

Simulation of modern Traffic Lights Control Systems using the open source Traffic Simulation SUMO

<u>Daniel Krajzewicz</u>, Elmar Brockfeld, Jürgen Mikat, Julia Ringel, Wolfram Tuchscheerer, Christian Rössel, Peter Wagner, Richard Wösler Institute of Transportation at the German Aerospace Centre

Presented at the ISC 2005 in Berlin

OIS:

Automatic detection of vehicles within a list of images...

And their tracking...

And their tracking...

And their tracking...

Results (among other): vehicle trajectories for all vehicles that have passed the junction

Simulation Tasks & Methods

Task:

- Show capabilities to improve traffic flow by
 - comparing throughput against a normal tls
 - comparing jam lengths against a normal tls
 - Visualisation (running both enhanced and normal network versions synchronized)

Method:

- Simulate the area of interest (area the original OIS was tested within) with two different TLS-logics
 - Real-world logic
 - Agentbased TLS which uses values as those generated by OIS
- Compare the results

The "agentbased" TLS-logic

 t_{r} , t_{g} : red, green phase proportion

$$r_{ph} = t_r / t_q$$

 $t_{cycle} = t_r + t_q$: cycle time

 d_{look} : looking distance

 t_{decide} : decision time interval

 $n_{ratio} = (waiting_n - waiting_e) / waiting_n$

n: northbound

e: eastbound

 n_{limit} : decision threshold

- 1. The area of interest was extracted from a NavTech-database
- 2. The area was duplicated and shifted to the right to gain a second network for comparison
- 3. The original TLS-plans were inserted into both networks
- 4. One network version was equipped with the new tls-logics

- 1. The area of interest was extracted from a NavTech-database
- 2. The area was duplicated and shifted to the right to gain a second network for comparison
- 3. The original TLS-plans were inserted into both networks
- 4. One network version was equipped with the new tls-logics

- 1. The area of interest was extracted from a NavTech-database
- 2. The area was duplicated and shifted to the right to gain a second network for comparison
- 3. The original TLS-plans were inserted into both networks
- 4. One network version was equipped with the new tls-logics

- 1. The area of interest was extracted from a NavTech-database
- 2. The area was duplicated and shifted to the right to gain a second network for comparison
- 3. The original TLS-plans were inserted into both networks
- 4. One network version was equipped with the new tls-logics

Close-up comparison between a normal (left) and OIS-equipped (right) junction (here: Wegedornstraße)

Routes Preparation

- For the area of interest following values were counted:
 - flows over junctions
 - turning percentages
- A special tool for routes generation using these values was implemented.
- For the junctions of interest, the simulated and the original flows were compared in order to calibrate the simulation.

Results – Throughput Comparison Agastraße

Results – Throughput Comparison Wegedornstr.

Results – Jam Comparison Agastraße

Results – Jam Comparison Wegedornstraße

Visual Comparison

A non-microscopic view at the simulation showing densities for Agastraße comparing normal (left) and OIS-equipped (right) tls

Summary

On agentbased-TLS:

- Show a clear benefit if one of a junction's inflows is increased dramatically
- Show no benefit if flows are low or same for all directions
- Do not regard problems on following junctions

On SUMO:

- Applicable for real-world problems
- Easy to extend

SUMO Project Details

Participants:

Institute of Traffic Research / DLR

Zentrum für angewandte Informatik, Köln

Version 0.8.2.4 current version:

free download: http://sumo.sourceforge.net

Daniel.Krajzewicz@dlr.de contact: