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We address the problem of performing a topology-aware simplification algorithm on a compact and distributed

data structure for triangle meshes, the Terrain trees. Topology-aware operators have been defined to coarsen

a Triangulated Irregular Network (TIN) without affecting the topology of its underlying terrain, i.e., without

modifying critical features of the terrain, such as pits, saddles, peaks, and their connectivity. However, their

scalability is limited for large-scale meshes. Our proposed algorithm uses a batched processing strategy

to reduce both the memory and time requirements of the simplification process and thanks to the spatial

decomposition on the basis of Terrain trees, it can be easily parallelized. Also, since a Terrain tree after the

simplification process becomes less compact and efficient, we propose an efficient post-processing step for

updating hierarchical spatial decomposition. Our experiments on real-world TINs, derived from topographic

and bathymetric LiDAR data, demonstrate the scalability and efficiency of our approach. Specifically, topology-

aware simplification on Terrain trees uses 40% less memory and half the time compared to the most compact

and efficient connectivity-based data structure for TINs. Furthermore, the parallel simplification algorithm on

the Terrain trees exhibits a 12x speedup with an OpenMP implementation. The quality of the output mesh

is not significantly affected by the distributed and parallel simplification strategy of Terrain trees, and we

obtain similar quality levels compared to the global baseline method.
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1 INTRODUCTION
Morse theory is a powerful mathematical framework that enables the segmentation of a scalar field

according to the regions of influence of its critical points. This general task has proved fundamental

in many application domains, including material science [41], chemistry [56], environmental

science [69], forest monitoring [72], and urban analysis [25], to mention a few. In terrain analysis,

particularly, the segmentation of a terrain according to its critical points (i.e., peaks and pits)

provides information regarding terrain morphology, which are fundamental for assessing the risk
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of landslides or floods. Terrain surfaces are usually described by either Triangulated Irregular

Networks (TINs), or raster-based Digital Elevation Models (DEMs). Although TINs can better adapt

to irregularly distributed data, their usage is constrained by their large storage costs compared to

DEMs. At the same time, the increasing availability of large point clouds [57] intensifies the need

for scalable data representations for TINs.

Spurious critical points, naturally occurring in data due to noisy acquisitions, can severely affect

terrain analysis. For this reason, several simplification approaches capable of removing spurious

features, while maintaining important critical points, have been defined in the literature [6, 16, 52].

These approaches reduce the morphological complexity of the dataset, while leaving the underlying

digital terrain model unchanged. However, when working with large terrain datasets, a notable

issue arises: the complexity of extracting, representing, and visualizing topological features and

structures is directly related to the resolution of the terrain model. A possible solution is to lower

the resolution of a terrain model, which, however, may affect its topology in an uncontrolled way,

thereby deteriorating the simulation and segmentation results.

In [46], we recently addressed this problem by defining a local simplification operator, called

gradient-aware edge contraction. This operator is capable of reducing the resolution of a TIN

while preserving the topology of the underlying terrain. By combining such an operator with a

topological simplification operator, users are able to simplify the resolution of both the topology

and the geometry of a terrain in a completely controlled way. However, when processing large

terrains, multiple issues arise. First, encoding the original TIN requires significantmemory resources,

and, thus, there is the need to use efficient representations to reduce memory usage. Secondly,

performing a large number of simplifications sequentially is time-consuming [46], directly affecting

user interactions during data exploration. Thus, there is a need to develop a parallel simplification

strategy.

In this work, we address both issues by designing and implementing a new simplification

approach for triangulated terrains. The algorithm performs topology-aware simplification by

extending gradient-aware edge contraction on a highly efficient data structure, the Terrain trees

[27], which have been shown to be the most compact representation for triangulated terrains.

