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Abstract
The increasing number of orbital launches has led to a significant surge in spacecrafts in Earth’s orbit, making mission
control centers more complex and challenging to manage. To address this issue, we investigated the potential of Large
Language Models (LLMs) in space operations, focusing on tasks such as information retrieval, documentation, and quick
decision-making. This paper explores two evaluation studies that tested the application of LLMs for specific use cases in
a non-cloud environment due to sensitive data confidentiality requirements, including a scenario for the Columbus Flight
Control Team to quickly retrieve information during operations. Our results demonstrate the promising capabilities of
LLMs in supporting spacecraft engineers with answers, while also highlighting the need for parameter fine-tuning, prompt
engineering, or even model re-training. This paper provides actionable insights into the potential integration of LLMs in
space operations and outlines future research directions related to this emerging field.
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1. INTRODUCTION

Each year, the number of orbital launches increases dra-
matically – for example, in 2023, 211 orbital launches were
carried out worldwide, 33 more than the year before and
129 more than ten years before. With the growing num-
ber of launches, the number of spacecrafts in the earth’s
orbit increases as well. As a result, mission control centers
nowadays need to manage a greater number of spacecrafts
as well as the increasing workload and complexity. There-
fore, new technologies for reducing the workload of their
employees while maintaining safe, reliable, and economic
space operations need to be adapted.
One new technology that already revolutionizes the daily
work routine in many domains are foundation models:
AI-models that are trained on huge amounts of data. These
models have shown astonishing capabilities in different
fields and applications; from generating photorealistic
images or writing human like texts to producing true-to-life
video sequences. Especially Large Language Models
(LLMs), which comprehend natural language in an un-
precedented way, are a promising new technology which
may be able to enhance space operations and help reduce
the steadily increasing workload.
The German Space Operations Center (GSOC) at the Ger-
man Aerospace Center (DLR) explored several challenging
tasks at which spacecraft engineers could be supported by
LLMs which will be described in this article. For example,
engineers need to react quickly to issues and have to mem-
orize and recall a large amount of information acquired from
spacecraft documentations, flight procedures, etc. – all of
which are textual data. In addition, engineers have a high
documentation effort.
With LLM based tools, we could support the engineers both
during training and operations by providing them with quick
and reliable answers.
Since the data of mission control centers are highly confi-
dential, the sensitive data cannot leave internal networks.
Therefore, a non-cloud-solution is often needed in our do-
main. This in itself is a challenging task, since most of the
popular LLM off-the-shelf products are cloud-based. In this

article, we describe possible areas of application as well as
two evaluation studies in which we tested the application of
LLMs for the previously described tasks. In the first study,
we investigated the basic features of LLMs and analyzed
whether this new technology is suitable for space opera-
tions. In a follow-up study, we researched a concrete sce-
nario for LLMs to provide the Columbus Flight Control Team
with a tool to quickly retrieve information during operations.
For each study, we provide the approach, the conclusions,
and our lessons learned.
This paper is structured as follows: In the Motivation,
we begin by providing a concise motivation for the need
of an assistant system for space operations, highlight-
ing the complexities and challenges. Related work and
technological background, a broader understanding of the
technological context is then offered, including relevant
projects that have explored similar ideas. In section Use
Case Experiments, the core contribution of this paper lies
in its systematic and effectiv investigation of the capabilities
of LLMs in space operation, exploring their potential to
augment human decision-making and enhance operational
efficiency. Our use cases are carefully designed to explore
the strengths and limitations of LLMs in a short time.
Finally, in Conclusion and Outlook, we conclude by distilling
our findings into actionable insights and highlight future
research directions related to the integration of LLMs in
space operations.

2. MOTIVATION

With a permanently growing satellite fleet, operators and
system engineers face the challenge of memorizing and re-
calling vast amounts of textual data from spacecraft docu-
mentation, flight procedures, etc. This information is cru-
cial during training/operations, but the danger is high that in
emergency situations, operators may struggle to recall the
right information or spend too much time searching for it.
And, as the number of satellites increases, this leads to an
increasing effort required for documentation too.
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To address these issues, we need an assistance system
that can search, collect, and summarize necessary informa-
tion while supporting operators in documenting their work.
Therefore, we’ve explored the capabilities of foundation
models to support operators with these tasks through two
experiments. The design aimed to provide quick results and
demonstrate the potential for this technology. Our objective
is to empower engineers with rapid, accurate, and reliable
answers during both training and operational phases.
However, sensitive data must remain within our internal net-
work, which restricts the use of cloud solutions since we
neither own a private cloud nor have the capacities to im-
plement and operate one.

