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Oneof the very first tasks in launchvehicle design is thepreliminary sizing. It is necessary for furtherdesign choices,

but it shoulddeliver a precise estimate of the launchvehicle’smass andgeometry aspossible.Orbital launch vehicles can

be either expendable or partially/fully reusable and can assume various stage configurations. Finding an optimal

solution under practical constraints is a challenging task, which gives a wide design space for potential future launch

vehicles. Hence, a generalizedmathematicalmodel of a launch vehicle design has been developed and implemented as a

versatile and easilymodifiable programming tool for fast andparametric systemcharacterizationandoptimization.The

model uses several basic parameters useful in describing launch vehicles and introduces some new parameters to

account for reusability. Analytical and semi-empirical correlations are used to determine the overall systemandmission

performance of a launch vehicle for a given reference mission, includingmass and geometry, and calculate the optimal

launcher staging. The implementation of the model also allows coupling with other tools, which forms a design chain

with respect to aerodynamics and trajectory simulation. With this design chain, several launch vehicles have been

modeled and validated, proving the applicability of the method.

Nomenclature

a = orbit semimajor axis, m
e = orbit eccentricity
g0 = standard gravity, m∕s2
h = height, orbit perigee altitude, m
i = orbit inclination, °
m = mass, stage net mass, kg
Isp = specific impulse, s
K = ratio of the core to booster ascent propellant
T = thrust, N
tB = burn time, s
γ = flight path angle, °
Δv = delta-v, m∕s
ε = propellant-based structural index
ζ = stage throttling
Θ = thrust-to-weight ratio
λ = fraction of the core ascent propellant used until booster

detachment
μ = mass ratio
ξ = reusability index
σ = mass-based structural index
φLS = launch site latitude
χv = design delta-v margin
ψ = dead propellant fraction

Subscripts

b = booster

c = core
exh = exhaust
k = kth stage
PL = payload
p = propellant
SL = sea level
s = structure
vac = vacuum
0 = gross (mass)
1 0 = lower virtual stage
1′′ = upper virtual stage

Superscripts

A = ascent
D = descent
d = dry (structural index)
R = residual and reserve
w = wet (structural index)

I. Introduction

AT THE early development stage of a staged orbital launch
vehicle (LV) design project, a tool for preliminary assessment

of its mass, geometry, center of gravity (CoG), and moment of inertia
(MoI), as well as a rudimentary visualization, is needed. This process
is referred to as preliminary launcher design. In recent years, there has
been an increase in interest in reusable LVs, but expendable ones still
remain a sizable portion of the industry. Therefore, such a tool should
account for both possibilities. LVs can assumevarious configurations
(serial, parallel, or mixed-staged) and be composed of various com-
ponents, so the tool should be able to calculate an arbitrary design
with little to no workarounds. However, LV technologies quickly
evolve, which makes it impossible to foresee all the possible design
combinations, and hence a truly versatile tool should also be easily
modifiable and expandable.
Several approaches to the topic of preliminary LV design have

been undertaken so far. Contant [1] applied the multidisciplinary
approach with the financial aspect of a project, focusing on small
reusable LVs. Jentzsch [2] employed a genetic algorithm to optimize
several input parameters of an LV, mainly relevant to propulsion, for
the lowest gross liftoff weight (GLOW) and structural mass. Sippel
[3] developed a tool optimizing an LV in a loop with trajectory; this
tool has recently been used for a comparative analysis of reusable LVs
byWilken and Stappert [4]. Castellini [5] described the optimization
of expendable LVs with extensive analysis of propulsion, geometry,

Received 19 June 2024; accepted for publication 11 November 2024;
published online Open Access 17 January 2025. Copyright © 2025 by DLR
e.V.. Published by the American Institute of Aeronautics and Astronautics,
Inc., with permission. All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the eISSN
1533-6794 to initiate your request. See also AIAA Rights and Permissions
www.aiaa.org/randp.

*Research Scientist, Department of Supersonic and Hypersonic Technol-
ogies; pawel.goldyn@dlr.de.

†Research Scientist, Department of Supersonic and Hypersonic Technolo-
gies; ansgar.marwege@dlr.de.

‡Research Scientist, Department of Supersonic and Hypersonic Technolo-
gies; johannes.riehmer@dlr.de.

§TeamLeader LauncherStability andControllability,Department of Super-
sonic and Hypersonic Technologies; josef.klevanski@dlr.de.

¶Head of Department of Supersonic and Hypersonic Technologies;
ali.guelhan@dlr.de.

Article in Advance / 1

JOURNAL OF SPACECRAFT AND ROCKETS

D
ow

nl
oa

de
d 

by
 D

L
R

 D
eu

ts
ch

es
 Z

en
tr

um
 f

ue
r 

L
uf

t u
nd

 R
au

m
fa

hr
t o

n 
Fe

br
ua

ry
 1

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
36

17
4 

https://orcid.org/0009-0003-7550-5548
https://orcid.org/0000-0002-3912-9114
https://orcid.org/0009-0002-4336-1116
https://orcid.org/0000-0003-4905-5881
https://doi.org/10.2514/1.A36174
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.A36174&domain=pdf&date_stamp=2025-01-22


aerodynamics, trajectory, mass, structure, costs, and risks. Edberg
and Costa [6] published a straightforward algorithm for preliminary
launcher design.
This paper introduces a generalized approach to the preliminary

design of staged orbital LVs, implemented programmatically in
Python as a tool named Adjustable Initial Object-oriented Launcher
Optimisation System (AIOLOS) [7]. The tool heavily uses the object-
oriented paradigm to provide versatility and the ability to model both
expendable and reusable launchers in various configurations, as well
as extendibility, to account for the evolving design ideas. AIOLOS
optimizes the input LV for payload (P/L) by adjusting the initial
assumptions in a loop and seeks a convergent design. The tool
cooperates with the DLR in-house aerodynamics tool Calculation
of Aerodynamic Coefficients (CAC) [8] and the trajectory tool
Staged Rocket Trajectory Optimization and Simulation (STRATOS)
[9] to verify some of the assumptionsmade at the beginning. All three
tools are later described in Sec. III.
An algorithm for preliminary LV design should require as few

assumptions as possible. One of these pieces of information is the LV
mass division into stages, which is represented by their mass ratios μ.
The problem of optimal staging has long been researched; Curtis [10]
has described it for serially staged launchers, whereas Civek-Coşkun
and Özgören [11] have expanded the approach for the general serial
and parallel cases, in this paper collectively referred to as the mixed
staging. This paper generalizes the aforementioned approaches for
possible launcher reusability and develops the method to limit the
required unobvious design assumptions.
The AIOLOS-CAC-STRATOS combination applies a design-

aerodynamics-trajectory loop with employment of the modified
Edberg’s design algorithm. This algorithm has been chosen because
it is straightforward, easily expandable for cases such as reusability,
and applicable to small, medium, and heavy LVs. AIOLOS develops
the algorithm by incorporating the possible reusability of an LV into
the basic mathematical model and considering it at the calculation
of the optimal staging. Hence, it limits the assumptions required from
the designer. It also accounts for mixed staging, thus generalizing the
procedure for various vertically starting configurations. Regarding the
reusability, it considers vertical takeoff and vertical landing (VTVL)
launchers and estimates the descent propellant for this case.
To fully address the problem of the preliminary LV design, its

mathematical foundations have been expanded, including a) establish-
ment of clear definitions for the LV performance parameters, b) gener-
alization of the mixed optimal staging method for reusability, c)
derivation of new dimension- and mass-estimating relations (MERs),
and d) formulas for assessment of the descent anddeadpropellantmass.
The paper first introduces the mathematical model for a general-

ized staged LV in Sec. II by defining its constituent masses. Sub-
sequently, it establishes definitions and formulas for LV parameters
such as structural indices; introduces parameters to account reserve,
residual, and descent propellant; and provides formulas for launcher
mass calculation (Sec. II.B). Then, the optimal staging problem is
described in Sec. II.C, with the applicability of the method of
Lagrange multipliers to the previously mentioned generalized LV
model for serial, parallel, or mixed-staged LVs. The theoretical part
also encompasses the descent propellant mass estimation in Sec. II.D
and formulas for delta-v losses in Sec. II.E. The programming
implementation of the model, as well as the description of the tools
and the design chain, is presented in Sec. III. Finally, the verification
of AIOLOS with real launcher data is shown in Sec. IV.A, and the
input parameter analysis is shown in Sec. IV.B. The derivations of the
formulas from the theoretical part, as well as supplementing tables
and figures, are included in the Appendix.

II. Generalized Launch Vehicle Mathematical Model

In this section, the developed mathematical model for the prelimi-
nary launcher design is presented. This encompasses basic LV mass
and parameter definitions, including adjusted formulas for structural
indices, as well as reusability and dead propellant indices. Then, the
previously defined LV constituent masses are expressed with these
new parameters. Subsequently, the optimal staging problem of a

general launcher is described. Finally, the formulas for descent
propellant and delta-v estimation are presented and discussed.
In terms of this paper, a model of an LV is referred to as a

generalized model if 1) it produces thrust by ejecting its propellant
and hence fulfills Tsiolkovsky equation; 2) its stages’ thrust and
specific impulse remain constant over the course of their flight;
3) it is either expendable or reusable; 4) it consists of N stages in an
arbitrary configuration; and 5) its stages, in turn, are composed of
components stacked one upon another around a shared, main axis.
Furthermore, reusable launchers are considered in the VTVL

configuration. The descent maneuver analyzed in the subsequent
sections is the downrange landing. After the stage separation, it
1) follows the ballistic trajectory; 2) executes the reentry burn to
decelerate and lowers the maximal stagnation pressure and the heat
flux; 3) is subject to aerodynamic braking; and 4) commences the
landing burn until the touchdown.

A. Launch Vehicle Mass Definitions

Amajor part of LV design focuses on its mass distribution, and thus
it is necessary to establish clear definitions of all its constituentmasses.
For both the LVand its stages, the following masses will be defined:
1) Propellant mass mp, which covers the whole flammable sub-

stance, both effective (i.e., used to change the impulse of the LV/
stage) and dead (i.e., not possible or not originally planned to be used,
such as reserve and residual propellant), with constituent masses as
follows: a) ideal ascent propellant mass mA

p; b) ideal descent propel-
lant mass mD

p ; c) ideal total propellant mass mT
p � mA

p �mD
p ; and

d) dead (reserve and residual) propellant mass mR
p .

2) Structure massms, which covers the whole solid construction
of the LV: tanks, engines, gimbals, skirts, etc.
3) PayloadmassmPL, which is understood slightly differently for

the LVas awhole and for each of its stages. In the context of an LV, P/
L is the object to be put in the aimed trajectory; for a stage, however,
P/L means the mass that the stage carries, i.e., the stages above plus
the actual P/L; it is noteworthy that the P/L of the uppermost stage
equals the P/L of the LV.
The mass definitions are illustrated on an exemplary launcher in a

tandem configuration in Fig. 1. Mixed-staged configurations are
described later in Sec. II.C.