Our approach reduces the geometric complexity of large triangulated terrains without affecting

their morphology or incurring limitations due to processing time or space constraints. The major

contributions of this paper, which extends the work in [68], include:

(1) the design and implementation of a topology-aware mesh simplification method on a compact

data representation for triangle meshes, Terrain trees;

(2) the definition of a leaf-locking strategy on Terrain trees and the design of a parallel topology-

aware mesh simplification algorithm;

(3) the design of an algorithm for updating a Terrain tree after simplification, which can be

applied independently of the way the mesh encoded in the Terrain tree is modified;

(4) an experimental evaluation on the new simplification methods in terms of computing perfor-

mances and quality of the output mesh;

(5) a discussion on leaf capacity selection for efficient mesh simplification on Terrain trees;

(6) an optimized simplification strategy on Terrain trees for improving output mesh quality.

While the design and implementation of the simplification algorithm on Terrain trees and the

evaluation of the computational performance were previously presented at ACM SIGSPATIAL

2021 [68], this paper contains the full description of the Terrain tree update algorithm, experiments

on simplified mesh quality, the discussion on the relationship between leaf capacity and mesh

quality, and the description of an enhanced quality-oriented simplification strategy. In addition,
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compared to the conference paper [68], we provide a more comprehensive review of the background

notions and related works.

The remainder of the paper is organized as follows. Section 2 reviews some related background

notions on discrete Morse theory. Section 3 discusses related work on triangle mesh simplifi-

cation and on topology-based simplification. Section 4 briefly reviews the Terrain trees, which

is the underlying data structure of our algorithms, while, Section 5 provides the definition of

a topology-aware edge contraction operator. Section 6 describes the proposed topology-aware

simplification algorithm, and, Section 7 defines a new parallel simplification algorithm relying on

the distributed nature of Terrain trees. Section 8 describes an algorithm for updating a Terrain

tree as a post-processing step, which is necessary to keep the downstream operations efficient.

Section 9 discusses several mesh quality metrics for evaluating the output meshes generated by the

proposed simplification algorithms. In Section 10, we experimentally evaluate both the sequential

and the parallel topology-aware simplification on Terrain trees and compare them against an

implementation of the topology-aware simplification on a state-of-the-art compact data structure

for meshes. Finally, in Section 11, we draw some concluding remarks and discuss directions for

future work.

2 BACKGROUND
In this section, we review fundamental elements of discrete Morse theory, which is the basis for 2D

scalar field topology, but just restricting to triangle meshes. Interested readers are referred to other

work [19, 31] for a comprehensive overview of the theory and its application in shape analysis and

visualization.

Morse theory [53] is a mathematical tool studying the relationships between the topology of a

manifold shape M and the critical points of a smooth scalar function f defined over M. Based on

Morse theory, we can define segmentations for shape M based on the regions of influence and the

connectivity of its critical points. Discrete Morse Theory (DMT) [31] is a combinatorial counterpart

to Morse theory which nicely extends the results of Morse theory to discrete data, and thus it has

been used for analysis of 2D and 3D scalar fields [27, 41, 61, 70].

We consider a pair (Σ, 𝐹 ), where Σ is a triangle mesh and 𝐹 : Σ→ R is a scalar function defined

on all the simplices of Σ. Function F is a discrete Morse function (also called a Forman function) if
and only if, for every 𝑘-simplex 𝜎 ∈ Σ, all the (𝑘 − 1)-simplices on the boundary of 𝜎 have a lower

function value than 𝜎 , and all the (𝑘 + 1)-simplices bounded by 𝜎 have a higher function value

than 𝜎 , with at most one exception. If such an exception exists, it defines a pairing of cells, called a

gradient pair. A gradient pair can be viewed as an arrow formed by a head (𝑘-simplex) and a tail

((𝑘 − 1)-simplex). A simplex involved in no pairs is called a critical simplex. We call a 𝑉 -path a

sequence of simplices [𝜎0, 𝜏0, ..., 𝜎𝑖 , 𝜏𝑖 , ..., 𝜎𝑟 , 𝜏𝑟 ] such that 𝜎𝑖 and 𝜎𝑖+1 are on the boundary of 𝜏𝑖 and

