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Abstract— MoRC is a high-performance modular robot con-
troller based on the Functional Mock-up Interface (FMI)
standard. The goal is to control any (industrial) robot with
electrical drives using a customizable vendor-agnostic control
cabinet and an innovative, self-developed software architecture
based on exchangeable multi-rate real-time control compo-
nents with standardized interfaces. On the hardware side, the
use of EtherCAT (Ethernet for Control Automation Technol-
ogy) allows connecting a freely selectable number of COTS
(commercial off-the-shelf) electrical drives and sensors. On
the software side, this is matched with exchangeable control
software modules based on the FMI standard. Those can
be interconnected for forming user-defined multi-rate control
structures which can be executed as synchronized real-time
threads on a central Linux-based multi-core computing unit.
That unlocks additional computational potential for advanced
high-frequency control algorithms. Control structures can be
switched at runtime to handle highly diverse control tasks.
This paper presents the architectural concepts as well as first
experiments on an industrial robot testbed.

I. INTRODUCTION

While there exists a plethora of (open-source) software
packages for robotics, often driven by academic research
groups interested in autonomous robots, anthropomorphic
robots, and artificial intelligence (AI), the market for indus-
trial robotics is characterized by proprietary solutions. As
a result, the achievable control functionality and available
interfaces in general depend on the specific manufacturer. In
particular, low-level access to the robot’s software, essential
for research and development of new control and HMI
concepts, is generally not possible. Safety challenges, arising
from dynamic experiments with heavy industrial robots,
further hinder the availability of open controller possibilities
for such systems.

The idea behind our Modular Robot Controller (MoRC) is
creating a vendor-agnostic, highly flexible, robot controller
for industrial robots. In order to achieve that goal two main
areas are addressed and presented in this paper: In terms of
hardware, a “Drop-in replacement” for proprietary control
cabinets has been designed and implemented, housing com-
mercial off-the-shelf (COTS) power electronics components,
safety systems and a (for a robot control cabinet) potent
computer. This computer runs the new software framework
responsible for the real-time control of the robot connected
to the cabinet.
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Another new concept in this paper is the software frame-
works ability to exchange complete control architectures
at runtime to accommodate different control concepts with
heavily varying structures, sample rates and interfaces (e.g.
classical PTP movements vs. adaptive force controlled move-
ments). By default, an exchangeable dynamic robot model is
integrated in the MoRC software for system definition and
seamless switching between simulated and real robot move-
ments. This enables the user to safely test new controllers or
software components in a virtual commissioning process.

ROS is a popular open-source software framework for
robot applications[1], [2]. While the initial ROS had no
direct support for real-time applications, the ROS2 revision
removed that limitation. Nevertheless, the main focus of ROS
is not high-frequency real-time control, but rather being a
middleware suite for more high-level functionality. Another
well-known, general-purpose robotic software package with
determined focus on real-time capability is OROCOS [3],
[4]. Most projects using OROCOS rely on vendor-provided
interfaces which usually include frequency and access limi-
tations. While OROCOS uses its own component definition,
MoRC leverages the widely used Functional Mock-up Inter-
face (FMI) standard [5] for that purpose.

FMI is an open standard that defines a container and
an interface to exchange simulation models. The model
container (Functional Mock-up Unit, FMU) implementing
FMI is distributed as one ZIP archive file containing all rel-
evant files. FMUs may have inputs, outputs and parameters,
therefore typical “control blocks” can be wrapped as FMU.
Today, more than 170 tools can export or import FMUs
[6]. Leveraging FMUs within MoRC opens up an interesting
pool of tools which can be used for developing the control
algorithms.

The necessity for multi-rate control systems arises because
various sensors and control effectors need to be sampled
at different rates, or for performance enhancement on finite
computational resources (see for example [7], [8]). Forget
et al. [9] proposed a language for programming multi-rate
control systems which extends formal approaches known
from clocked synchronous languages [10]. Similar to this
approach, the MoRC software supports the execution of con-
current, synchronized software processes, based on clocked
synchronization of communicating multi-threaded FMUs.