Fig. 1 Launch vehicle mass composition for an exemplary tandem
configuration.
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Hence, it follows that, for a general reusable or expendable stage
with residual propellant, the gross mass m0 (including P/L) and net
mass m (without P/L) equal

m0 � ms �mT
p �mR

p �mPL � ms �mA
p �mD

p �mR
p �mPL

(1)

m � ms �mT
p �mR

p � ms �mA
p �mD

p �mR
p (2)

B. Launch Vehicle Parameters

1. Effective Thrust and Specific Impulse

Parameters crucial for launcher performance include Δv, thrust T,
and specific impulse Isp, expressed as

Δv ≜
t1

t0

jT�t�j
m�t� dt � vexh ln μ (3)

T�t� � vexh�t� _m�t� (4)

Isp �
vexh
g0

(5)

where T�t� and m�t� are, respectively, the stage’s thrust and mass as
functions of time; vexh is the exhaust gas velocity of the stage engines;
and g0 � 980;665 m∕s2 denotes the standard Earth gravity.
Moreover, Edberg and Costa [6] evoke a useful approximation for

the effective specific impulse in the atmosphere Isp-eff , which takes
into account the variance in ambient pressure:

Isp-eff �
2

3
Isp-vac �

1

3
Isp-SL (6)

with Isp-vac and Isp-SL denoting the specific impulses invacuum and at
sea level, respectively. Under the assumption of constant mass flow
_m, the effective thrust equals

Teff � g0Isp-eff _m � 2

3
Tvac �

1

3
TSL (7)

2. Structural Indices

Structural fraction, or structural index, is a measure of the inert
(i.e., not propelling) mass in the net stage mass. In aerospace engi-
neering, there are two parallel definitions of the structural index:
propellant-based ε and mass-based σ. For the consideration of both
reusable and expendable LVs, as well as reserve and residual propel-
lant, a distinction in wet (superscriptw) and dry (d) structural indices
is made. Wet indices account for the descent and dead propellant
mass, whereas dry indices do not take it into consideration; both
descent and dead propellant are inert masses during the ascent flight
and therefore act similarly to the structure. The indices are hence
defined as follows:

σw ≜
m −mA

p

m
≡
ms �mD

p �mR
p

ms �mT
p �mR

p

(8)

σd ≜
m −mT

p −mR
p

m
≡

ms

ms �mT
p �mR

p

(9)

εw ≜
m −mA

p

m −ms

≡
ms �mD

p �mR
p

mT
p �mR

p

(10)

εd ≜
m −mT

p −mR
p

m −ms

≡
ms

mT
p �mR

p

(11)

3. Reusability and Dead Propellant Indices

As already mentioned at the beginning of Sec. II, the descent
maneuver considered in this paper is the downrange landing of the
VTVL configuration.
To effectively analyze the LV mass composition with reusability

and dead propellant, it is necessary to define dimensionless param-
eters that can describe these additional masses in relation to the
known masses, just like structural indices relate structure mass to
the propellant or net mass of a stage. They will be useful in deriving
relations between the structural indices and the mass conversion
between virtual and physical stages in the mixed staging problem.
These dimensionless parameters are the reusability index ξ and the
dead propellant fraction ψ .
Reusability index ξ is defined as the total propellant mass in

relation to the ascent propellant mass:

ξ ≜
mT

p

mA
p

� mA
p �mD

p

mA
p

(12)

with ξ � 1 meaning an expendable stage and ξ > 1 meaning a
reusable one.
Dead propellant fraction ψ is defined as the dead propellant mass

related to the total propellant mass:

ψ ≜
mR

p

mT
p

� ψ reserve � ψ residual (13)

It is noteworthy that strictlymathematically ψ must only be greater or
equal 0 but does not have an upper limit, becausemR

p is not included
inmT

p. However, the dead propellant mass greater than the combined
ascent and descent propellant masses would not constitute a viable,
flying LV, and ψ is mostly limited to several percent. Design attempts
conducted for this paper and verified with available LV data showed
that ψdefault

reserve � 1% is a sufficient assumption.
The parameter ψ denotes an effective value for a whole stage,

which has been done for the sake of simplicity. However, the residual
fraction is a property of a tank, not of a stage, so the effective value
must be determined from the tanks’ properties and from an assumed
reserve fraction of the stage:

ψ � ψ reserve � ψ residual � ψ reserve �
ψfmf � ψomo

mf �mo

� ψ reserve �
ψf � φψo

1� φ
(14)

where the index f denotes the fuel, the index o denotes the oxidizer,
and φ � m0∕mf denotes the oxidizer-fuel mass ratio.

4. Structural Index Relations

The relations between the structural indices are summarized in
Table 1. Every relation is specified for a given design, i.e., given ξ and
ψ indices.

5. Stage’s Constituent Masses

Having calculated or assumed the P/L mass of a stage, its mass
ratio, and wet structural index, it can be shown (derivation in
Sec. V.B.5) that its ascent propellant mass equals

mA
p � mPL

μ − 1

ξ�ψ � 1��1� εd − μεw�
≡mPL

�μ − 1��1 − σw�
1 − μσw

(15)

Knowing the ascent propellant mass, all other masses can be calcu-
lated using Eqs. (2) and (11–13), and the total propellant mass
definition from Sec. II.A, with the already present knowledge of
the structural index, reusability index, and dead propellant fraction, is
as follows:
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mD
p � �ξ − 1�mA

p (16)

mT
p � mA

p �mD
p � ξmA

p (17)

mR
p � ψmT

p � ψξmA
p (18)

mT
p �mR

p � ξ�ψ � 1�mA
p (19)

ms � mT
p�ψ � 1�εd (20)

m � mT
p �mR

p �ms (21)

C. Optimal Staging Problem of a Mixed-Staged Launch Vehicle

The optimal staging algorithm byCivek-Coşkun andÖzgören [11]
allows computing the minimal GLOW of a mixed-staged LV. The
algorithm approaches the problem by converting the parallel-staged
part of the LV, composed of one central stage (here called the core)
and Nb detachable strap-on stages (boosters), into a serially staged
part, consisting of two stages, in this paper referred to as the lower
virtual stage and the upper virtual stage. The border between both
virtual stages is the booster detachment moment; hence, the conver-
sion between the physical and virtual stages does not occur in space,
but in time. The lower virtual stage consists of the boosters and the
part of the core relevant until detachment, and the upper virtual stage
contains the remaining part of the core.
The algorithm does not allow conversion between the physical and

the virtual stages, and themass decomposition of the boosters and the
core is unknown. Moreover, this approach does not mention the
subject of potential reusability, and it does not account for reserve
and residual propellant. Therefore, to consider a serial- or mixed-
staged, reusable or expendable LV, a generalization of the approach
byCivek-Coşkun andÖzgören [11] is needed. Themodifiedmethod,
alongside the mass deconstruction of the virtual stages, is depicted
in Fig. 2.
The fundamental idea behind the presented conversion method is

the temporal stage composition, and therefore it may also be called
the time stagingmodel. Firstly, a clear border between the two virtual
stages needs to be drawn; it has already been mentioned that this
border shall be the boosters’detachment. Until this moment, both the
core and the boosters generate thrust simultaneously. Hence, their
equivalent exhaust velocity and specific impulse may be calculated,
and they may be treated as one single stage; they constitute the lower
virtual stage. Afterward, only the core remains, forming the upper
virtual stage. The equivalent parameters are required because both the
stage’s specific impulse and exhaust gas velocity come into the
staging equation.
The problem’s intricacy lies in assigning the constituent masses

(structure, different propellant types) to the virtual stages. The affili-
ation of the boosters is simple; their detachment marks the border
between the virtual stages, so they belong entirely to the lower virtual
stage. Regarding the core stage, after booster detachment, the part of
the core that flies further is composed of its structure, remaining
ascent propellant, and descent and dead propellants. Hence, the rest,
being the ascent propellant burnt until detachment, must be included

in the lower virtual stage. A rigorous mathematical proof for this
consideration can be found in Appendix B.2.

1. Optimization by the Method of Lagrange Multipliers

The main objective of the optimal staging problem is to determine
the mass ratios μ of the stages and minimize the theoretical assumed
GLOWof a launcher. Curtis [10] has described it for serially staged
launchers, whereas Civek-Coşkun and Özgören [11] have expanded
the approach for the general serial and parallel cases. In the context of
the optimal staging, the variable to be determined is the mass ratio
vector of an N-staged launcher, μ � �μ1 μ2 : : : μk : : : μN �. Since
both expendable and reusable launchers in any staging configuration
are considered in this paper, a generalization for these cases as well as
a rigorous proof of the method’s applicability is needed; detailed
mathematical derivations are presented in Appendix B.1. For this
purpose, the Lagrange function is defined as follows:

L�μ; η� ≜ f�μ� � ηg�μ� (22)

where η is a Lagrange multiplier, and f�x� denotes the function
subjected to the equality constraint g�x� � 0. After Civek-Coşkun
and Özgören [11], the objective function for the Lagrange equation
can be assumed as

f�μ� ≜ ln
m0

mPL

�
N

k�1

ln
μk�1 − σwk �
1 − μkσ

w
k

(23)

Fig. 2 Conversion from mixed to serial staging with stage mass decom-
position; the parameter λ is defined in Sec. II.C.2.

Table 1 Correlations between structural fractions

� f�σw�ξ;ψ � f�σd�ξ;ψ � f�εw�ξ;ψ � f�εd�ξ;ψ
σw σw

1 −
1 − σd

ξ�ψ � 1� 1 −
1

ξεw�ψ � 1� � 1
1 −

1

ξ�εd � 1��ψ � 1�

σd 1 − ξ�1 − σw��ψ � 1� σd 1 −
ξ�ψ � 1�

ξεd�ψ � 1� � 1

εd

εd � 1

εw
σw

ξ�1 − σw��ψ � 1� 1 −
1 − ξψσd

ξ�ψ � 1��1 − σd� εw 1 −
1

ξ�ψ � 1� � εd

εd
1

ξ�1 − σw��ψ � 1�
σd

1 − σd
εw � 1

ξ�ψ � 1� − 1 εd
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The constraint of the optimization problem is the Tsiolkovsky equa-
tion for staged rockets:

g�μ� ≜
N

k�1

vexh;k ln μk − Δvmission (24)

Thus, the method of Lagrange multipliers with Eqs. (23) and (24)
delivers

N

k�1

vexh;k ln
1� ηvexh;k
ησwk vexh;k

− Δvmission � 0 (25)

which is then solved numerically for the Lagrange multiplier η; the
Lagrange function formulated for this problem in Eq. (25) will be
referred to as the staging equation. Subsequently, knowing η, the
mass fraction of the kth stage μk can be obtained from Eqs. (23) and
(24), supplemented with Lagrange partial derivative constraints
(∂L∕∂η � 0 ∧ ∂L∕∂μ � 0), as

μk �
1� ηvexh;k
ηvexh;kσ

w
k

(26)

As already mentioned in the Introduction, during the first stage of
the flight, the boosters and the core generate thrust simultaneously;
thus, their specific impulse and exhaust velocity may be brought to
equivalent values: specific impulse Isp;1 0 and exhaust gas velocity
vexh;1 0 :

�Isp;1 0 ≡
Ttot

g0 _mtot

� Tc � NbTb

g0� _mc � Nb _mb�
� Tc � NbTb

Tc

Isp;c
� NbTb

Isp;b

(27)

�vexh;1 0 ≡ g0 �Isp;1 0 � g0
Tc � NbTb
Tc

Isp;c
� NbTb

Isp;b

(28)

After detachment, the remaining upper virtual stage 1” takes over the
role of the propelling stage and consists only of the remaining core;
therefore,

Isp;1′′ ≡ Isp;c (29)

�vexh;1′′ ≡ vexh;c � g0Isp;c (30)

2. Parameters of the Virtual Stages

With one core and Nb boosters, the lower virtual stage consists of
1) the entire ascent propellant of the boosters mA

p;b; 2) the ascent

propellant of the core used until detachment λmA
p;c (coefficient λ is

described later in this section); 3) the structure of the boosters ms;b;
4) the descent propellant of the boosters mD

p;b; and 5) the reserve

propellant of the boosters mR
p;b.