(𝜎𝑖 , 𝜏𝑖 ) are paired simplices, where 𝑖 = 0, ..., 𝑟 . A 𝑉 -path is said to be closed if 𝜎0 = 𝜎𝑟 , and trivial, if
𝑟 = 0. The collection of all paired and critical simplices of Σ forms a discrete Morse gradient (also
called a Forman gradient) if there is no closed 𝑉 -path. A separatrix 𝑉𝑗 -path is a 𝑉 -path connecting

two critical simplices of dimension 𝑗 + 1 and 𝑗 , respectively.
Given a triangle mesh Σ with elevation values defined at the vertices, we can extend it to a

Forman function 𝐹 defined on all simplices of Σ using the Robin’s algorithm [61]. In a triangle mesh,

we have arrows formed by a triangle and an edge (triangle-edge pair) and by an edge and a vertex

(edge-vertex pair). There are three types of critical simplices in a triangle mesh: critical triangles

indicating maxima, critical edges indicating saddles, and critical vertices indicating minima. Figure

1(a) shows an example of a discrete Forman gradient computed on a triangle mesh. Red, green,

and blue dots indicate critical triangles, edges, and vertices, respectively. Arrows indicate gradient

vectors. Critical simplices are the discrete counterpart of critical points. It has been proved by
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(a) (b) (c) (d)

Fig. 1. (a) Forman gradient, (b) separatrix 𝑉 -paths connecting pairs of critical simplices. Regions of influence
of maxima are computed by visiting the𝑉 -paths (c) at the maxima, and (d) until the whole region of influence
is visited.

(a) (b)

Fig. 2. Example of (a) a persistence diagram formed by four points and (b) its birth-persistence chart. Points
with the same color in (a) and (b) correspond to the same point.

Fugacci et al. [35] that critical simplices appear in correspondence of critical points defined for the

piece-wise linear surface approximation according to the theory by Banchoff [3].

For terrain analysis, the Forman gradient can be seen as the combinatorial counterpart of the

gradient of the elevation function 𝑓 [61, 70] and allows direct computation of different topological

structures [19]. Figure 1(b) shows the separatrix 𝑉−paths connecting pairs of critical simplices,

and the collection of such paths is referred to as a critical net. Moreover, the Forman gradient is

also used to segment a dataset based on the regions of influence of its critical cells. Figure 1(c)

shows the regions of influence for two critical triangles (maxima). Each region of influence is

computed by starting from the gradient vectors outgoing the critical triangle and expanding the

region recursively until no more gradient vector can be visited (see Figure 1(d)).

Topological descriptors offer representations of a terrain topology well suited for analytical

comparisons. The most widely used topological descriptor is the persistence diagram, a compact

representation rooted in the theory of persistent homology [26].

Formally, a persistence diagram is a multi-set of points representing all critical simplices of the

terrain. Each point 𝑝 , with coordinates (𝑏, 𝑑), in the persistence diagram corresponds to a pair

of critical simplices 𝑝1 and 𝑝2 connected by a separatrix 𝑉 -path (e.g., a minimum-saddle pair or

a saddle-maximum pair). The x-coordinate is called the birth of the point 𝑝 , which is defined as

𝑏 = 𝑓 (𝑝1); the y-coordinate is called the death of the point 𝑝 , which is defined as 𝑑 = 𝑓 (𝑝2). The
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difference between the death and the birth of the point 𝑝 , denoted as persistence, measures the

importance of the pair of critical simplices 𝑝1 and 𝑝2. Figure 2 shows an example of a persistence

diagram containing four points. For example, the blue point has coordinates (3, 4) and its persistence

value is 1.

3 RELATEDWORK
In this section, we review state-of-the-art research related to this work. In subsection 3.1, we

review triangle mesh simplification methods, with a focus on the improvement of memory and

time efficiency. In subsection 3.2, we review topology-based simplification methods.