3. TECHNICAL FOUNDATION AND RELATED WORK

This section provides an overview to the technical aspects
of our experiments, with a focus on foundation models, i.e.,
large language models. Due to the breadth and depth of
research in this area, we will only provide a brief overview,
rather than going into detailed explanations that could fill
several papers. We detail the specific methodologies,
tools, and techniques employed in our experiments, which
informed the design of our experimental setup.

3.1. LLMs in Short

The concept of Large Language Models (LLMs) was first
introduced in the paper “Attention Is All You Need” by A.
Vaswani et al. [1], which presented the Transformer network
architecture as a novel approach to processing sequential
data, such as text. This architecture involves converting text
into numerical representations called tokens, which are then
transformed into vectors through a word embedding table (a
lookup table that maps words to dense vector representa-
tions). Each token is contextualized within a context win-
dow via a parallel multi-head attention mechanism, allowing
the model to selectively amplify or diminish the importance
of key tokens. This architecture has revolutionized Natural
Language Processing (NLP), achieving impressive results
and spawning numerous applications, including call center
chatbots with human-like conversations and text generation.
However, due to the resource-intensive nature of training
LLMs on large datasets, only major tech companies like
OpenAI, Google, and Meta have been able to train these
models. To democratize access to LLMs and break the
dominance of OpenAI’s market leader, Meta and Google
have published their models open-source, allowing a vast
user community to develop around them. The Hugging
Face platform [2] is a leading example of this ecosystem, of-
fering a library of pre-trained models and tools for research
and innovation.
To address concerns about data privacy within this com-
munity, frameworks have been developed to run LLMs lo-
cally on users’ own hardware without requiring an internet
connection. Two popular examples are private-gpt, which
enables users to query their documents using the power
of LLMs while maintaining complete control over their data,
and LocalGPT, an open-source initiative that allows conver-
sational interactions with documents without compromising
user privacy. By running these models locally, users can be
assured that no sensitive data leaves their computer, meet-
ing our requirement for preserving confidentiality within our
network.
To conclude this short introduction, we want to use the
power of Large Language Models to provide an assistant
to our operator and system engineers that can answer

complex queries, help with troubleshooting, and facilitate
knowledge access across our organization.

4. USE CASE EXPERIMENTS

To explore the potential of LLMs in supporting spacecraft
operators and system engineers with their tasks, we con-
ducted two experiments designed to yield quick results. Our
primary objective is to enable engineers during training and
operations by providing them with rapid and reliable an-
swers.
However, our operational requirements present certain lim-
itations: Due to security concerns, sensitive data must re-
main within our internal network. This restricts the use of
cloud solutions, as we do not own a private cloud or have
the capacity to implement and operate one.
In this section, we will delve into the details of these two
experiments. Our goal is to provide an in-depth explanation
of each experiment’s design, methodology, and outcomes.

4.1. Prerequisite

For the experiments, we defined the following prerequisites:
A local version of a LLM must be deployed on standard
office hardware like standard developer laptops, utilizing
open-source libraries such as PrivateGPT [3] or LocalGPT
[4]. Due to security concerns, all sensitive data must remain
within our internal network. This forbids the usage of cloud-
based solutions and necessitates the implementation of a
local LLM setup.
By fulfilling these prerequisites, we can ensure that the
experiment is conducted in a secure and compliant man-
ner, while also leveraging the capabilities of open-source
libraries to support our operational needs.

4.2. Method

To conduct this experiment, we employed a combination of
open-source libraries and “core technologies”. We tested
two open-source libraries, LocalGPT and PrivateGPT [3], to
assess their suitability for our operational needs.
The core technologies used in this experiment include
langchain, a Python library for building, testing, and de-
ploying language models, as well as llamacpp, a C++
library for Large Language Model (LLM) development and
deployment. We also utilized text embeddings from Instruc-
torEmbeddings and SentenceTransformers to enhance
model performance.
Furthermore, the models employed in this experiment were
based on two distinct architectures: GPT4All-J, a variant of
the GPT-4 model, and LlamaCpp (llama-2 based), a C++
implementation of the llama-2 model utilizing the llamacpp
library.
By exploring these technologies, we aimed to create an ex-
periment setup that could effectively evaluate the capabil-
ities of open-source libraries in supporting our operational
needs.