Fig. 1: MoRC hardware overview

II. HARDWARE

A. Conceptual Overview

Fig. 1 gives a conceptual overview of the system. The left
side depicts the hardware manifestation of the robot con-
troller – a control cabinet built from COTS components. In
particular, it consists of a number of electrical drives (power
electronics) and a safety programmable logic controller
(PLC) for achieving conformance with safety regulation for
industrial robots (e.g., relevant standards [11]). EtherCAT
(Ethernet for Control Automation Technology) [12] is used
as real-time communication backbone. It connects the drives,
PLC and sensors with a central computing unit (PC with real-
time Linux) and is open for adding additional components,
e.g., sensor devices. The right side shows the controlled sys-
tem. The robot controller is vendor-agnostic, it is adaptable
to any industrial robot with reasonable effort. Actually, it is
not limited to industrial robots, but may also be a reasonable
choice for controlling other motion device systems.

B. Control Cabinet

A rendered image of our control cabinet prototype is
shown in Fig. 2. The control cabinet contains six Bosch
IndraDrives, each connected as an independent EtherCAT
slave. The used designs are compact single-axis converters.
By adding more converters, additional motors can be con-
trolled. Other components which are connected as EtherCAT
slaves are the Beckhoff IO terminals with coupler, providing
the possibility of integrating additional sensors. An additional
safety communication module from Pilz with safety rated
IO terminals is installed for emergency switches and other
external safety devices. The connectors for the in- and
outgoing lines for power and data are subsumed as external
connectors in the rendering at the bottom of the cabinet. The
mains power supply connection is switched by the ON/OFF-
switch and the drives’ power can be cut by individual circuit
breakers.

Due to the flexibility of EtherCAT it is simple to add slave
devices, e.g., for attaching and integrating additional sensors
and robot accessories. Bus interfaces on the underside of the
cabinet can expand the existing system as desired with addi-
tional components. A Linux-PC is used as central real-time
computing unit. The PC uses two Ethernet interfaces, one is
reserved for real-time EtherCAT communication, the other is
connected to a standard Ethernet network for communicating
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Fig. 2: Rendering of MoRC control cabinet with component
designations, Real-Time PC not shown

TABLE I: MoRC Control Cabinet Technical Data

Name Value

Dimensions 600mm×1100mm×450mm
Mass 125kg
Supply voltage 200−500V
Supply current 32−64A
Drive 1-3 14kW
Drive 4-6 4.8kW

with the operator PC which is used for programming and
displaying visualization and plotted data.

C. Electrical Drives

The motor drives are capable of operating a wide variety of
motor types. Commutation is specified and monitored by the
drive. Built-in multi-encoder interfaces or additional plug-in
cards can read almost all types of feedback from the robot.
This makes it possible to operate common commercially
available motors on the market. In addition, included safety
features monitor motor data or mechanical components.
Table I lists the operating range of the currently used drives.

D. Safety

Independently from the MoRC software a safety PLC
monitors the connected robot cell safety devices including
door and enabling switches. This system is variably pro-
grammable and can be individually combined with other sys-
tems on a modular basis. Communication takes place in two
different ways. Either via EtherCAT or via safely connected
relays. Individual safety components in the modules can thus
exchange data or commands in parallel. Functions of the
electrical drives like Safe-Torque-Off, Safe-Brake-Control
and Emergency-Stop are triggered in emergency operation.
In addition, a brake relay is integrated, which safely closes
all brakes. This is usually necessary if the connected robot
has to be stopped in the event of a fault.



III. SOFTWARE

The purpose of the MoRC Software is to configure and
orchestrate the operations of all connected hardware compo-
nents. It provides tools for programming the robot motion,
integrating different kinds of controllers and supporting fea-
tures such as real-time monitoring and visualization, logging
and data recording.

The fundamental software structure of MoRC comprises
four core modules: The EtherCAT module encapsulates
communication with the connected devices. The systems
behavior, i.e. how sensors and actuators are connected, is
defined by a task-specific collection of real-time components,
in a base module called Assembly1. The components of the
controller are configured and connected in the Assembly
module by Lua scripts. The Engine module contains both
the EtherCAT and the Assembly module, providing a real-
time execution context as well as facilitate the online change
of the currently running Assembly. Parallel to the Engine
module the Program Interpreter executes user-defined high-
level robot programs.

An example instance of the MoRC software structure is
depicted in Fig. 3.

A. EtherCAT module

The EtherCAT module has one instance of the Bus class
and one Device class instance for each connected device.
Basic EtherCAT functionality including drivers is provided
by the IgH EtherCAT Master [13]. Every device type needs a
dedicated Device class implementation of its behavior. This
class has to be implemented only once per generic device
type. The universal class for drives e.g. encapsulates handling
of the device state machine in accordance to the CiA 402
protocol [14], which is accessed via CANoverEtherCAT,
eliminating the need for other parts of the MoRC software
to know and consider these details.