3.1 Triangle mesh simplification
The task of mesh simplification has been extensively studied in the literature [11, 42, 64]. In this

section, we provide an overview of some techniques and challenges in triangle mesh simplification.

Popular techniques for mesh simplifications include vertex decimation [65], edge collapse [43],

vertex clustering [62], and triangle collapse [44]. Vertex decimation, also referred to as vertex removal,
consists of removing from the mesh a vertex and all the triangles incident at it and triangulating the

"hole" left behind. Edge collapse, also known as edge contraction, involves contracting an edge to a

single vertex. When the edge is contracted to one of its endpoints, this operation is called half-edge-
collapse. Vertex clustering consists of grouping nearby vertices into clusters and representing each

cluster with a few new points. Triangle collapse removes a triangle from the mesh by collapsing it

into one vertex.

After selecting a simplification operator, one should define the order in which simplifications are

performed. When considering edge contraction, a simple metric is to always contract the shortest

edge [71]. Several more sophisticated metrics have been defined for optimizing the quality of

output meshes, such as minimizing an energy function [43], setting a threshold on the Hausdorff

distance between the original and the simplified models [47], minimizing the error quadrics [36],

or setting a threshold on the error volume [38]. The Quadric Error Metric (𝑄𝐸𝑀) [36] is one of

the few approaches which keeps a good balance between computational costs and resulting mesh

quality. These metrics are designed to optimize the geometric quality of the simplified mesh, but a

simplification operator following them can still create non-valid meshes. To avoid such a situation,

quality conditions, like the link condition [23] and fold condition [9], have been proposed.

Processing large terrains presents multiple issues. First, encoding the original TIN is memory-

demanding. Second, performing a large number of simplifications sequentially is time-consuming

[46] and directly affects user interactions during data exploration.

One solution for handling memory limitation is to use out-of-core partitioning methods to

produce sub-meshes that can be processed by a single computer [7, 50, 51]. While these methods

overcoming the limitation on memory, they do not reduce the memory costs of the simplification

process itself and incur extra I/O time compared to in-core methods. In our research, we focus on

in-core methods and use efficient representations to minimize memory requirements.

To expedite mesh simplification, many parallel mesh simplification algorithms have been devel-

oped. While a few of them focus on vertex decimation [32] and vertex clustering [21], most parallel

approaches rely on the edge contraction operator due to its intrinsic flexibility [7, 22, 32, 37, 49, 59].

These latter methods can be roughly categorized into two classes.

The first class defines heuristics to prevent concurrent contractions of adjacent edges. Franc et al.

[32] firstly introduced the concept of super-independent vertices, and a set of such vertices, named

a super-independent set, can be contracted simultaneously. Papageorgiou and Platis [59] improved

this algorithm by parallelizing the identification of super-independent vertices. However, such an

algorithm is still complex and time-consuming, since only a subset of the vertices is processed at
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each iteration, and a pre-processing step is required every time to find a super independent set.

Grund et al. [37] devised a new method in which an edge 𝑒 can be contracted only if all the other

edges adjacent to 𝑒 have higher costs according to QEM. This method ensures that no adjacent

edges of 𝑒 (i.e., edges sharing a common vertex with 𝑒) can be contracted at the same time. While

this approach is fast and efficient when only the edge cost is considered, it cannot avoid possible

conflicts in parallel mesh simplification when the check of quality conditions (e.g., link condition

and fold condition) involves more than the adjacent edges.

A different strategy is partitioning the mesh into sub-meshes that can be then processed inde-

pendently. The main advantage of this strategy is that it supports better quality control for the

simplified mesh. Dehne et al. [22] partitioned the mesh by dividing the vertices of a mesh into

subsets without duplicates, ensuring edges with endpoints in different subsets are not contracted.