4.3. Architecture

The architecture of our experiments is depicted in Figure
1 (based on localGPT [4] and privateGPT [3] frameworks),
which leverages state-of-the-art techniques for integrating
Large Language Models (LLMs) with vector databases. The
user initiates a query through the console, which triggers
a similarity search in the vector database that stores our
collection of documents, including flight procedures, man-
uals, and other relevant resources. The similarity search
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FIG 1. Experiment architecture: LLM with Vector Store.

is performed using a technique such as approximate near-
est neighbor search (ANNS) or hierarchical navigable small
world graphs (HNSW), which efficiently retrieves the most
similar documents to the user’s query. The resulting docu-
ment set is then ranked based on their semantic similarity
to the query, ensuring that the top-ranked documents are
those that are most relevant and contextual. The output of
this similarity search, along with the initial query, serves as
the context for the LLM to generate an answer. This contex-
tualized knowledge enables the LLM to not only draw upon
its trained knowledge but also leverage the background in-
formation provided by our collection of documents. The
LLM then uses this contextualized knowledge to build a re-
sponse and returns it to the user, providing a detailed and
relevant answer to their query.

4.4. Experiment I: Inference (Aug. 2023)

The first of our two experiments took place in August 2023.
At that time, the open-source frameworks for running LLMs
on local computers were still experimental, and we had to
spend some time figuring out how to install and run a LLM
locally on our laptops.
To gain knowledge about available frameworks, we decided
to include this process as part of the experiment. We also
wanted to see which framework would work best for us, so
we quickly scanned the internet for guidance. This search
proved helpful in getting started with our experiments.
Since we had limited time, we planned to split the experi-
ment into three parts, each with a different but overlapping
goal. Three people were involved, and we wanted to make
sure everyone contributed their expertise.
The first part focused on inserting large documents into the
LLM’s context and using it to find certain facts within those
documents. The second part aimed to use our internal wiki
page as a resource for knowledge and reduce hallucina-
tions (we’ll discuss this in more detail later) within the LLM’s
answers. Finally, we wanted to test how to overwrite the
LLM’s trained facts with new facts injected into the LLM’s
context from a documents stored on our system.

Summarize Documents

In the first part of the experiment, we attempted to make
sense of a large corpus of domain specific documents by

summarizing overarching information or extracting a spe-
cific bits of information.
The input to our vector store were twofold: We ingested pa-
pers related to the topic of anomaly detection in the domain
of space operations as well as user manuals and proce-
dures of a visualization tool deployed at GSOC. As the ex-
perimenters have expert knowledge of both of these topics,
the accuracy and completeness of the provided answers
could be evaluated.
Additional hyper-parameters were tuned in this part of the
experiment. One of the most important parameters here
is the so called chunk size. In short, the chunk size pa-
rameter controls how many parts of ingested documents
are utilized for answering a question. When, e. g., set-
ting the chunk size to one, only a single document will be
taken into account, which would make it impossible for the
LLM to extract information from multiple documents. Setting
the chunk size too high, however, worsens the performance
and might lead to unrelated documents being considered for
an answer. We achieved sufficient results with chunk sizes
between 4 and 8 while still keeping the computational cost
manageable.
For the evaluation of summarizing many documents at
once, we asked the LLM to summarized the different ap-
proaches used for anomaly detection for satellite telemetry.
Various different prompts were used and repeated in order
to get a better understanding of the results. Overall, the
results were very mixed. In many cases, the answer only
mentioned a small amount of the provided approaches,
sometimes even describing a single approach. While
often being able to capture the general concept behind the
anomaly detection methods, some of the descriptions also
errors only detectable if one is already familiar with the
topic.
When asking the LLM for a specific bit of information re-
lated to the ingested user manual and procedures, the re-
sults were overall better. While it sometimes denied an an-
swer due to a perceived lack of information or provided use-
less answers, it was often able to name the correct proce-
dure containing the requested information and give a short
overview of its content.
In summary, the results of this part of the experiment show
that there is still much to improve on and investigate. Get-
ting incomplete or incorrect summaries of documents is a
big problem for our operational use cases. While answering
very specific question yielded better results, the number of
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bad answers still need to be reduced to satisfy the expecta-
tion of our users.