The upper virtual stage then consists of 1) the remaining ascent
propellant of the core �1 − λ�mA

p;c; 2) the structure of the core ms;c;
3) the descent propellant of the core mD

p;c; and 4) the reserve propel-
lant of the core mR

p;c.
For the analysis of virtual stages, an assumed, nondimensional

coefficient λ will be defined, as well as one auxiliary ratio K:
1) λ is the assumed fraction of the core ascent propellant used until

booster detachment; this factor sizes the boosters in comparison with
the core stage; it follows that it is equivalent to the ratio of the booster
burn time tB;b to the core burn time tB;c and can be also expressedwith
the LV mass decomposition:

λ ≜
mA

p;1 0 ;c

mA
p;c

� _mct
A
B;1 0;c

_mct
A
B;c

≡
tB;b
tB;c

(31)

λ � mA
p;1 0 − Nbm

A
p;b

mA
p;c

(32)

2)K is the ratio of the core’s ascent propellant to a single booster’s
ascent propellant; this fraction is defined directly by λ and the
parameters of the core and booster engines:

K ≜
mA

p;c

mA
p;b

� ζc
ζb

_mA
p;1 0

tB;1 0
λ

_mA
p;btB;1 0

� ζc
ζb

1

λ

Tc∕Isp;c
Tb∕Isp;b

(33)

where ζ denotes the stage engine’s equivalent throttle over its flight
(ζ � 1, full thrust for the whole burn time), and tB is the ascent burn
time of a stage.
The staging equation requires knowledge of the stages’ gross wet

structural indices, as well as their gas exhaust velocities (the latter
have already been shown in Eqs. (28) and (30); these are defined as
follows:

σw1 0 ≜
Nb�ms;b �mD

p;b �mR
p;b�

Nb�ms;b �mR
p;b� � λmA

p;c

(34)

σw1′′ ≜
ms;c �mD

p;c �mR
p;c

ms;c �mD
p;c �mR

p;c � �1 − λ�mA
p;c

(35)

Since the general mixed staging problem divides the stages into
virtual ones, their structural indices do not necessarily need to be
known and are not trivial to assume. Therefore, formulas to calculate
them from the real stages’ indices are needed. These formulas,
derived in Appendix B.2, are as follows:

σw1 0 � εwb

εwb � 1
ξb�ψb�1� 1� λ

Nb
K

(36)

σw1′′ �
εwc

εwc � 1−λ
ξc�ψc�1�

(37)

As the conversion between various structural indices requires
knowledge of the reusability index and dead propellant fraction of
a virtual stage, these can be calculated from their earlier definitions in
Eqs. (12) and (13) as follows:

ξ1 0 ≜
mT

p;1 0

mA
p;1 0

� λK� Nbξb
λK � Nb

(38)

ξ1′′ ≜
mT

p;1′′

mA
p;1′′

� ξc − λ

1 − λ
(39)

ψ1 0 ≜
mR

p;1 0

mT
p;1 0

� ψbξb
λK � Nbξb

(40)

ψ1′′ ≜
mR

p;1′′

mT
p;1′′

� ψcξc
ξc − λ

(41)

The derivations of the presented formulas are shown in
Appendices B.2–B.4.

3. Lambda Existence

It can be shown that the previously introduced parameter λ is not
allowed to take any arbitrary value from 0 to 1; since it impacts the
staging equation and, therefore, the stage mass ratio μ, which cannot
be lower than 1, and its actual value range is narrower. Because of
the implicit nature of the staging equation, a straightforward relation
for λ cannot be derived, and a numerical solution for a given set of
specific impulses and structural fractions is needed. An example of
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the numerical λ existence test is depicted in Fig. 3; the test has been
performed for Ariane 5 with the following values:
1) Core: σdc � 0.05, Isp-SL;c � 318 s, Isp-vac;c � 429 s.
2) Boosters: σdb � 0.05, Isp-eff;b � 274; 5 s.
3) Second stage: σd2 � 0.10, Isp-vac;2 � 444.6 s.
The plots show that σw and μ assumed at the creation of the virtual

stages as functions of the assumed parameter λ. The plots of σwassumed

of the virtual stages as a function of λ are direct representations of
Eqs. (36) and (37). A set of these plots informs a designer of the
allowable range of λ and its influence on the parameters of the virtual
stages. As expected, σwassumed;1 0 remains unaffected by λ because the
lower virtual stage does not contain any wet structure of the core; in
comparison, λ affects the upper virtual stage, which possesses all of
the core wet structure, an effect especially visible for higher λ values.
Analogously, μ depends on the propellant fraction in a stage, which
explains rising values for the lower virtual stage and sinking values in
the upper stage for rising λ.

4. Limits on the Structural Index

As indicated in Sec. II.C, for the preliminary design of a launcher,
its stages’ wet structural indices σwk need to be assumed. Therefore,
for a better initial choice it is beneficial to know the limits imposed on
this parameter. From its definition, it follows that the structural index
needs to be between 0 and 1. However, it is subject to another, stricter
constraint, which originates from the m0∕mPL ratio, used in the
Lagrange objective function from Eq. (23); m0∕mPL ratio cannot
be less than 1 for real launch systems:

ln
m0

mPL

�
N

k�1

ln
μk�1 − σwk �
1 − μkσ

w
k

> 0 (42)

From an analysis of this constraint and the Tsiolkovsky equation, it
can be shown that (derivation in Appendix C)

σwk <
1

exp Δvk
g0Isp;k

(43)

Furthermore, the ascent propellant mass as a function of σwk can be
plotted using Eq. (15), showing that the point σwk � 1∕ exp �Δvk∕
g0Isp;k� is in fact its asymptote; this function is depicted in Fig. 4. The
asymptote forms a limit for the structural indices for a particular
specific impulse; for structural indices exceeding this limit, the
propellant mass becomes negative, which is not physical. By analyz-
ing this limitation, it can be observed that with rising specific impulse
the allowable range for structural indices also rises; this means that

withmore efficient engines, more structural margin is available to the
designers.

D. Descent Propellant Estimation

An essential issue during reusable launcher design is the amount of
the descent propellant. The first design iteration, based on assump-
tions, is especially unobvious; in the case of the ascent propellant, the
structural indices and the P/L mass were assumed, the mass ratios
were calculated, and on top of these input values the ascent propellant
mass was calculated. For the descent, the first idea is to estimate the
propellant amount scaled to the ascent propellant mass; this approach
is quite commonly used in launcher sizing [12–14], but with different
percentages, as collected in Table 2.
The approach by [14] requires a note at this point; though at the

beginning it takes an assumed descent propellantmass, it then iterates
the design with a trajectory analysis in a loop, and the value in the
table is the final one. Therefore, although the mean reusability index
equals 1.0888, the default one used in the implementation of the
design procedure in AIOLOS is rounded to 0.005 (0.5% of the ascent

Fig. 3 Lambda existence test for Ariane 5. Red dash-dotted lines denote the lower limit μ � 1.

Fig. 4 Ascent propellant mass for a single stage in function of wet
structural index and specific impulse for a given delta-v and P/L mass.
Dashed vertical lines are the functions’ asymptotes.

Table 2 Statistical estimation of the
descent propellant mass

Launcher mA
p, t mD

p , t ξ

RETALT [12] 571.50 50.00 1.0875
RETPRO [13] 344.45 55.00 1.1597
H298H77 [14] 280.00 18.00 1.0643
C648C142 [14] 620.80 27.20 1.0438
—— —— Mean value 1.0888
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propellant) toward the trajectory-verified values. Thus, the advised
reusability index equals 1.085, representing an 8.5% propellant mass
addition for the descent. Thus,

mD
p � �ξ − 1�mA

p (44)

ξdefault � 1.085 (45)

In the scope of this paper, the assumption about the descent propel-
lant amount is verified by simulation in STRATOS (Sec. IV.A.2).

E. Formulas for the Delta-v Losses

The delta-v budget is necessary to be defined at the very beginning
of the design process, and since neither the trajectory of a launcher
nor its mass is known at this stage, the velocity losses need to be
estimated. The delta-v required for a launcher, also called mission
delta-v or design delta-v, is composed of the target orbit’s velocity
and the losses underway:

Δvmission � vorbit � Δvgrav � Δvaero � Δvsteer � Δvprop − Δvgain
(46)

where vorbit is the orbital velocity at the perigee, Δvgrav denotes the
gravitational losses, Δvaero are the aerodynamic drag losses, Δvsteer
stands for the steering losses, Δvprop denotes the propulsion losses,
andΔvgain is the Earth’s rotation’s assistance at the launch site toward
a certain orbit.
Edberg and Costa [6] have explicated the topic of delta-v losses,

describing their order of magnitude and overall influence on the
mission delta-v, as well as giving several formulas to estimate them
at the beginning of a design process. Their order of magnitude and
usual values have also been given. Of greatest importance are the
gravitational losses, whose typical values lie in the range of 1–2 km/s
[6]; next in line are the aerodynamic losses, with usual values of
40–200 m/s [6,15]; lastly, the propulsion and steering losses can vary
greatly between launchers, orbits, and trajectories and are in the order
of 30–400 m/s [6].

1. Gravitational Delta-v Losses

Edberg and Costa [6] give several formulas for delta-v loss esti-
mation. Gravitational losses can be evaluated as follows:

Δvgrav �
2g0h

1� h∕RE

(47)

Δvgrav � �g0tB;1 − Kgg� 1 − Kg 1 −
1

μ1

γbo
90°

2

(48)

where h denotes the orbit perigee altitude, RE is the radius of the
Earth,Kg � f�Θ; Isp-vac;1� andKgg � f�Isp-vac;1� are empirical coef-
ficients, Θ is the thrust-to-weight ratio, tB;1 denotes the burn time of
the first stage, μ1 is the mass ratio of the first stage, and γbo is an
assumed burnout angle (to the horizontal axis) of the first stage.
The first formula [Eq. (47)] is derived from the conservation of

energy; it is a rough estimate that does not take into account the
duration of the ascent and assumes that the thrust vector is antiparallel
to the gravity vector [6]. The second formula [Eq. (48)] [16] is
deemed more realistic because it accounts for two factors: the time
a vehicle propels against the gravity and the shape of its trajectory.
The first factor is expressed in the termg0tB;1 − Kgg, whereKgg is the
correction factor for the overestimation of the losses under the
assumption of the constant gravitational field; then, the influence
of the trajectory is expressed as the function of the burnout angle,
mass ratio, and the correction constant KG [17]. In this paper, the
gravitational losses according to this formula have been calculated
only for the first stage, which incurs most of the total gravitational
losses; this simplification has delivered quite good results, as will be
shown in Sec. IV.A.1.

In the case of Eq. (47), Edberg and Costa [6] remark that it may be
convenient for a first, rough estimation, because it does not require
any assumptions tomake. However, it does not take into account how
much time a launcher needs to operate against the gravity force,
which in turn depends on its trajectory. It takes a very conservative
stance, and therefore, based on the comparison of the two formulas
[Eqs. (47) and (48)] on Saturn V, Edberg and Costa [6] advise to
account for only 80% of the estimation by Eq. (47). However, as this
study has found out, for some launchers, such as RETALT [12,18],
80% is an underestimation, whereas for Falcon FT it results in unre-
alistically high losses. The deviation was especially perceivable in the
case of Falcon FT, where the optimizing analysis suggested a drop in
P/L capability to 2.5 t instead of 23 t in the real launcher, because the
theoretical formula assessed the gravity losses to be over 2 km∕s for
low-Earth orbit (LEO), a value significantly overestimated.
The second formula is considered byEdberg andCosta [6] to be far

more precise, but its downside is the need of one additional
assumption, the first stage’s burnout angle γbo. At no point of the
preliminary design analysis (i.e., the run of the algorithm) is the
trajectory of the launcher known, and hence it cannot be substituted
at any iteration. However, the lack of knowledge of γbo does not pose
a serious problem, because even a significant uncertainty of it does
not cause any major error in Δvgrav. If γbo were treated mathemati-
cally as a measured quantity with uncertainty of Δγbo, then the
gravity losses uncertainty Δ�Δvgrav� could be calculated in accor-
dance with the norm DIN 1319-4 [19] as