Lee and Kyung [49] introduced a new parallel edge contraction method with a lazy-update tech-

nique. The idea is to symbolically simplify the mesh while working in parallel and then encode the

updates at the end of the simplification process. Cabiddu et al. [7] designed a parallel algorithm

for distributed systems. The mesh is divided by a binary space partitioning [33] and the resulting

sub-meshes are then grouped into independent sets. As a result, each group of sub-meshes does

not share any element with the others. Recently, Mousa and Hussein [54] proposed a method for

parallel mesh simplification, in which the mesh is subdivided into disjoint blocks with a k-d tree.

Each block is processed independently by removing edges based on the order of edge costs encoded

in a global queue. This method has then the same contraction order as a method simplifying directly

the triangle mesh. If an edge 𝑒 intersects two blocks, then only one of the two contracts 𝑒 , while

the other is locked and cannot contract any other edge until the contraction of 𝑒 is completed.

However, the locking strategy defined in this method does not avoid conflicts between blocks when

the check of quality conditions involves also the triangles in the neighborhood of 𝑒 . Our parallel

simplification method extends [7, 54] by considering the conflicts between different blocks in a

more comprehensive way, by using a hierarchical decomposition of the domain, and by processing

independent blocks at the same time.

3.2 Topology-based mesh simplification
In this work, we focus on topology-preserving simplifications, i.e., a simplification combining the

need to reduce the size of a mesh with the need to maintain its topological properties, such as

peaks and valleys. Typically, simplification operators are not topology-preserving, meaning that

they can modify the number or connectivity of critical points of a terrain in an uncontrolled way.

This problem was first addressed in [2] by introducing a simplification operator which preserves

the critical points of the terrain. The operator removes a vertex from the terrain and re-triangulates

the neighborhood such that the remaining vertices maintain the same classification (i.e., minimum,

saddle, maximum, non-critical). The method preserves the topology of the terrain, but it lacks an

efficient implementation for re-triangulating the terrain.

In [18], the first efficient topology-aware operator based on edge contraction was introduced.

This method preserves critical points connectivity by checking the separatrix lines incident at the

endpoints of a contracted edge. However, while preventing the removal of existing critical points, it

does not avoid the creation of new ones. The first topology-aware simplification based on discrete

Morse theory was introduced by Iuricich and De Floriani [46]. The basic operator, called gradient-
aware edge contraction, is able to preserve both the critical simplices and their connectivity by using

a Forman gradient as the underlying descriptor of the terrain topology. Before contracting an edge

𝑒 , the operator checks the gradient pairs in the neighborhood of 𝑒 . If these pairs are organized in a

valid configuration, the contraction guarantees the preservation of the terrain topology. On top of

that, a multi-resolution model called a Hierarchical Forman Triangulation (HFT) is introduced. This
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model combines geometric and topological operators to enable mesh simplification or refinement

by varying the resolution of both topology and geometry on-demand. This is fundamental for

interactive exploration of a mesh dataset in real time.

Building upon the gradient-aware simplification operators, Dey and Slechta [24] relaxed the

original criteria to allow the removal of more critical simplices. While this operator does not lead

to a multi-resolution model like HFT, it increases the number of admissible edge contractions, and

thus, the compression rate. Recently, a new approach based on vertex removal was proposed by

Fugacci et al. [34]. The simplification operator is similar to the one introduced in [2], but in this

case, the topology is preserved by checking a descriptor whose definition is rooted in algebraic

topology, i.e., persistent homology [26]. A vertex removal is valid only if the link of the removed

vertex can be re-triangulated while preserving the persistence diagram, which is proven to be

equivalent to preserving critical points.

In this work, we use the gradient-aware edge contraction from [46], which allows for constructing

the HFT multi-resolution model. Unlike vertex removal [34], the edge contraction operator comes

with several metrics for controlling and optimizing the quality of the output meshes [36, 38, 43, 47].