RB-MBT Facts

As our goal is to support the training and operational needs
of satellite engineers, this part of the experiment focused
on ensuring the accuracy of the model outputs. For op-
erational use, it is essential that our setup provides reli-
able information with minimal hallucination. Hallucination in
LLMs refers to the phenomenon where a model generates
responses that are entirely made-up or not supported by the
input data, often due to overconfidence or a lack of under-
standing of the context. This can result in answers that are
factually incorrect, irrelevant, or even absurd. Moreover, we
require consistent answers to repeated queries, as varying
responses can be problematic in critical applications.
To achieve these goals, we employed a vector store popu-
lated with internal wiki pages, which contain diverse formats
and styles similar to those encountered in real-world satel-
lite operations, such as:
• software documentation (single language, full sentences,

many industry-specific abbreviations),
• meeting notes (mixture of German and English, mixture

of bullet points and full sentences, both names and un-
common abbreviations in different formats),

• tabular information.
We conducted experiments to reduce hallucination and im-
prove factual accuracy by varying hyperparameters and ex-
ploring different presets. In particular, we modified the fol-
lowing settings:
• temperature: adjusts the probability distribution of next

tokens,
• repetition_penalty: penalizes tokens based on their

frequency in the text and prompt,
• top_k and top_p: control the number and proportion of

highest-probability tokens to retain.
We then asked the LLM questions about the content
of those wiki pages and evaluated the accuracy of the
answers. In addition, we compared the model outputs
for repeated queries. While adjusting the listed hyperpa-
rameters improved output accuracy, we unfortunately still
observed a significant share of both hallucinations and
variability in responses to repeated prompts. These issues
must be addressed in further experiments to ensure reliable
performance in satellite operations.

Overwrite Trained Knowledge

In this part of the experiment, we examined how to persists
and overwrites trained facts.
We designed this experiment to ensure the LLM trusts facts
from the document store over those learned during its train-
ing. This is crucial because we can’t control the learning
and training phase, which involves large tech companies
like Meta. During that phase, there’s a risk that the LLM
may learn false or inappropriate facts about space opera-
tions, since its training material often originates from the
Web with only minor quality control.
In an operational use case, our operators need to rely on
accurate information from the document store, not trained
facts. We must ensure that our LLM is trustworthy and pro-
vides correct support based on those documents, not on
knowledge it learned during its training at a AI company.

To test this, we used a technique called “prompt hacking” to
prioritize facts from the document store over learned facts.
We loaded a document into the document store containing
several false facts, such as “Paris is the capital of Germany”
or “The moon is made of cheese”. These false fact should
be way different to common facts, that we were sure the
LLM had learned it differently during its training phase, e.g.
that “Paris is the capital of France”.
We then asked the LLM questions about these false facts
and expected it to return the false fact instead of the correct
one. Before delivering the question, we provided the false
facts to the LLM’s prompt which builds the context for the
answers.
However, the results were varied: sometimes the LLM re-
turned the false fact, sometimes it answered correctly based
on its learned context, and occasionally it withdrew an an-
swer, saying that the statement was not true.
For our operational use cases, this unpredictability is a
problem. We need to be sure that facts from the document
store (e.g., satellite documentation) are cited correctly and
not overwritten by learned context.

Conclusion

In this experiment, we aimed to investigate the potential of
LLMs in space operations. Despite being in the early stages
of experimentation, we were able to achieve promising re-
sults within a short amount of time. Our first findings sug-
gest that with further adjustments and refinements, an LLM
could be developed into a viable product that meets our spe-
cific needs.
By exploring the capabilities of LLMs, we may be able to
provide accurate information to operators and help them to
operate more satellite more safely and economically. While
there is still much work to be done, our experiment has
demonstrated that LLMs can be a valuable tool to our engi-
neers.