Δ�Δvgrav� ≜
∂Δvgrav
∂γbo

Δγbo

� ∂
∂γbo

�g0tB;1 −Kgg� 1−Kg 1−
1

μ1

γbo
90°

2

Δγbo

� 2Kg�Kgg − g0tB;1� 1−
1

μ1

γboΔγbo
�90°�2 �49�

For values of Kg � 0.56 1∕ deg2, Kgg � 25 m∕s, tB;1 � 180 s,
μ1 � 2.7, γbo � 23°, and Δγbo � 10 deg, the gravity loss along
with its uncertainty equals Δvgrav � �1700 � 35� m∕s; this in turn
is equivalent to an error of 2.06%. However, the exact differential
linearizes the equation at the measurement point and hence must be
examined with caution in cases of significant error, such as
γbo � 23 � 10 deg; the error spans over a significant portion of
the γbo axis, so for boundary values the errormight actually be greater
than those estimated with the exact differential from Eq. (49), but the
gravity loss is still quite insensitive to changes in γbo; the boundary
values for this particular example are Δvgrav�γbo � 13°� �
1727 m∕s and Δvgrav�γbo � 33°� � 1658 m∕s.
The coefficient Kg depends on the thrust-to-weight ratio Θ, so for

an optimizing process the aimed thrust-to-weight ratio (TWR) can be
assumed. The mass ratio of the first stage is, in turn, known after the
first design iteration, and thus Kgg is also known. Similarly, the burn
time tB;1 is also preliminarily known after the first iteration.
Since there were no equations describing the Kg and Kgg curves

given by Edberg and Costa [6], the curve-fitting procedure of the
Python package SciPy was used; the equations were necessary for
further implementation and automation in Python. The equations to
describe the curves are as follows:

Kg�Isp-vac � 200 s� � 0.730325Θ−1.00766 ⋅ ln Θ� 0.405136 (50)

Kg�Isp-vac � 300 s� � 0.702575Θ−0.81712 ⋅ ln Θ� 0.424864 (51)

Kg�Isp-vac � 400 s� � 0.745695Θ−0.82590 ⋅ ln Θ� 0.433951 (52)

Kg�Isp-vac � 500 s� � 0.793051Θ−0.83491 ⋅ ln Θ� 0.43644 (53)

Kgg � 3.2506 ⋅ 10−6 ⋅ Θ2.79025 − 5.29021 (54)
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For the coefficientKg, the data between the curves for different Isp-vac
can be interpolated linearly.
In light of these observations, even though the semi-empirical

formula Eq. (48) requires an input that is quite arbitrary and faintly
known, it is preferable over the purely theoretical one since it delivers
values closer to reality.

2. Propulsion and Steering Delta-v Losses

Regrettably, propulsion and steering delta-v losses (Δvprop and
Δvsteer) are very difficult to estimate and can vary significantly
between orbits, LVs, and trajectories [6]; there are hardly any empiri-
cal or statistical formulas to preliminarily calculate them. Nonethe-
less, since Δvprop and Δvsteer encompass a sizeable portion of the
launcher’s overall delta-v, in range of 30–400 m/s, under any circum-
stances they can be neglected.
For the purposes of all delta-v analyses, propulsion losses due to

specific impulse variation are considered by employing equivalent
specific impulse for the lowermost stages of a launcher, which are
affected by the changes in ambient pressure. Any equation consid-
ering the specific impulse or thrust of the lower stages will follow
Eqs. (6) and (7), and therefore Δvprop is considered implicitly and is
assumed to be zero.
Steering losses can be estimated with the precise theoretical for-

mula if some simplifying assumptions are made: 1) it is assumed that
the first stage flies with the angle of attack (AoA) α1 � 0 and thus
does not induce steering losses; 2) the gimbal angle δ equals zero over
the whole trajectory; 3) the thrust of the launcher is constant over the
flight time of a particular stage; and 4) for the subsequent stages, an
equivalent AoA is assumed by the designer (similarly to the angle γbo
at the gravitational losses) and is constant over thewhole flight of the
upper stages. Based on trajectory analyses of RETALTand Falcon 9
FT (shown inAppendixE), the default value forα for the upper stages
has been assumed to be αdefault � 20°; this value is a realistic pre-
liminary value that persists throughout the trajectory for longer
periods of time. The mean absolute AoA over time for the two
trajectories is also shown in Fig. 5, equaling 13.6103° for RETALT
and 12.3607° for Falcon 9 FT. Hence, the assumption of αdefault �
20° can be considered conservative; as will be shown in Sec. IV.A.1,
this translates to an overestimation of the steering losses.
With all the aforementioned assumptions made, it follows that

Δvsteer �
N

k�2

tb;k

0

2Tk

mk

sin2
α

2
dt

�
N

k�2

tb;k

0

2Tk

m0;k − _mkt
sin2

α

2
dt

�
N

k�2

2Tksin
2 α

2

_mk

ln
m0;k

m0;k − _mktb;k
(55)

3. Aerodynamic Delta-v Losses

As for the aerodynamic losses, the formulas by Lobanovsky [20]
and Nikishchenko [21] are used, as they deliver much more realistic
and consistent results than the one by Edberg and Costa [6] (origi-
nally from [22]), while needing less unknown input:

Δvaero�
m0

m	
−0.3

0.045�0.1�Θ−1.17�3∕2 ; Θ≥1.17

m0

m	
−0.3

0.045�0.1�1.3332Θ2−2.9399Θ�1.6148� ; Θ∈ �1;1.17�

(56)

with m	 � 2;965;241 kg being the GLOWof the Saturn V launcher
for the Apollo 16 mission and Θ denoting the thrust-to-weight ratio.

Apart from Eq. (47), the formulas for delta-v losses require the
knowledge of the LV’s GLOW. Equation (47) is a quite conservative
estimate of the gravitational losses, the most significant component
of the delta-v losses. Therefore, an LV can be preliminarily designed
by using exclusively this formula, with aerodynamic and steering
losses assumed to be 0; then, the more exact formulas can be
employed in the next design iteration.

4. Design Delta-v Margin

Ultimately, the actual design delta-v requires a positive margin to
account for inaccuracies in the calculations; the design delta-v of a
launcher enhanced by fractional margin χv is given as

Δvlauncher � Δvmission � Δvmargin � Δvmission�1� χv� (57)

Computational trials with trajectory verification by STRATOS
(Sec. IV.A.1, Table 4) have shown χv � 1.5% to be an adequate
default margin.

III. Tool Implementation

A. Launcher Design Tool AIOLOS

Themain objective of the project was to develop a launcher design
algorithm based on as few as possible unobvious assumptions. The
algorithm is based mainly on the procedure by Edberg and Costa [6],
with additional staging calculations, expansion for reusability, and
several other procedures, as described in Sec. II. The algorithm has
been implemented in Python 3.11; the created tool is namedAIOLOS
[7]. As mentioned previously in the paper, special emphasis was put
on the tool’s versatility and adjustability, in terms of both launcher
configurations possible to analyze and the ease of adding new
component types, repurposing the program, and expanding it for
new technical challenges.
Object-oriented programming was a natural choice for a project

this complex because it allows to group similarly behaving parts of
code into classes,making the code organized and clear. InAIOLOS, a
launcher forms its own class; solid- and liquid-propelled stages are
also their own classes. Furthermore, every component type (engine,
tank, propellant distribution system, etc.) also constitutes a separate
class; some of the components also have subclasses if they behave
differently from one another (e.g., fuel tanks and oxidizer tanks or aft
and forward skirts are all separate classes).

B. Rapid Aerodynamics Tool CAC

CAC stands forCalculation of Aerodynamic Coefficients and is an
in-house tool of the DLR for semi-empirical preliminary aerody-
namic analysis of LVs [8]. It uses an approach similar to Missile

DATCOM; CAC describes a launcher’s stage parametrically as a
serial connection of a conical or ogive nose, a cylinder, and a
converging or diverging conical skirt. Then, the aerodynamic coef-
ficients as functions of Mach number and AoA are calculated for the
whole launcher based on the superposition of the stages.

Fig. 5 Angle of attack for RETALT and Falcon 9 FT simulated trajec-
tories from the moment of the control start, with the equivalent values.
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C. Trajectory Tool STRATOS

Staged Rocket Trajectory Optimization and Simulation (STRA-
TOS) [9] is a Python tool for 3-degree-of-freedom trajectory simula-
tion developed for multiple-staged launchers and reentry applications
for Earth orbits. Core equations are similar to the DLR’s TOSCA tool
[3,23] and account for changing gravitational field, rotation, and
aerodynamic forces. A genetic algorithm is used for the ascent trajec-
tory optimization, maximizing the final velocity of the vehicle for a
given orbit perigee. For the descent or reentry trajectory, a gradient-
based optimizer is used to define the ignition time and burn duration of
a retroboost maneuver to minimize fuel consumption under con-
strained stagnation pressure, heat flux, and deceleration.

D. AIOLOS-CAC-STRATOS Design Chain

The launcher design chain used to analyze an LV consists of the
three tools (AIOLOS, CAC, and STRATOS) coupled together, as
visualized in Fig. 6. AIOLOS first calculates the optimal staging for
the particular orbit, estimates the masses and geometries of the
launcher constituents, and exports the results to CACand STRATOS.
CAC calculates the aerodynamics of the launcher based on the given
geometry and creates an aerodynamic database for STRATOS.
Finally, STRATOS finds the optimal trajectory for the launcher,
which can be used to adjust the input parameters for a better design.

E. AIOLOS Design Procedure and Optimization

Preliminary design of a launcher with a defined P/L mass and
aimed orbit in its most basic form includes
1) definition of the launcher parameters and mission;
2) optimal staging determination and the division of delta-v among

the stages and hence mass ratiosfirst mass estimations based on
assumed structural indices of its stages;
3) calculation of the fuel and oxidizer masses for each stage, in-

cluding residual and startup propellant;
4) estimations of the components’ dimensions, either with statis-

tical or structural formulas (the former ones are available for all
component types, and the latter only for some);

5) placing the components in the launcher and calculating their
positions;
6) calculations of components’ masses, either statistically or with

precise formulas for simple shapes;
7) calculations of centers of gravity of the components and then of

the stages and of the whole launcher; and
8) calculations of the components’, stages’, and launcher’s

moments of inertia.
The procedure can be extended by postdesign functions: a) launch-

er’s mass distribution plot; b) detailed CoG and MoI calculations for
different propellant filling percentage; c) CoG and MoI calculations
after stages’ separation; and d) launcher’s visualization (an example
shown in Sec. V.E in Fig. E4).
The procedure is possible to be run in a loop to verify some of the

initial assumptions. This approach will be referred to as launcher
optimization. Firstly, it calculates the launcher’s optimal staging
based on the input values of the structural index σd;assumed

k and specific
impulse Isp;k; then it takes the implicit steps of the design procedure
and executes them in two loops:
1) The inner (or nested) structural loop: It conducts the rudimen-

tary design procedure, described earlier in this section. Then, it verifies
the assumed stage structural indices by comparing the assumed struc-
ture mass with the one estimated with MERs, hence producing a
certain mass margin Δm � mw;assumed

s −mw;real
s , which is then to be

minimized to fit into a given convergence area �mmargin;l; mmargin;u�.
Additionally, it defines a refinement area βarea above the upper mass
margin, where the numerical step δstep is scaled by the factor βstep.
2) The outer loop: It verifies the assumed or preliminarily calcu-

lated variable (P/L mass, total delta-v, or number of engines) and
gradually minimizes or maximizes it until a target thrust-to-weight
ratio is achieved within certain convergence area ϵTWRTWRtarget.
Analogously to the inner loop, the outer loop scales change in the
variable with ΔTWR � TWRcurrent − TWRtarget, has a user-defined
step, and has a step refinement area βarea.
Both the inner and the outer loops are depicted as a block diagram

in Fig. 7. The algorithm accepts as input a) the launcher configura-
tion, i.e., the number, type, and ordering of the stages (solid- or liquid-
propelled, parallel or serially connected, etc.), and the components’
types and ordering inside the stages; b) the initial assumed structural
indices of the stages; and c) the initial assumed P/L mass. Regarding
the components, their types are defined in the corresponding libra-
ries, and a designer can choose from the available ones or define new
components. The definitions are component-specific; for example,
for the engines, they encompass their specific impulse (both at the sea
level and in vacuum), thrust, chamber pressure, oxidizer-fuel ratio,
etc. The output from the algorithm consists of the masses, dimen-
sions, centers of gravity, and moments of inertia of the components,
stages, and the launcher.Fig. 6 Design-aerodynamics-trajectory optimization loop.