Another component of the EtherCAT module is the Safety
PLC class, responsible for interfacing with corresponding
hardware devices. A setup-specific program runs on the
safety PLC, monitoring conditions such as emergency switch
status, robot cell door closures, MoRC software pulse sig-
nals, and motor safety. EtherCAT facilitates data exchange
between the MoRC software (Safety PLC class) and the
safety PLC, with the PLC program remaining unchanged
after commissioning. This information can be leveraged to
provide users with insights into why the safety system may
be inhibiting operation.

B. Assembly module

Fig. 3, depicts an assembly with typical components for
industrial robot control. It includes a trajectory generator for
shaping robot paths and a feed-forward controller, incorpo-
rating robot and payload models, to compute target values
for a feedback control component. This component manages
motor torques and integrates sensor feedback, aligning with

1not to be confused with the low-level programming language
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Fig. 3: Software architecture sketch showing an example
instance with a typical control structure used in industrial
robots, components printed with bold letters are updated by
their own thread. Arrows indicate signal flow, dashed arrows
indicate acyclic data transfer

the concept of “Behavioral Control” proposed by Siciliano
et al. in [15]. In contrast to the approach in [16], a MoRC
Assembly’s structure remains flexible until instantiation, with
just its components initially existing in binary form, repre-
senting a slightly higher-level abstraction.

Assemblies are described by Lua scripts and can be ex-
changed during runtime between the commands of the robot
program. This allows for highly flexible control structures
and eliminates the need to recompile the MoRC software.
This modular approach supports experiments with single
components without compromising safety.

Swapping assemblies at runtime enables specialized robot
capabilities, by optimizing control structures as separate
assemblies for each functionality. One example is the switch
between position and force control scenarios: initially, a
high-precision position-based controller can be employed for
object approach, transitioning to a force control structure for
object handling.

As interface definition between components MoRC em-
ploys the FMI Standard. FMUs in this model feature named
inputs, outputs, and parameters, supporting data types like
boolean, integer, real, or string. They undergo a defined life
cycle, including creation, initialization, periodic updates, and
eventual destruction. During the update phase, components



compute fresh output values based on inputs, adhering to
a predetermined time grid configured during component
creation.

In the exemplary assembly shown in Fig. 3, all components
except for Data Recorder and Robot are currently FMU com-
ponents implemented using the FMI4CPP library [17]. FMUs
are used to integrate mechanical models and controllers
which are created in languages more specialized for the
task than C++ like Modelica or Matlab Simulink. They are
created mostly from DLR Modelica libraries (e.g. [18][19])
serving as a know-how backbone for robot control and path-
planning. Such model libraries condensate knowledge and
ease the fast development of new components. However, it
is also possible to write FMUs directly in other languages
such as C/C++.

The Robot component demonstrates the practical use of
FMUs as carriers of model knowledge. This component is
defined with a Lua script called Robot Definition Script and
initialized during startup with a specific FMU, describing the
robot cell. Contrary to classic approaches, this FMU not only
contains the machine data of the robot, but provides complete
semantics of the robot cell. This encompasses information
as sensor and actuator placements as well as a model of the
plant, tool and workpiece. This makes it possible to switch
between either a simulation of the robot program or the
actual control of the real robot, allowing a risk-free virtual
commissioning of new robotic applications.

This makes the Robot component the translator between
real world and model world as indicated by this component
being the only one with connections to the EtherCAT module
in Fig. 3.

A Monitoring FMU oversees the completion of the current
command and detects unsafe states of the robot, prompting
termination of the current assembly.

One of the components is a Data Recorder, collect-
ing selected system outputs and stores them in an HDF5
file with relevant metadata. These measurements form the
foundational dataset for system identification and controller
optimization.

The pre-compiled components comprising an assembly
can be selected by the user with a Lua script. Utilizing
the sol2 [20] Lua interface, components are instantiated,
configured, and linked accordingly.

Each component is assigned an appropriate sampling time,
typically guided by the frequencies in Fig. 3. Assembly
parameters rely on data stored in the Engine’s Assembly Data
database, including information like initial motor angles and
target positions for specific maneuvers by higher-level mod-
ules. The content and structure of the database is assembly-
specific.

After the current robot program command and its corre-
sponding assembly finishes, components can send relevant
data to the Assembly Data database.