4.5. Experiment II: Application (Jan. 2024)

The second experiment took place in January 2024, six
months after our initial study. The goal of the experiment
was to deepen our knowledge about LLMs and to provide
the Columbus FCT with an experimental tool to retrieve in-
formation fast during operations. This time, since all par-
ticipants of the experiment used their gained knowledge of
the last experiment, everyone setup a similar environment
on its own laptop, injected data provided by the Columbus
FCT into the document store and asked the LLM some pre-
defined question.
This follow-up investigation leveraged significant techno-
logical advancements since then, including improved LLMs
and more efficient frameworks for local installation on
laptops.
The new models demonstrated substantially enhanced
performance, generating answers at a much faster pace
and with greater accuracy. Specifically, the incorporation
of quantized models yielded better results compared to our
earlier experiment.
The framework for local installation also underwent notable
improvements, which was easier to install now and able to
incorporate useful tools, such as automatic text extraction
from images or tables, by utilizing Optical Character Recog-
nition (OCR). This feature allows to seamlessly integrate
technical documentation into the document storage that of-
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ten include figures, schematics and tables with important
texts.
Moreover, the improved frameworks can use the process-
ing power of integrated Graphics Processing Units (GPUs),
which significantly accelerates the answer-finding process
and enables more natural conversations with the models.

Co-Pilot

After all participants had set-up their environments, we
populated the LLM’s document storage system with rel-
evant engineering and operational documents provided
by the Columbus FCT. Compared to satellite operations,
the Columbus module of the International Space Station
(ISS) is operated continuously 24/7, in order to provide
real-time support to the astronauts at all times. Further-
more, ground controllers need to be alerted about and
react to off-nominal events, such as emergencies. Those
off-nominal events usually require a specific response
from the ground controller in a extremely short manner.
It is therefore vital for the Columbus FCT to acquire this
knowledge during training. However, due to the complexity
of the on-board systems and operations, flight controllers
might not be able to memorize all pieces of information,
but must focus their effort on the most critical pieces. This
becomes even more evident, when looking at the document
base, which was used for this experiment: From a total
of nearly 400.000 documents available to the Columbus
FCT, the used documents consisted of just 92 documents,
all in .pdf format, covering user or operational manuals
only. The Columbus FCT usually uses those documents
to increase their Subject Matter Expertise (SME) in cer-
tain areas vital to operations during their certification, are
used to write procedures for executing activities on-board
Columbus or on ground, or are the basis for investigations
into anomalous behavior of on-board equipment. The size
of these documents ranged between a few pages, with
the smallest documents being 14 pages long (91kB), and
several thousand pages, with the largest documents being
8.700 pages long (180kB). This provided the LLM with
the necessary context to understand the questions and
topics being queried. Furthermore, this allowed us to gain
insights into the performance during data ingestion and
answer generation. All participants then posed a set of
standardized questions, provided by the Columbus FCT, to
their respective LLMs and recorded the responses. Finally,
a member of the Columbus FCT independently reviewed
and rated the answers generated by the LLMs against
those provided by a human expert. The questions revolved
around the on-board software of the Columbus Data Man-
agement Subsystem (DMS). A total of four questions were
used.
The ratings were based on the following criteria: (i) “correct
statements” if the content of the LLM’s answer matched that
of the human-provided response; (ii) “wrong statements” if
the LLM’s answer contained errors in terms of content; and
(iii) “out of scope” if the LLM’s response addressed a differ-
ent topic or was unrelated to the question posed. The result
of this evaluation is shown in Table 1, where we divided the
number of evaluated statements by each participant (indi-
cated by P1 through P4).
As can be seen in the table, the accuracy of the an-
swers were below 50% in all cases. This is most likely
due to the fact, that we used "out-of-the-box" models for
this experiment, with minimal (or no) further tuning of

hyper-parameters, no forms of prompt engineering and no
re-training of the model.

Conclusion

In conclusion, with our experiment have made a first step
to investigate the potential of LLMs in supporting space op-
erations personnel with quick and reliable answers to com-
plex technical questions. However, despite the promising
results, it is essential to acknowledge that the performance
of LLMs remains uncertain without further context and tun-
ing.
The accuracy of LLM-generated answers varies signifi-
cantly depending on the specific question posed, highlight-
ing the need for parameter fine-tuning, prompt engineering,
or even model re-training to optimize model performance
for particular use cases.
Finally, it is crucial to recognize that comparability and
repeatability are challenging to achieve and evaluate in
LLM-based studies like ours. The inherent variability in
model performance, question wording, and human eval-
uation make it difficult to draw definitive conclusions or
generalize results across different contexts. Nevertheless,
our research provides a solid foundation for future inves-
tigations into the capabilities and limitations of LLMs in
space operations, and we hope that this work will contribute
to a deeper understanding of their potential benefits and
drawbacks.