Fig. 7 Design optimization procedure: the inner loop optimizes the structural index σw;real
k withmassmarginΔmk as the evaluation function,whereas the

outer loop optimizes the chosen variable, like P/L massmPL, with ΔTWR as the evaluation function.
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IV. Results: Tool Verification and Application

A. Launch Vehicle Comparison

To test the correctness of the AIOLOS’s output, four launchers
have been chosen for a full design procedure in connection with
aerodynamics (CAC) and trajectory (STRATOS) analyses. At the
end, the simulated trajectories have been compared with the assumed
orbits. These particular vehicles have been chosen to test different
configurations and orbits with launchers for which ample data are
available:
1) RETALT is a partially reusable heavy-lift LV capable of deliv-

ering 14.05 t (stage 1 recovered) to geostationary transfer orbit
(GTO; 200 km × 35786 km) [12,18].
2) Falcon 9 Full Thrust is a partially reusable medium-lift LV,

carrying 18.5 t (stage 1 recovered) to LEO (200 km × 200 km)
[24–27].
3) FalconHeavy is a partially reusable heavy-lift LVwith boosters,

57.4 t (boosters recovered) to LEO (200 km × 200 km) [24–27].
4) Ariane 5 ECA is an expendable heavy-lift LV with boosters,

delivering 10.8 t to GTO (250 km × 35;786 km) [28–31].
Automatically generated visualizations of RETALT and Ariane 5

ECA are included in Sec. V.E.

1. Ascent Analysis

The output parameters of the launchers modeledwithAIOLOS are
summarized in Table 3. The entries also show the percentual differ-
ence between the outcome from the program and the masses of the
real vehicles from the reference sources. All target orbits have the
same inclination as the launch site latitude. In the analysis, TWR is
the target variable in the optimization for P/L, hence its negligible
deviations. RETALTand Falcon 9 FT have been modeled as partially
reusable, with their first stages landing on an autonomous drone ship.
Falcon Heavy has been modeled with its boosters landing on a drone
ship. Furthermore, Falcon 9 and Falcon Heavy need additional
clarification; according to their user guide [24], the declared P/L
capacity includes the P/L attach fitting, and the exact mission P/L
capability can be provided upon request; the reference P/L mass
comes from the SpaceX website [32]. The height of Ariane 5 Stage
2 includes P/L fairing (17m in the reference model).
The first major observation drawn from the comparison is the

tendency of AIOLOS to allocate more mass to the uppermost stages
of a launcher, which is a direct outcome of the Lagrange staging

equation. The launchers show a very promising agreement of the
stage net and propellant masses for a preliminary design, showing
deviation of nomore than 30%.However, for almost all launchers, the
structural indices of the lower stages have been underestimated,while
those of the upper ones have been overestimated; this indicates a need
for improvements in MERs and dimension-estimating relations
(DERs) for smaller stages. The largest deviation in structural mass
has been shown for Falcon 9 FT, with the structure of the uppermost
stage weighing 35% more than the actual launcher.
Themodel launchers have been investigatedwith further trajectory

analysis in STRATOS, which served as a reference for the delta-v-
estimating formulas. The purpose of the analysis was to verify
whether the launcher achieves its design orbit with enough velocity.
STRATOS uses a trajectory-fixed coordinate system, which means
that it is also fixed to the launch site, whereas AIOLOS considers the
orbital velocity vorbit, mentioned in Eq. (46), in the geocentric coor-
dinate system; hence, the final velocity from STRATOS for a correct
design equals vSTRATOS � vorbit − vLS. These velocities are summa-
rized alongside the LVs in Table 4.
The results of the AIOLOS-CAC-STRATOS analyses for

RETALT, Falcon 9 FT, Ariane 5 ECA, and Falcon Heavy are sum-
marized in Table 4. Furthermore, the mass distribution as well as
ascent and descent trajectories of the modeled RETALTand Falcon 9
FT are shown in Appendix E in Figs. E1, E2, and E3. Regarding the
trajectories comparison, two notes must be taken:
1) AIOLOS’ final orbital velocity equals the theoretical velocity

for an elliptic orbit in its perigee.
2) The difference between both analyses is calculated as Δ �

�vAIOLOS − vSTRATOS�∕vSTRATOS.
There are several observations and notes that can be drawn from

the comparative analysis of the delta-v’s between AIOLOS and
STRATOS:
1) The depicted launchers have been selected from several designs

for various input structural indices (and thus various staging); a
launcher was required to achieve sufficient final velocity for the
aimed orbit, and from the ones that have succeeded in it, the one that
delivered the largest P/L was selected for the final statistic.
2) Delta-v has a significant influence on the launcher P/L capabil-

ity, as depicted in Fig. 8, so it should be assessed as precisely as
possible.
3) Gravitational losses have shown a tendency to be underesti-

mated with increasing TWR of a launcher.

Table 3 Masses of the launchers from AIOLOS

Launch vehicle Stages

LV mPL, t TWR Stage m, t mT
p, t ms, t σd μ h;m

Ariane 5 ECA [28–31] 10.30
−4.6%

1.9615
−1.1%

Stage 1 187.63 173.16 10.69 0.0570 —— 30.30
�1.6% �1.9% −27% −28% —— �27%

Boosters 280.05 245.79 34.26 0.1223 —— 28.57
�1.1% �2.4% −7.4% −8.4% —— −10%

Stage 2 19.71 14.11 5.30 0.2691 1.8882 25.02
�1.4% −5.3% �17% �15% −4.2% �15%

RETALT [12,18] 14.97
�6.5%

1.2046
�0.1%

Stage 1 693.28 581.95 49.23 0.0710 2.8397 71.83
−1.8% −6.4% −17% −18% −12% �1%

Stage 2 190.03 171.88 14.72 0.0775 6.1885 36.29
−6.9% −8.3% −12% −5.3% −13% �14%

Falcon 9 FT [24–27] 16.71
−10%

1.3628
�0.6%

Stage 1 436.55 410.05 18.30 0.0419 2.9754 47.44
−0.4% −0.2% −33% −32% −16% 16%

Stage 2 115.80 107.59 6.06 0.0523 5.2995 21.66
−0.2% −3.5% 35% 35% −9.4% 35%

Falcon Heavy [24–27] 50.02
−13%

1.5604
−1.5%

Stage 1 439.07 414.85 15.92 0.0363 —— 46.77
�1.4% �1.0% 28% −29% —— �10%

Boosters 438.75 382.21 15.76 0.0359 —— 50.42
�1.3% −7.0% −29% −30% —— �18%

Stage 2 124.33 113.45 5.05 0.0406 2.9752 22.98
�12% �5.5% �26% �13% �8.2% �82%

10 Article in Advance / GOLDYN ETAL.

D
ow

nl
oa

de
d 

by
 D

L
R

 D
eu

ts
ch

es
 Z

en
tr

um
 f

ue
r 

L
uf

t u
nd

 R
au

m
fa

hr
t o

n 
Fe

br
ua

ry
 1

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
36

17
4 



4) Aerodynamic losses have been generally overestimated; since
they form only a small fraction of the delta-v losses, the estimate can
be considered acceptable.
5) Steering losses, as predicted, have proved to be quite difficult to

estimate accurately; however, the analytical formula from Sec. II.E
delivered satisfactory results for the first rough estimate, especially
with the trajectory altogether unknown. The steering losses have
been overestimated for all investigated configurations due to the
conservative assumption of the equivalent AoA. The integrals of
the AoA over time, mentioned in Sec. II.E.2 and shown in Fig. 5,
suggest that anAoA of 14° could be a less conservative and sufficient
assumption.
6) The proposed delta-v margin of 1.5%, mentioned in Sec. II.E.4,

has proved to be adequate; it has translated into a positive total delta-v
budget for all launchers but Ariane 5 and resulted in correct final
velocities for all of them. The final velocity of the launcher was
considered the crucial factor in the analysis assessment because it
informs about the achieved orbit.

7) Feedback from STRATOS to AIOLOS, forming an iterative
mass-trajectory loop, is necessary for an efficient design procedure,
providing delta-v and its losses instead of only structural indices, as
an input might deliver a more consistent and convergent launcher
design.

2. Descent Analysis

Of the four LVs analyzed, three were reusable. Their descent
trajectories have been modeled as downrange landing on an autono-
mous drone ship, with 1) reentry burn, 2) aerodynamic braking, and
3) landing burn. The limiting parameter of the reentry burn was the
maximal allowable dynamic pressure (max-q); therefore, the trajec-
tory analyses for different assumedmax-q have also been undertaken.
An exemplary trajectory as a function of altitude is visible in Fig. 9.
The available propellant has been calculated with the assumptions
from Sec. II.D. The resulting fuel consumption for the modeled
returning stages for different max-q limits has been summarized in
Table 5 and shown in Fig. 10. The trajectories of Falcon 9 FT for
differentmax-q are shown in Fig. 11.As described in [9], the heat flux
_q in the stagnation point is calculated from the formula from [33]:

_q � 1

RN

p 5.1564 ⋅ 10−5 ϱ
p

v3.15
W

m2
(58)

Table 4 Results of the STRATOS trajectory analysis for the exported
launchers from AIOLOS

RETALT
Falcon 9

FT
Ariane 5
ECA

Falcon
Heavy

GTO200 LEO GTO250 LEO

Payload AIOLOS 14966 16711 10701 50023
Reference 14051 18500 10800 57420
Difference �6.5% −10% −4.6% −13%

Orbital velocity Theoretical 10243.1 7787.5 10199.2 7787.5
Launch site gain 463.2 408.6 463.2 408.6

Final velocity AIOLOS 9779.9 7378.9 9736.0 7378.9
STRATOS 9755.0 7369.9 9696.3 7396.9
Difference �0.3% �0.1% �0.4% −0.2%

Total delta-v AIOLOS 12173.1 9257.0 11271.5 9011.8
STRATOS 11962.1 9028.0 12145.9 8659.3
Difference �1.8% �2.5% −7.2% �4.1%

Delta-v grav. AIOLOS 1862.4 1310.6 834.0 1195.7
STRATOS 1984.3 1481.6 1886.8 1151.5
Difference −6% −12% −56% �3.8%

Delta-v aero. AIOLOS 65.3 86.8 176.8 87.4
STRATOS 31.7 43.6 63.6 59.8
Difference �106% �99% �178% �46%

Delta-v steer. AIOLOS 465.5 343.9 524.8 351.5
STRATOS 191.5 133.9 499.4 51.3
Difference �143% �157% �5.1% �586%

Fig. 8 Influence of the design delta-v of RETALT on P/Lmass and first
stage mass share.

Fig. 9 Falcon 9 FT Stage 1 descent trajectory.

Table 5 Descent propellant consumption of the analyzed

reusable LVs

Max. dynamic
pressure (q), kPa

Descent propellant mass (mD
p ), t

RETALT
Stage 1

FalconHeavy
Booster

Falcon 9 FT
Stage 1

60 35.88 32.15 27.16
80 32.83 30.36 25.61
100 29.81 28.66 24.45
120 27.68 27.38 24.01
Available 49.47 32.49 32.12
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whereRN is the radius of the rounded nose at the stagnation point, ϱ is
the ambient air density, and v is the flow velocity.
The available propellant has been overestimated for RETALT

(27.5% of the assumed amount still remaining in the tanks for the
most conservative assumption of qmax � 60 kPa). However, the pro-
pellant usage for Falcon 9 FTand Falcon Heavy approached the limit
much more closely (15.4 and 1.0%, respectively). The investigated
range of maximum dynamic pressures has been chosen conserva-
tively, though; Wilken and Stappert [4] have conducted similar
analyses with dynamic pressure at the stagnation point reaching

200 kPa. However, they have imposed stricter constraints on the
maximum heat flux (200 kW∕m2) and maximum deceleration
(3 g). It is noteworthy that the reentry burn ended at approximately
the same altitude of 25–30 km for all cases; similar behavior and
similar burn end altitude could be observed in [4].