C. Engine module

As shown in Fig. 3, the Engine module ensures the correct
execution of both the Assembly and EtherCAT modules. Its
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Fig. 4: Sequence diagram of MoRC component execution
model showing how the two threads Coordinator and Up-
dater use the components functions to achieve a synchro-
nized update
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Fig. 5: Time grid of thread synchronization

main function is to coordinate the real-time execution as well
as starting and stopping assemblies.

To fully utilize the processing power of modern CPUs,
MoRC adopts a parallel, multi-rate approach to component
execution. Each component operates within its dedicated
Updater thread, all of which are coordinated by a central
Coordinator thread.

In the MoRC system, the Coordinator thread within the
Engine is the sole thread directly connected to the system
clock. All other threads achieve synchronization by logically
aligning with this Coordinator thread.

The task of the Coordinator is to collect all data and
synchronize the Updater threads. It collects all output data of
currently finishing Updater threads and sends it to connected
components. Depending on the sample time of the compo-
nent, it signals the execution of the waiting Updater. The
Updater signals completion of the update to the Coordinator.
When all components relevant to the current time step are
done, the Coordinator waits until it is time to start the next
cycle.

For a visual representation of the interaction between
Coordinator and Updater threads for a single component,
please refer to Fig. 4.

Because the Coordinator thread has the same sample time
of the fastest component, i.e. the EtherCAT module, and
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Fig. 6: Illustration of MoRC program sequence with time
progressing from left to right

needs to process the data transfer for all components, their
sample times have to be multiples corresponding to the bus
frequency.

To allow the assembly to be exchanged the Coordinator
and Updater mechanism is two-tiered with the Assembly
being a component itself. The Updater thread of the Assembly
is in turn the Coordinator for all components in the Assembly
having their own Updater threads. This hides the variability
in the number of components to update between Assemblies
from the Engine Coordinator.

As the startup duration of assemblies can vary, the Engine
Coordinator suspends the update process for the current as-
sembly. In the meantime it continues to update the EtherCAT
module. This approach removes the necessity for a field bus
restart upon the commencement of each new assembly.

Upon successful initialization of the assembly, its threads
synchronize with those already in operation, as depicted in
Fig. 6. The initiation and setup of assemblies are managed
by the Engine, but the determination of which assembly to
execute at any given time is determined by the Program
Interpreter.

D. Program Interpreter module
To accommodate the integration of advanced algorithms

such as sophisticated planners into assemblies while address-
ing their computational demands, MoRC offers a Program
Interpreter. This interpreter operates asynchronously, without
real-time constraints. This architectural distinction is visually
represented in Fig. 3 by the dashed line connecting the
Program Interpreter and the Engine, as well as the acyclic
data exchange via Assembly Data. The Program Interpreter
utilizes Lua scripts with added custom tailored robot com-
mands (example in [18]), allowing for the flexible definition
of new commands from accompanying Lua libraries.

The robot language uses the skill model with precondition
check, execution and evaluation as described in [21] as a
basis for command definitions. Each command is a Lua
function with included hooks for precondition check and
evaluation. Every robot command corresponds to a dis-
tinctive assembly, to be loaded upon the execution of the
command. New commands can easily be added, to e.g. inte-
grate new Assemblies, facilitating convenient testing of new
robot behaviors along proven commands. Commands can be
provided either from a file or via a command line interface,
enabling direct user engagement in program execution, often
referred to as ’Read-Eval-Print Loop’ (REPL).

When commands, along with their corresponding assem-
blies, are executed sequentially, the resultant program se-
quence closely resembles the depiction in Fig. 6.

Fig. 7: Experiment setup with KUKA KR16 and laser tracker.
Laser probe is attached to the 16kg load facing the laser
tracker in the background.

The Engine startup is focused on preparing the hardware
devices for operation. When the Engine is ready, the Program
Interpreter begins with the first command starting the first
assembly. After assembly 1 has finished, there is a short
period without an assembly running until the next command
is read and the next assembly is prepared and initialized.
Once there are no more commands all modules are stopped
and the MoRC program awaits new user input.

IV. HARDWARE EXPERIMENTS

After finishing the development of the MoRC software
on a motor testbed, without the mechanical hazards of a
moving robot arm, first experiments have been performed
on a KUKA KR16.