4 TERRAIN TREES
In this section, we briefly introduce the data structure used in our work. We refer the reader to

[27] for more details. A variety of data structures have been developed for triangle meshes, and the

most compact of them encode only the vertices and the triangles of the mesh [20]. Within this class

of data structures we can find the Indexed data structure with Adjacencies (IA data structure) [58],

the Corner Table (CoT) [63], and the Sorted Opposite Table (SOT) [40]. Recently, a new compact

family of spatial data structures designed for triangulated terrain meshes, called Terrain Trees, has
been developed [27]. Based on Terrain trees, we have developed the Terrain Trees library (TTL) [29],
a library for terrain analysis, which contains a kernel for connectivity and spatial queries, as well

as modules for morphological terrain analysis and for extracting topological structures, based on

the discrete Morse gradient. Terrain trees are based on different nested subdivision strategies of the

TIN domain D, which led to three data structures, called PR, PM and PMR Terrain trees, respectively.
In our experiments, the PR Terrain tree has been shown to be slightly more compact and efficient

than the other two strategies. Therefore, in this work, we use the PR Terrain tree to encode meshes,

and we refer to it as the Terrain tree in the rest of the paper, for the sake of simplicity.

A Terrain tree on a triangle mesh Σ consists of:

(1) a global vertex array Σ𝑉 , encoding, for each vertex of Σ, its coordinates and elevation,

(2) a global triangle array Σ𝑇 , encoding, for each triangle of Σ, a triplet of vertex indices in the

global vertex array,

(3) a bucketed PR-quadtree T describing the nested subdivision of D, which acts as a bucketing

structure for the mesh vertices, and

(4) a list of leaf blocks 𝐵 obtained from the subdivision of D, where each leaf block 𝑏 contains

the vertices of the mesh that fall in 𝑏 plus the triangles that intersect 𝑏.

The domain D of a TIN is referred to as the root block of a Terrain tree. The subdivision of D is

guided by a capacity value 𝑘𝑣 on the vertices of the TIN. If a block contains more than 𝑘𝑣 vertices,

it is recursively split into four rectangle blocks of the same size. A block is called internal if it is
split in the subdivision, and it is called leaf if it is not further split. When a block 𝑏 is split, we call

the resulting four blocks the children of 𝑏, and conversely, 𝑏 is called the parent of its four children.
Each leaf block contains the minimum amount of information required for extracting all con-

nectivity relations, encoded through a compression method based on sequential range encoding

(SRE), introduced in [30]. This method, combined with a reindexing of the two global vertex and
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Fig. 3. Example of edge contraction not satisfying the link condition. Given edge 𝑒 = {𝑣𝑎, 𝑣𝑏 }, we have
𝐿𝑘 (𝑣𝑎)

⋂
𝐿𝑘 (𝑣𝑏 ) = {𝑣𝑑 , 𝑣𝑔, 𝑣 𝑓 , {𝑣 𝑓 , 𝑣𝑔}} and 𝐿𝑘 (𝑒) = {𝑣𝑔, 𝑣𝑑 }. The condition is not satisfied since 𝐿𝑘 (𝑣𝑎) ∩

𝐿𝑘 (𝑣𝑏 ) contains vertex 𝑣 𝑓 and edge {𝑣 𝑓 , 𝑣𝑔} that are not in 𝐿𝑘 (𝑒).

triangle arrays, enables a Terrain tree to encode a triangle mesh with low storage cost. It requires

approximately 36% less storage than the most compact state-of-the-art mesh data structure (the IA

data structure), while maintaining comparable performance in extracting connectivity relations.

Moreover, the hierarchical domain decomposition of Terrain trees makes them well-suited for

parallel computation, as several leaf blocks can be processed simultaneously. These features make

Terrain trees more scalable than other triangle-based data structures, and desirable for representing

large triangle meshes.