B. Parametric Analysis

Since the calculated optimal staging varies in function of the input
dry structural indices, a preliminary determination of their values is
necessary. In this case, the influence of the input σdk of the stages on
the P/Lmass, design delta-v, and delta-v losses has been investigated.
An example for RETALT is shown in Fig. 12. Every point of the
analysis represents a launcher optimized for P/L for the particular set
of input σdk .
There are two interesting observations that can be drawn from the

analysis:
1) Although gravitational and steering losses, both significant

factors in the delta-v budget, have demonstrated altogether different
monotonicity, the change in gravitational losses overshadows the
steering losses.
2) An extensive test campaign of AIOLOS, coupled with STRA-

TOS, has shown that certain value pairs of σdk theoretically promise
the highest payloads, but it does not reflect reality. In this region, the
algorithm chooses an unrealistic staging, which translates into the
launcher not being able to achieve the orbit with enough velocity,
mainly due to an unforeseen rise in all three kinds of delta-v losses; in
other words, the loss-estimating equations lose their validity there.
3) For an exemplary RETALT model with input �σd1 ; σd2 � ��0.10; 0.05�, the P/L mass was calculated as 15;243 kg, lying in the

region of maximal P/L capacity. However, STRATOS analysis has
shown that the launcher would achieve only 8686 m∕s instead of the
required 9780 m∕s, which was caused by the underestimation of the
gravity losses by Δvgrav;STRATOS − Δvgrav;AIOLOS � 2467 m∕s −
1679 m∕s � 788 m∕s and the steering losses by Δvsteer;STRATOS −
Δvsteer;AIOLOS � 815 m∕s − 507 m∕s � 308 m∕s.
The trajectory analysis has shown that the optimal input structural

indices lie roughly in the belt where both design delta-v and theo-
retical P/L achieve their medians (green in the illustrations), although
not in every case the launcher might fly successfully, and several
design attempts might be necessary. In this particular case of
RETALT modeling, a design has been rendered optimal for the set
of �σd1 ; σd2 � � �0.088; 0.07�. The analysis delivers some suggestions
for the choice of the indices, but it still leaves too much room for
uncertainty and requires time-consuming trajectory simulations.

Fig. 10 Descent propellant usage as a function ofmax. dynamic pressure.

Fig. 11 Falcon 9 FT trajectories for different max-q.

Fig. 12 Influence of the input σdk on the P/L capability and delta-v budget of RETALT.
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Therefore, it needs to be upgraded either by designing reliable feed-
back without trajectory computation or by improving the time effi-
ciency of the simulation.
The influence of the core propellant used until detachment, λ, on

the P/Lmass of Falcon Heavy is depicted in Fig. 13. The analysis has
been made for the core throttling ζc � 70% [27].
The parameter λ, although referring explicitly to the core, sizes the

boosters as a consequence; it is equivalent to the ratio of the booster to
core burn time, λ ≡ tB;b∕tB;c, as shown in Sec. II.C.2. Therefore, the
boosters get smaller with the decrease of λ compared to the core. The
analysis showed that with the decrease of λ, mPL increases. This
suggests that the serially staged configurationsmay bemore efficient,
which may explain SpaceX’s decision to design the new Starship in a
tandem (2-STO) configuration.

Furthermore, the influence of TWR on the P/L mass of Falcon
Heavy and RETALT has been investigated, as depicted in Fig. 14.
Note that the analysis takes into account the resulting change in
estimated delta-v losses; the delta-v’s coming from the same analysis
for RETALT are depicted in Fig. 15.
These analyses of TWR influence suggest that it is optimal to choose

a lowTWRfor a launcher. TheTWRisa scaling factor in thisprocedure
since the number and thrust of the engines are predefined; this means
that the launchers with lower TWR are larger. The additional available
propellant (and hence longer burn times) for lower TWRoutweighs the
larger delta-v losses due to higher gravitational losses. It should be
noted that this analysis was based on the estimation formulas for the
delta-v losses, which lose their validity for very small TWR.
The last discussed analysis is the influence of the reusability index

ξ of both stages of RETALT, depicted in Fig. 16. Since ξ is a

Fig. 13 Influence of the core propellant used until detachment λ on the
optimized designs of Falcon heavy.

a) Falcon heavy payload mass b) RETALT payload mass

Fig. 14 Influence of the thrust-to-weight ratio on the optimized designs of Falcon heavy and RETALT.

a) Total delta-v b) Gravitational delta-v losses c) Aerodynamic delta-v losses
Fig. 15 Influence of the thrust-to-weight ratio on the delta-v budget of RETALT. Steering losses have been omitted, as they have barely changed.

Fig. 16 Influence of the reusability index ofRETALT’s first stage on the
P/L mass.
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parameter introduced in this paper, it is interesting to investigate its
influence on the P/L mass, especially since it does not follow
straightforwardly from the formulas due to their complexity. The
outcome shows that the P/L mass depends linearly on the reusability
index, making it easier to preliminarily assess the P/L capability
under particular assumptions.

V. Conclusions

In the paper, a preliminary launcher design algorithm has been
presented; the algorithm has been implemented as a Python tool
named AIOLOS. Behind the tool, there is a launcher design algo-
rithm, devised by Edberg and Costa [6]; it uses DERs and MERs to
preliminarily calculate the mass and geometry of the launcher and all
its constituents. The algorithm has been further developed: apart from
the more detailed launcher decomposition into various components
(collected in Appendix Table D1), the reserve, residual, and descent
propellants have been considered (Sec. II.B.3), and the number of
necessary input assumptions made by a designer has been reduced.
This has been achieved by employing the minimization method of
Lagrange multipliers to determine the optimal staging, i.e., the
optimal division of the launcher’s mass into stages. The original
method described by [10], further developed by [11] formixed (serial
and parallel) staging, has been generalized (Sec. II.C). This gener-
alization encompasses three main aspects: a) clear definition and
recalculation of the stage structural indices, presented in Secs. II.B.2
and II.B.4; b) a detailed method for conversion between physical
stages and virtual stages (mathematical constructs used in the
Lagrange equation), described in Sec. II.C.2 and shown in Fig. 2;
and c) expansion of the method to account for the reusability and for
inert and reserve propellant (Sec. II.C.1). The theoretical limits on the
structural indices as well as the parameter λ used for the conversion
have been investigated in Secs. II.C.4 and II.C.3, respectively.
To complement the design procedure, additional formulas have

been researched and investigated for their accuracy. These formulas
contain preliminary delta-v loss-estimating relations (Sec. II.E), and
DERs and MERs compiled from the literature research as well as
devised ad hoc for the paper (Table D1). Furthermore, a formula for
the recommended propellant addition for descent flight has been
devised statistically from the available launcher data, estimated to
be 8.5% of the ascent propellant (Sec. II.D).
To verify the accordance of the launcher mathematical model with

reality and the precision of the estimations, a comparison test cam-
paign has been undertaken (Sec. IV.A.1). Four LVs, representing
different configurations (number of stages, reusability, usage of
boosters, etc.), have been tested coupled with the tools CAC (aero-
dynamics) and STRATOS (trajectory). The results have shown the
following:
1) Good (<7% deviation) P/L capability estimation for RETALT

and Ariane 5 is shown, for which the available data were the most
precise.
2) The results have shown>10% deviation in P/Lmass estimation

for launchers with fewer available data (Falcon 9 FT and Fal-
con Heavy).
3) A general tendency of the algorithm (as well as the MERs) to

underestimate the structure mass of the launcher is shown; however,
the reference data about structure masses themselves have been
estimated from third-party reports, not from the launcher’s producer,
so the actual deviation might actually be lower.
4) A general tendency of the staging optimization to allocate more

mass to the upper stages of a launcher is also shown; the suspected
reason is that the mass- and dimension-estimating relations show
higher deviations from the real-world data for the small upper stages;
hence, it could be beneficial to define separate relations for larger and
smaller stages to enhance the accuracy of the estimations; this
hypothesis would need further investigation in the future.
5) The results have shown a strong dependence of the staging (and,

hence, the whole design) on input structural indices σd.
The statistical estimation of the required descent propellant has

also been verified with trajectory simulations (Sec. IV.A.2). The
analysis has shown that the assumed 8.5% should suffice even for a

conservative assumption of the allowable dynamic pressure. How-
ever, other formulas for the estimation of the heat flux at the stagna-
tion point, such as the modified Chapman equation employed in [4],
could be investigated.
Subsequently, an analysis of the input parameter influence has

been carried out (Sec. IV.B) in order to investigate the launcher design
behavior in response to various initial assumptions. The analysis has
shown, e.g., that the decrease of the launcher’s thrust-to-weight ratio
may prove beneficial.
During the project,many improvement ideas have been postulated.

Most crucial is the closer coupling ofAIOLOS, CAC, and STRATOS
and an improvement in its calculation time. The comparison cam-
paign has shown very promising results for the launchers analyzed
with thewhole system of these three tools. Especially important is the
verification of the initial estimations of the delta-v and its losses; this
can be performed by closing the AIOLOS-CAC-STRATOS into a
loop, which would provide the necessary feedback.
Moreover, the aforementioned coupling may constitute promising

beginnings of larger launcher design software. It could be enhanced
with a tool for detailed structural analysis, verifying the launcher’s
mechanical durability, with information from AIOLOS about its
mass composition and STRATOS data on the pressure on the struc-
ture. In addition, a tool for economic analysis would prove invaluable
in the assessment of the detailed launch financial budget: the launch-
er’s development, manufacturing, and components cost and, sub-
sequently, its cost per kilogram P/L.
Regarding AIOLOS itself, the tool’s mass- and dimension-

estimating relations might be updated to include the data of the most
recent LVs, like Falcon 9. Furthermore, new components might be
added to improve the specificity of the analysis. Lastly, the depend-
ence of the optimal staging on the input structural indices could be
further analyzed, and its mitigation strategy in the form of an
improvement of the algorithm could be developed.