In this testbed, the robot is placed in a safety controlled
cell, where robot movements and dynamic behavior can
be analyzed and optimized. A laser tracker (Leica AT960)
can be used to obtain exact positions of the robots TCP.
The modular architecture of the MoRC software based on
FMU modules allows for a very flexible control framework.
The complexity of these modules can vary and depending
on the computational requirements, the sample rate of the
component can be adjusted. To demonstrate the capabilities
of MoRC an experiment was setup as an example com-
paring two variants for a feed-forward (FF) module. For
the comparison two different assemblies with FMU based
controllers have been evaluated. The first assembly contains
a simple rigid body (RigDyn) feed-forward component. The
rigid body model of the robot contains the full rigid body
dynamics, as well as motor inertia and friction and the load
at the robot TCP.

The second assembly contains an FMU which was de-
signed as an advanced feed-forward component, also con-
sidering the nonlinearity of the powertrain with stiffness and
friction, as well as the structural flexibility of the robot. The
advanced feed-forward controller component is based on the
approximate structural-elastic inverse model (ASIM) design
described in more detail in [22].

Since this was one of the first experiments with MoRC
controlling the KR16 testbed, we can show only some
preliminary results without final tuning and robot calibration.
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(a) Laser tracker data. Cartesian distance adjusted to the same
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(b) Motor angles of axis 1 adjusted to the same final position
converted to link side values.

Fig. 8: Excerpts of experiment data showing end of a 5◦ Point-to-Point (PTP) movement of axes 1, 2 and 3. Movement
starts at 1 s. Final joint angles are [0,−90◦,90◦,0,0,0] according to vendor convention. Maximum load of 16 kg attached.

The focus is on demonstrating initial operation. Separate
assemblies are created for each FF variant, executed one after
the other, allowing the experiment to be done within a single
robot program without restarting the complete MoRC setup.

For the experiment, a simple PTP trajectory was designed
using only kinematic constraints for the acceleration and
velocity. This trajectory is then filtered using a low pass
Bessel filter and the results are fed to both the rigid body
FF component as well as the ASIM component in both as-
semblies. Both FF components compute the resulting desired
motor torques, positions and velocities. These are then used
by the feed-back control component as desired input. For
this first experiment a simple P-PI feedback control module
FMU was used for both.

Using a high end laser measurement system the differ-
ence in the trajectory tracking capabilities between the two
FF approaches is measured. The laser reflector mirror is
mounted at the load of the KR16, near the TCP. Because the
RigDyn does not consider the gear and structural elasticity,
the demand values on the motor side are different compared
to the ASIM. However both use the same low pass filtered
desired link side trajectory. To improve comparability the
motor sided and link sided measurements are adjusted to
the same end position, removing differences because of gear
and structural elastic deformation. For the ASIM FF Fig. 8a
shows a significant decrease of the oscillations immediately
following the robot’s arrival at the target position with the
maximum spike reduced by a factor of around six to under
0.5 mm. In Fig. 8b desired and measured motor angles of
the first axis, which is strained most in the chosen position,
are plotted. The ASIM FF allows the feed-back controller to
settle faster than using the RigDyn FF by reducing excitation
of the robot’s elasticities. Thus the tracking error is improved
on motor as well as link side.

V. OUTLOOK

The new robot controller presented in this paper opens
up new possibilities in (industrial) robotics research. With
the availability of a modular, safe and vendor-independent
control environment for electrical driven systems, scientists
and engineers are enabled to implement new low-level con-
troller architectures, HMI concepts, Industry 4.0 integration
and more. Often overseen aspects as safety and norm confor-
mity are addressed in the controller hardware, so that even
researchers new to the field can work on oftentimes large and
dangerous robot systems. The possibility to change online
between different multi-rate software architectures allows for
very specialized and task-tailored control strategies during
the same robot program run.

Because most software modules are provided as exchange-
able FMUs, a multitude of developer tools can be used. The
use of COTS hardware modules allows to easily integrate
new sensors and tools based on EtherCAT. Since the base
hardware is also build up from COTS parts with standardized
interfaces, upgrades to increase e.g. computational or electric
performance are effortlessly possible. The vendor indepen-
dence also means that a large number of industrial robots are
suitable for the use with MoRC, it even can be adopted and
used for non-robotic test bench setups.

Future work includes updating robot models, adding fea-
tures and comparing MoRC’s control performance to the
vendor cabinet. It is also planned to connect larger robot
types, like the KUKA KR210 or KR500, supporting relevant
research platforms at our institute and exploring the system’s
operational range. On platform level next steps will include
the development of a prototype for a hand terminal and
related programming HMI to improve the ergonomics of
interacting with the robot. This will result in a more complete
system, which might be attractive beyond basic research.
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