5. FUTURE WORK

As a next step, in an on-going cooperation with the Eu-
ropean Space Agency (ESA) in the course of their A2I
Roadmap, we develop a LLM based tool for incident
classification and root-cause analysis assistance. The
A2I Roadmap aims to leverage ML to support incident
classification and root-cause analysis in space mission op-
erations, among other use cases. The roadmap identifies
five priority domains and 14 specific use cases for targeted
AI application development, including:
• Incident classification: Using ML to classify incidents

based on their severity, impact, and cause
• Root-cause analysis: Utilizing ML to identify the underly-

ing causes of incidents and anomalies in space mission
operations

By applying ML techniques to these areas, the A2I
Roadmap aims to enhance the efficiency and effectiveness
of incident response and root-cause analysis in space
mission operations, ultimately contributing to the growth
and success of the European Space Sector.
With the Mars Exploration Telemetry-driven Information
System (METIS), GOSC is currently developing an in-
telligent assistant for astronautical exploration missions
into deep space. The assistant covers a broad area of
operations, from monitoring to anomaly resolution, time-
line planning, and activity execution. To achieve these
functions, the assistant is divided into different agents,
where each agent performs a specific function by using
a specific machine learning or automation approach, as
reported in [5]. For example, for the purposes of anomaly
resolution, the so-called "Reasoning-Agent" relies on a
Knowledge-Graph (KG), which combines different types
of data from different sources. This KG might also be
utilized by an LLM in order to generate text or reason about
the knowledge that is contained within the graph. There
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TAB 1. Results from the evaluation of queries.

Number of correct
statements

Number of false state-
ments

Number of out-of-
scope statements

Accuracy [%]

P1/P2/P3/P4 P1/P2/P3/P4 P1/P2/P3/P4

Question 1 2 / 1 / 5 / 6 = 14 5 / 4 / 7 / 9 = 25 4 / 4 / 5 / 1 = 14 26%

Question 2 3 / 0 / 4 / 5 = 12 5 / 0 / 2 / 1 = 8 2 / 6 / 1 / 0 = 9 41%

Question 3 4 / 4 / 4 / 5 = 21 4 / 3 / 3 / 3 = 16 2 / 0 / 4 / 0 = 6 49%

Question 4 5 / 4 / 3 / n.a. = 12 3 / 4 / 4 / n.a. = 11 2 / 1 / 4 / n.a. = 7 40%

is currently an on-going project involving GSOC and the
DLR institute for Software Technology, which will explore
this possibility. First results will most likely be available by
mid/end of 2025.
Building upon the success of our initial experiments, we
plan to conduct a more comprehensive investigation into the
rapid advancements in LLMs. Specifically, we aim to delve
deeper into the realm of Retrieval Augmented Generation
(RAG) techniques. The basic idea is to retrieve, i.e. fetch
relevant information from a pre-trained index or database.
And generate, i.e. use the retrieved information as input to
generate new, coherent text.
Furthermore, we plan to integrate Ollama [6], a lightweight
and extensible framework for building and running language
models on local machines, into our experimental pipeline.
By doing so, we aim to further streamline the development
process and reduce computational overhead.
Lastly, we recognize the importance of optimizing vector
database performance in the context of LLMs. We intend to
conduct an in-depth exploration of this area, with a focus on
developing novel indexing strategies and query optimization
techniques to enhance overall model efficiency.

6. CONCLUSION

These experiments have made a first step towards inves-
tigating the potential of Large Language Models (LLMs) in
supporting space operations personnel at GSOC with quick
and reliable answers to complex technical questions. The
results of our experiment are promising, but also highlight
the need for further research to refine model performance.
The accuracy of LLM-generated answers varies signifi-
cantly depending on the specific question posed, under-
scoring the importance of parameter fine-tuning, prompt
engineering, or even model re-training to optimize model
performance for particular use cases. We acknowledge
that comparability and repeatability are challenging to
achieve in LLM-based studies like ours, due to inherent
variability in model performance, question wording, and
human evaluation.
Despite these challenges, our research provides a solid
foundation for future investigations into the capabilities and
limitations of LLMs in space operations. By exploring the
potential benefits and drawbacks of LLMs, we aim to con-
tribute to a deeper understanding of their role in supporting
operators and engineers in space-related tasks. Ultimately,
this study demonstrates that LLMs have the potential to
provide accurate information to operators, enabling them to
operate satellites more safely and economically.
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