X	X	X		х	()	X
Aeroacoustic Wind Tunnel Braunschweig (AWB)	DLR				х	1.2 x 0.8	65	0.2		х	X				х	Х
Aeroacoustic Wind Tunnel Facility (AF)	Utwente	Х	Х		Х	0.7 x 0.9	60	0.2	0.7		x		Х			Х
Aeroacoustic Wind Tunnel Berlin	TUB				X	0.33 x 0.4	70	0.2	0.4	X	Х					Х
High Reynolds number Facilities																
Facility			Test section				Model			Measurements						
							Max free	chord			aerofoil	-	Surface	Boundary	Parabolic	Microphone
Nama	Institution	Hard	Kevlar wall	Kevlar wall	Open	Test section	stream	length	span	Connetions	pressure	wake	Microp	layer (HW,	mirror	array (far
Name	TUD	wall v	(anechoic)	(integrated)	jet		120		1.25	v	v		v		(far field)	v neid)
	100			^		1.23 × 1.6	120	0.9	1.25	^	^	^	^	^		^
Low Speed Wind Tunnel Braunschweig (NWB)	DLR	X			X	2.8 x 3.25	90	0.9	2.8	X	X	X			X	X
Poul la Cour Tunnel (PLCT)	DTU	Х	Х			2 x 3	110	0.9	2.0	X	Х	Х		Х		Х
Virginia Tech Stability Wind Tunnel (VTST)	VT	Х	Х			1.8 x 1.8	80	0.9	1.8		Х					Х

Low Reynolds number facilities

Aeroacoustic Wind Tunnel Braunschweig (AWB)

Acoustic Wind Tunnel Facility at Utwente (AF)

A-Tunnel (AT)

Aeroacoustic Wind Tunnel Berlin

Low Reynolds number team update

- TU Berlin has conducted measurements
- DLR has updated data
- Preliminary comparison is in progress

High Reynolds number facilities

Low Turbulence Tunnel (LTT)

Stability Wind Tunnel (VTST)

Poul La Cour Wind Tunnel (PLCT)

Low Speed Wind Tunnel Braunschweig (NWB)

Thursday, 05 December 2024

High Reynolds number Team Aerodynamics

DTU Wind Energy

High Reynolds number Team Acoustics

Baseline vs Serration, CL=0, Classical Beamforming

NWB / DTU / VT, Trip 5/5

Baseline vs Serration, CL=0, CLEAN-SC

Baseline vs Serration, CL=0.5, Classical Beamforming

NWB / DTU / VT, Trip 5/5

Baseline vs Serration, CL=0.5, CLEAN-SC

NWB / DTU / VT, Trip 5/5

area:

 δ^* : suction side displacement thickness (XFOIL)

<u>NWB</u>: Classical beamforming after BGN removal

DTU: Classical beamforming

Noise Reduction, CL=0.5

Source power integration

area:

 δ^* : suction side displacement thickness (XFOIL)

<u>NWB</u>: Classical beamforming after BGN removal

DTU: Classical beamforming

Conclusions

- New high quality validation data for Reynolds numbers up 6 million and Cl = 0.5
- Maximum deviation of the SPL below 3 dB using delay and sum beamforming, but better in a large frequency range
- Clean-SC further decreases deviations
- Scalability of the noise reduction through serrations
- TU Berlin joined the benchmark team (now 6 institutions)
- New participants are welcome
- The teams is working towards a (or several) publications

Funding sources

- The current work is part of Task 39 "Quiet Wind Turbine Technology", an initiative within the Technology Cooperation Programme (TCP) by the International Energy Agency (IEA).
- The authors would like to thank the German Federal Ministry for Economic Affairs and Climate Action (BMWK) for supporting the operation of this task.
- The authors would like to thank the Danish Energy Agency for funding the participation of the Technical University of Denmark in the IEA Task 39 under the programme "Energiteknologiske Udviklings- og Demonstrationsprogram (EUDP)", Journal number 134-21022.