Appendix A: Relations Between Structural Indices

In this section, the derivation of correlations between the four
defined structural indices will be shown.
The definitions established in Sec. II.B.2,

σw ≜
ms �mD

p �mR
p

ms �mT
p �mR

p

(A1)

σd ≜
ms

ms �mT
p �mR

p

(A2)

εw ≜
ms �mD

p �mR
p

mT
p �mR

p

(A3)

εd ≜
ms

mT
p �mR

p

(A4)

can be reformulated to relate to ascent propellant mass mA
p:

σw � ms � �ξ − 1�mA
p � ψξmA

p

ms � ξmA
p�ψ � 1� (A5)

σd � ms

ms � ξmA
p�ψ � 1� (A6)

εw � ms � �ξ − 1�mA
p � ψξmA

p

ξmA
p�ψ � 1� (A7)

εd � ms

ξmA
p�ψ � 1� (A8)

The relations between σd and εd, obtained by inserting reverted
Eq. (A8) into Eq. (A6):
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1

εd
� ξmA

p�ψ � 1�
ms

(A9)

σd � ms

ms � ξmA
p�ψ � 1� �

1

1� ξmA
p�ψ�1�
ms

� 1

1� 1
εd
� εd

εd � 1

(A10)

⇒ εd � σd

1 − σd
(A11)

The relations between εw and εd, obtained by inserting Eq. (A9)
into Eq. (A7):

εw�ms��ξ−1�mA
p�ψξmA

p

ξmA
p�ψ�1� �ms�ξmA

p−mA
p�ψξmA

p

ξmA
p�ψ�1�

�1−
mA

p−ms

ξmA
p�ψ�1��1−

1

ξ�ψ�1��
ms

ξmA
p�ψ�1�

�1−
1

ξ�ψ�1��εd (A12)

⇒ εd � εw � 1

ξ�ψ � 1� − 1 (A13)

By combining Eq. (A12) with Eq. (A11) it can be shown that

εw � 1 −
1

ξ�ψ � 1� �
σd

1 − σd
(A14)

Subsequently, combining Eqs. (A10) and (A13),

σd � εd

εd � 1
�

εw � 1
ξ�ψ�1� − 1

εw � 1
ξ�ψ�1�

� 1 −
1

εw � 1
ξ�ψ�1�

� 1 −
ξ�ψ � 1�

ξεw�ψ � 1� � 1
(A15)

Using Eqs. (A9) and (A13), the relations between σw, εd, and εw

are as follows:

mA
p

ms

� 1

ξεd�ψ � 1� (A16)

σw � 1 −
mA

p

ms � ξmA
p�ψ � 1� � 1 −

mA
p

ms

1� ξ
mA

p

ms
�ψ � 1�

� 1 −
1

ξεd�ψ�1�
1� 1

εd
� 1 −

1

ξ�εd � 1��ψ � 1� (A17)

⇒ σw � 1 −
1

ξεw�ψ � 1� � 1
(A18)

From Eq. (A17) it can be shown that,

1 − σw � 1

ξ�εd � 1��ψ � 1� (A19)

⇒ εd � 1 � 1

ξ�1 − σw��ψ � 1� (A20)

⇒ εd � 1

ξ�1 − σw��ψ � 1� − 1 (A21)

Hence, knowing the relations of all other structural fractions with
εd from Eqs. (A10), (A12), and (A21), it follows that

σd � 1 − ξ�1 − σw��ψ � 1� (A22)

εw � σw

ξ�1 − σw��ψ � 1� (A23)

Finally, σw can be expressed as a function of σd, using Eq. (A22):

1 − σd � ξ�1 − σw��ψ � 1� (A24)

⇒ 1 − σw � 1 − σd

ξ�ψ � 1� (A25)

⇒ σw � 1 −
1 − σd

ξ�ψ � 1� (A26)

Appendix B: Optimal Mixed Staging with Reusability

This section considers derivations and proofs of the formulas used
for the optimal staging problem and its conversion to real stage
masses.

B.1. Lagrange Equation for Optimal Staging with
Reusability

As discussed in Sec. II.C.1, the aim of the Lagrange multiplier
method in the context of the optimal staging problem is the mini-
mization of the launcher’s GLOW m0; it is done indirectly, by
analyzing the GLOW-P/L mass ratio:

m0

mPL

� m1 �m2 �m3 � : : : �mN �mPL

m2 �m3 � : : : �mN �mPL

⋅
m2 �m3 � : : : �mN �mPL

m3 � : : : �mN �mPL

⋅ : : : ⋅
mN �mPL

mPL

� m1 �m0;2

m0;2

⋅
m2 �m0;3

m0;3

⋅ : : : ⋅
mN �m0;N�1

m0;N�1

�
N

k�1

mk �m0;k�1

m0;k�1

(B1)

where m0;N�1 � mPL. Invoking the definition of a mass ratio for a
general, possibly reusable stage, it follows that

mk � ms;k �mT
p;k �mR

p;k (B2)

m0;k � ms;k �mT
p;k �mR

p;k �m0;k�1 (B3)

μk �
ms;k �mT

p;k �mR
p;k �m0;k�1

ms;k �mD
p;k �mR

p;k �m0;k�1

�
1� m0;k�1

mk

σwk � m0;k�1

mk

(B4)

⇒ μkσ
w
k � m0;k�1

mk

μk � 1�m0;k�1

mk

(B5)

⇒
m0;k�1

mk

� 1 − μkσ
w
k

μk − 1
(B6)

Having inserted the relation above into Eq. (B1), it can be obtained
that

m0

mPL

�
N

k�1

mk �m0;k�1

m0;k�1

�
N

k�1

1� 1−μkσwk
μk−1

1−μkσwk
μk−1

�
N

k�1

μk�1− σwk �
1− μkσ

w
k

(B7)

ln
m0

mPL

�
N

k�1

ln
μk�1 − σwk �
1 − μkσ

w
k

≜ f�μk� (B8)
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As already mentioned in Sec. II.C.1, the constraining function is the
Tsiolkovsky equation for staged rockets:

g�μk� ≜
N

k�1

vexh;k ln μk − Δvmission � 0 (B9)

Therefore, the Lagrange function is as follows:

L�μk; η� �
N

k�1

ln
μk�1 − σwk �
1 − μkσ

w
k

� η
N

k�1

vexh;k ln μk − Δvmission

(B10)

To find the extremum, both partial derivatives of the Lagrange
function need to be equal zero. The partial derivative ∂L∕∂η is equal
g�μk�, which already equals zero by definition; hence, only the partial
derivative with respect to μk need checking:

∂L
∂η

� 1

μk
� σwk

1 − μkσ
w
k

� η
vexh;k
μk

�! 0 (B11)

⇒
1 − μkσ

w
k � σwk μk � ηvexh;k�1 − σwk μk�

μk�1 − σwk μk�
�! 0 (B12)

⇒ 1� ηvexh;k − ηvexh;kμkσ
w
k �! 0 (B13)

⇒ μk �
1� ηvexh;k
ησwk vexh;k

(B14)

By inserting Eq. (B14) into the constraint Eq. (24), the final equation,
which is to be solved numerically, is obtained:

N

k�1

vexh;k ln
1� ηvexh;k
ησwk vexh;k

− Δvmission �! 0 (B15)

This approach has already been undertaken by [10]; however, only
tandem configuration was analyzed and then generalized for N

stages; neither a rigorous general mathematical proof nor reusability
and dead propellant considerations were undertaken.

B.2. Structural Indices of the Virtual Stages

Asmentioned in Sec. II.C.2, themass-basedwet structural index of
the lower virtual stage is defined as

σw1 0 ≜
N�ms;b �mD

p;b �mR
p;b�

N�ms;b �mT
p;b �mR

p;b� � λmA
p;c

(B16)

Using the previously defined coefficients ξ and ψ [Eqs. (12) and
(13)],

σw1 0 �
Nb�ms;b �mD

p;b �mR
p;b�

Nb�ms;b � �ψb � 1�mT
p;b� � λmA

p;c

� Nb�ms;b �mD
p;b � ψbm

T
p;b�

Nb�ms;b �mD
p;b � ψbm

T
p;b� � Nbm

A
p;b � λmA

p;c

� 1

1� Nbm
A
p;b

Nb�ms;b�mD
p;b

�ψbm
T
p;b

� �
λmA

p;c

Nb�ms;b�mD
p;b

�ψbm
T
p;b

�

� 1

1� 1
ξb�ψb�1�

1
εw
b
� λmA

p;c

Nbm
A
p;b

ξb�ψb�1�
1
εw
b

� 1

1� 1
ξb�ψb�1�εw

b
1� λ

Nb

mA
p;c

mA
p;b

� εwb

εwb � 1
ξb�ψb�1� 1� λ

Nb
K

≡
εwb

εwb � 1
ξb�ψb�1� 1� 1

Nb

ζc
ζb

Tc∕Isp;c
Tb∕Isp;b

(B17)

where K is the ratio of the core’s ascent propellant to a single
booster’s ascent propellant, as defined in Sec. II.C.2:

K ≜
mA

p;c

mA
p;b

� ζc
ζb

_mA
p;1 0

tB;1 0
λ

_mA
p;btB;1 0

� ζc
ζb

1

λ

Tc∕Isp;c
Tb∕Isp;b

(B18)

with tB;1 0 denoting the burn time of the lower virtual stage (common
burn time), and ζc, ζb meaning engine equivalent throttle during
the common burn time (ζ � 1, full thrust) for core and boosters,
respectively.
Analogously, from the definition in Eq. (35),

σw1′′ ≜
ms;c �mD

p;c �mR
p;c

ms;c �mD
p;c �mR

p;c � �1 − λ�mA
p;c

� 1

1� �1 − λ� mA
p;c

ms;c�mD
p;c�mR

p;c

� 1

1� 1−λ
ξc�ψc�1�

ξcm
A
p;c�ψc�1�

ms;c�mD
p;c�ψcm

T
p;c

� 1

1� 1−λ
ξc�ψc�1�

1
εwc

� εwc
εwc � 1−λ

ξc�ψc�1�
(B19)

It is noteworthy here that, from Eq. (B17), σw1 0 is independent from
λ. This can be explained in the following manner: Since λ is a scaling
factor for the pair core-boosters, assuming constant booster massmb,
and increasing λ, it will only affect the size of the core; therefore,
the mass of the lower virtual stage will remain unchanged, and only
the upper one will become bigger. This influence is presented in
Eq. (B19).
Since a virtual stage is a purely mathematical construct, definition

of its structural index is no trivial task whatsoever; its mass compo-
sition, presented in Sec. II.C.2, can be assumed in various manners;
hence, it requires a strict mathematical proof. To achieve this, the
definition of the wet structural index from Eq. (8) needs reformula-
tion in order to make it dependent from a physical quantity well
known for a virtual stage; these quantities are the initial and final
masses of the stage:

σwk ≜
ms;k �mD

p;k �mR
p;k

ms;k �mT
p;k �mR

p;k

≡
mf;k −m0;k�1

m0;k −m0;k�1

(B20)

with initial and final masses as defined in Sec. II.A:
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m0 � ms �mT
p �mR

p �mPL (B21)

mf � ms �mD
p �mR

p �mPL (B22)

Subsequently, the aforementioned masses have to be determined for
both virtual stages:

m0;1 0 � ms;c �mA
p;c �mD

p;c �mR
p;c

� Nb ms;b �mA
p;b �mD

p;b �mR
p;b �m0;2 (B23)

mf;1 0 � ms;c � �1 − λ�mA
p;c �mD

p;c �mR
p;c

� N ms;b �mD
p;b �mR

p;b �m0;2 (B24)

m0;1′′ � ms;c � �1 − λ�mA
p;c �mD

p;c �mR
p;c �m0;2 (B25)

mf;1′′ � ms;c �mD
p;c �mR

p;c �m0;2 (B26)

Thus, structural indices for the virtual stages can be calculated as

σw1 0 � mf;1 0 −m0;1′′

m0;1 0 −m0;1′′
� Nb�ms;b �mD

p;b �mR
p;b�

Nb�ms;b �mT
p;b �mR

p;b� � λmA
p;c

(B27)

σw1′′ �
mf;1′′ −m0;2

m0;1′′ −m0;2

� ms;c �mD
p;c �mR

p;c

ms;c �mD
p;c �mR

p;c � �1 − λ�mA
p;c

(B28)

B.3. Reusability Index and Dead Propellant Fraction of
the Virtual Stages

Using the definitions of the reusability index [Eq. (12)] and dead
propellant fraction [Eq. (13)], with Eq. (33), and applying it for the
virtual stages,

ξ1 0 ≜
mT

p;1 0

mA
p;1 0

≡
mT

p;c;λ � Nbm
T
p;b

mA
p;c;λ � Nbm

A
p;b

� λmA
p;c � Nξbm

A
p;b

λmA
p;c � NmA

p;b

� λK � Nbξb
λK� Nb

(B29)

ξ1′′ ≜
mT

p;1′′

mA
p;1′′

≡
mT

p;c;1−λ

mA
p;c;1−λ

� �ξc − 1�mA
p;c � �1 − λ�mA

p;c

�1 − λ�mA
p;c

� ξc − λ

1 − λ

(B30)

ψ1 0 ≜
mR

p;1 0

mT
p;1 0

≡
mR

p;b

mT
p;c;λ �Nbm

T
p;b

� ψbξbm
A
p;b

λmA
p;c �Nbξbm

A
p;b

� ψbξb
λK�Nbξb

(B31)

ψ1′′ ≜
mR

p;1′′

mT
p;1′′

≡
mR

p;c

mT
p;c;1−λ

� ψcξcm
A
p;c

�ξc − 1�mA
p;c � �1 − λ�mA

p;c

� ψcξc
ξc − λ

(B32)

where index c; λ denotes the part of the core burnt until booster
detachment, and c; 1 − λ—from the booster detachment until the
core ascent burnout.

B.4. Equivalent Exhaust Velocity

Equivalent specific impulse of the lower virtual stage is defined as

�Isp;1 0 ≜
Ttot

g0 _mtot

� Tc � NbTb

g0� _mc � Nb _mb�
� Tc � NbTb

Tc

Isp;c
� NbTb

Isp;b

(B33)

Hence, the equivalent exhaust velocity of the lower virtual stage
equals

�vexh;1 0 ≜ g0 �Isp;1 0 � g0
Tc � NbTb
Tc

Isp;c
� NbTb

Isp;b

(B34)

The upper virtual stage 1” consists only of the remaining core;
therefore,

�vexh;1′′ ≜ g0Isp;1′′ � g0Isp;c (B35)

B.5. Propellant Mass of a Serially Connected Stage

The propellant mass of a serially connected stage, which the
conversion into virtual stages aims for, with the parameters ψ and
ξ, can be derived from its P/L mass and structural indices εw and εd:

μ ≜
m0

mf

� ms �mA
p �mD

p �mR
p �mPL

ms �mD
p �mR

p �mPL

(B36)

⇒ μ�ms �mD
p �mR

p �mPL� � ms �mA
p �mD

p �mR
p �mPL

(B37)

μ�ξ�ψ � 1�εwmA
p �mPL� � ξ�ψ � 1�εwmA

p �mA
p �mPL (B38)

mA
p�1� εwξ�ψ � 1� − μεwξ�ψ � 1�� � mPL�μ − 1� (B39)

⇒ mA
p � mPL

μ − 1

1 − εwξ�ψ � 1��μ − 1� ≡mPL

�μ − 1��1 − σw�
1 − σwμ

(B40)

The latter equivalence comes from the relation between εw and
σw [Eq. (A23)].

B.6. Masses of the Member Stages of the Virtual Stages

Having an auxiliary parameter M introduced,

M ≜
mc

mb

� ms;c �mT
p;c �mR

p;c

ms;b �mT
p;b �mR

p;b

� εdcξc�ψc � 1� � ξc�ψc � 1�
εdbξb�ψb � 1� � ξb�ψb � 1�

mA
p;c

mA
p;b

� ξc�εdc � 1��ψc � 1�
ξb�εdb � 1��ψb � 1�K (B41)

it can be derived that

m1 0 �m1′′ � mc � Nbmb � mc 1� Nb

M
(B42)

⇒ mc �
m1 0 �m1′′

1� Nb

M

(B43)

⇒ mb � mc

M
(B44)

Furthermore, knowing the net mass of a physical stage, their propel-
lant masses can be derived from Eq. (A8):

εd � ms

ξmA
p�ψ � 1� (B45)

m � ms � ξ�ψ � 1�mA
p (B46)

m � εd�ψ � 1�mA
p � ξ�ψ � 1�mA

p (B47)

mA
p � m

�ψ � 1�εdξ (B48)
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Appendix C: Limits on the Structural Index

As mentioned in Sec. II.C.4:

ln
m0

mPL

�
N

k�1

ln
μk�1 − σwk �
1 − μkσ

w
k

> 0 (C1)

⇒ ln
μk�1 − σwk �
1 − μkσ

w
k

> 0 (C2)

⇒
μk�1 − σwk �
1 − μkσ

w
k

> 1 (C3)

for every stage k. Equation (C3) can be split into two sets of inequal-
ities to analyze

1 − μkσ
w
k > 0 ∧ μk�1 − σwk � > 0 (C4)

or

1 − μkσ
w
k < 0 ∧ μk�1 − σwk � < 0

(C5)

Equation (C5) is never fulfilled because μk > 1 ∧ σwk < 1 ⇒
μk�1 − σwk �, which is the second requirement in Eq. (C4); therefore,
its first part need to be analyzed:

1 − μkσ
w
k > 0 (C6)

μkσ
w
k < 1 (C7)

σwk <
1

μk
� 1

exp Δvk
g0Isp;k

(C8)

Appendix D: Dimension and Mass-Estimating Relations
Compilation

The DERs and MERs, compiled in Table D1, come from various
publications ([6,34–37]), referenced next to a component’s name.
Input values are to be in SI units without prefixes. Grid fins and
landing gear are additionally shown in Figs. D1a and D1b, respec-
tively; their geometries have been modeled according to [7,38].

Table D1 Dimension and mass-estimating relations (DERs and MERs)

Component Geometric model DER MER

Payload fairing (PF) [6,34]
booster cap

Thin cone of height hcone and
optionally a thin cylinder of height hcyl
underneath

hcone � 2dst �m�
hcyl user-defined

m � kPFA �m2�
kPF;metal � 13; 3

kg

m2

kPF;composite � 9; 89
kg

m2

Payload attach fitting (PAF)
[35]

Point mass h � 0 m � 0.0755mPL�kg� � 50 kg

Skirt [34] Thin cylinder of height hcyl Forward and aft skirt:

hcyl �
1

3
dst �m� � hdome �m�

lowermost aft skirt:
hcyl � dst �m�

m � 13; 3
kg

m2
A �m2�

Avionics [6] Point mass h � 0 mPL < 1 t: m � 75 kg
mPL ≥ 1 t: m � 350 kg
80% in the uppermost stage,
20% distributed among remaining stages

Wiring [6] Thin bar h � hst �m�
m � 1; 43

kg

m
hst �m�

Engines [6] Thin cone frustum of height hengine
upper diameterdchamber lower diameter
dexit

hengine, dchamber,
and dexit user-defined

m � T�N� 7; 81 × 10−4�

3; 37 × 10−5
Aexit

Athroat

kg

N
�

59 kg

Propellant tank [34] Convex–convex, convex–concave, or
concave–convex cylindrical tank with
cylindrical part of the height h, or a
spherical tank

Cylindrical:
d � dst
A � πd2 � πdh
convex–convex:

h � 4

πd2
Vp

n
−

πd3

6AR
concave–convex /
convex–concave:

h � 4

πd2
Vp

n
spherical:

d � 6Vp

nπ
3

A � πd2

Statistical:
m � kconmcon �kg�
RP-1: kcon � 0.0148
LOx: kcon � 0.0107
LH2: kcon � 0.1280
LCH4: kcon � 0.0288
structural (Barlow’s formula):
m � Aδ
ptot � ppress � ϱconhg0 � �TWR − 1�
Ncirc � ptot

d

2

Nax �
ptot

πd2

4
πd

δ � N2
circ � N2

ax

σyield
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Table D1 (Continued.)

Component Geometric model DER MER

Fuela [6] Fluid enclosed in a tank V � mf

ϱf
�1� uf � sf�

uf � 0.03

RP-1: sf � 0

LH2: sf � 0.0143

LCH4: sf � 0.0143

ff � φ

1� φ
m � �mT

p �mR
p�ff � _mptstartupff

Oxidizer [6] Fluid enclosed in a tank V � mo

ϱo
�1� uo � so�

uo � 0.03
LOx: so � 0.0143

fo � 1

1� φ
m � �mT

p �mR
p�fo � _mptstartupfo

Pressurization gas [5] Gas in a spherical tank
V � mRT

ppress

m � 1.1
pullageVp

RT

ϰ

1 −
pullage

ppress

Pressurization liquid [5]b Liquid in a spherical tank V � m

ϱ�T� m � 1.1
pullageVp

RT

Pressurization tank [5] Spherical tank
d � 3Vfluid

π
for gas:

δ � 2
ppressR

2σyield
for liquid: δ � 4 mm

m � πD2δϱpress:tank

Tank insulation [6] Thin shell around a tank V � 0 m � kinsA

kins � −1.077 ln ΔT � 6.0649
kg

m2

Solid rocket motor (SRM)
casing [34]

Convex–convex cylindrical tank V � 1.12Vcontent m � kcasingmcontent�kg�
steel: kcasing � 0.1350

composite: kcasing � 0.1154

Intertank structure [34] Thin cylinder
h � 1

4
dst � 2hdome m � 13; 3

kg

m2
A�m2�

Thrust structure [34] Solid cylinder
h � 2

3
dst − hdome m � 2.55 × 10−4

kg

N
T�N�

Gimbals [6] Point mass h � 0
m � 237.8

T�N�
pchamber�Pa�

0.9375

Interstage [34] Thin cone frustum Hemispherical domes:

h � 5

4
dst

elliptical-hemispheroid domes:
h � dst

m � 13; 3
kg

m2
A �m2�

Propellant distribution
system (PDS) [36]c

Two opposite thin bars of heights h1
and h2

d h1 �
1

2
hst, d1 �

4 _m1

πϱ1vfl

h2 � hst, d2 �
4 _m2

πϱ2vfl
,

vfl � 10
m

s

m � 2.1727
kg

m2
πdst �m�hst �m�

Hydraulics [36]e Point mass h � 0 m � 0.0023m0;st

Stage separation mechanism
(SSM) [37]

Point mass h � 0 m � 8.7 × 10−4mPL;st

Grid fins [7] Geometry in Fig. D1(a) ainit ≈ 0.4ds

binit ≈
9

11
a

na � round�ainitls 2
p �

nb � round�binitls 2
p �

a � na�ls � t� 2
p

b � nb�ls � t� 2
p

m � ϱδ�ab − 2nanbl
2
s

�2�a� b − 2t�t�2atb�

Landing gear [7] Geometry in Fig. D1(b) l � ds

hA � ds
2

hB � ds

m � 0.09ms;st

aEngine startup time tstartup � 2 s [6].
bModel by [5] modified for a liquid.
cMER by [36]; DER devised ad hoc for the paper.
dIndex 1 refers to the lower tank in the stage, and 2 to the upper ( _mf � _mp∕1� φ, _mo � _mp∕1� 1∕φ).
eOriginal MER fitted to Space Shuttle; the given one is fitted to RETALT.
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Indices used: PF, P/L fairing; st, stage; press, pressurization; ins,
insulation; con, contents; p, propellant; f, fuel; o, oxidizer; startup,
engine startup time; circ, circumferential; ax, axial; tot, total.
Variables: A, outer surface area of a component; T, single engine

thrust; Vp, propellant volume; φ, oxidizer-to-fuel ratio; AR, dome
aspect ratio; n, number of components;R, individual gas constant; ϰ,
gas adiabatic index; T, temperature; p, pressure; δ, wall thickness;
σyield, yield stress; ΔT, temperature difference between neighboring
tanks; _m1, mass flows from the lower tank in the stage; _m2, mass

flows from the upper tank in the stage; ϱ, fluid density; u, ullage
factor; s, shrinkage factor; f, mix ratio;ψ , dead propellant fraction; ξ,
reusability index; N, force flux.

Appendix E: Launcher Mass Composition, Trajectories,
and Visualizations

An exemplary mass compositions of RETALTand Falcon 9 FTare
shown in Fig. E1. Trajectories of the analyzed RETALTand Falcon 9

a) Falcon 9 FT mass composition

b) RETALT mass composition

Fig. E1 Reusable launchers mass composition.

Fig. D1 Grid fins [38] and landing gear [7] geometries.
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a) Ascent trajectory

b) Descent trajectory, max-q 120 kPa

Fig. E2 Ascent and descent trajectories for the model of Falcon 9 FT.
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a) Ascent trajectory

b) Descent trajectory, max-q 120 kPa

Fig. E3 Ascent and descent trajectories for the model of RETALT.
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FT for ascent and descent are shown in Figs. E2 and E3. Examples
of parametric visualizations of launchers are depicted in Fig. E4.
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