5 TOPOLOGY-AWARE EDGE CONTRACTION
Edge contraction is a widely used operator for triangle mesh simplification [43]. Given an edge

𝑒 = {𝑣1, 𝑣2} in a triangle mesh Σ, e is contracted to one of its endpoints, and edge 𝑒 , one of its

endpoints, and the triangles incident in 𝑒 are removed from Σ. An edge contraction operator can

modify the shape of the TIN creating non-valid meshes. To prevent this, we verify that the edge

contraction satisfies two fundamental validity conditions, namely the link and fold conditions.

The link condition [23] ensures that the simplified mesh has the same homological properties as

the original one. The link 𝐿𝑘 (𝑣) of a vertex 𝑣 consists of all vertices adjacent to 𝑣 in the mesh and

of all the edges opposite to 𝑣 bounding the triangles incident in 𝑣 . Similarly, the link 𝐿𝑘 (𝑒) of an
edge 𝑒 consists of the two vertices of the triangles incident in 𝑒 that are not endpoints of 𝑒 . An edge

𝑒 = {𝑣1, 𝑣2} ∈ Σ is said to satisfy the link condition if and only if 𝐿𝑘 (𝑣1) ∩ 𝐿𝑘 (𝑣2) ⊆ 𝐿𝑘 (𝑒). Figure 3
shows an example of an edge contraction that violates the link condition. If edge e is contracted
to 𝑣𝑎 , the resulting mesh becomes invalid since more than two triangles would be incident in the

same edge (i.e., edge {𝑣𝑎, 𝑣 𝑓 }).
The fold condition [9] ensures that for every edge 𝑒′ in 𝐿𝑘 (𝑣2), 𝑣1 and 𝑣2 lie on the same side of

the line 𝑙 passing through 𝑒′. If this condition is not verified, then Σ will have at least one triangle

folding over itself after contracting 𝑒 to 𝑣1.

Our purpose is to preserve the topological features of the scalar field defined on Σ while simpli-

fying the underlying mesh. This translates into maintaining the Forman gradient and, thus, the

critical simplices and their connectivity. To this aim, we apply the gradient-aware condition [46].

Given a mesh Σ endowed with a Forman gradient 𝑉 , an edge 𝑒 = {𝑣1, 𝑣2} can be contracted to

vertex 𝑣1 if and only if: (1) all simplices to be removed (𝑣2, 𝑒 , and two triangles incident in 𝑒) are

not critical; and (2) either 𝑣1 or 𝑣2 is paired with e in V. For instance, as shown in Figure 4(a), it is

fine to contract edge 𝑒 = {𝑣1, 𝑣2} since none of e, 𝑡1, 𝑡2, or 𝑣2 is critical, and e is paired with 𝑣1.

A gradient-aware edge contraction requires, in addition to the modification of the mesh, also the

update of the Forman gradient 𝑉 . When contracting edge 𝑒 , two triangles 𝑡1 and 𝑡2 adjacent to 𝑒

are removed. The updates of 𝑉 involve at most four triangles, which share an edge different from 𝑒

with either 𝑡1 or 𝑡2.
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(a) (b)

Fig. 4. Two possible gradient configurations and corresponding updates after contracting edge {𝑣1, 𝑣2} (in
red) to 𝑣1. Black arrows represent gradient pairs and red arrows represent contraction direction.

Since the updates are symmetric with respect to 𝑒 , we only discuss the updates on the left part of

𝑒 , where edge 𝑒 is considered as oriented from 𝑣2 to 𝑣1. We denote the other two triangles adjacent

to 𝑡1 as 𝑡3 and 𝑡4 and the vertex opposite to 𝑒 in 𝑡1 as 𝑣3. The updates on the left part need to ensure

that vertices 𝑣1, 𝑣3, edge {𝑣1, 𝑣3}, and triangles 𝑡3 and 𝑡4 are still paired after simplification. We

know that edge 𝑒 is paired with either 𝑣1 or 𝑣2. Thus, if 𝑒 is paired with 𝑣2, after the contraction, the

pairing of 𝑣1 does not change; otherwise, 𝑣1 will be paired with the simplex paired originally to 𝑣2.

Now we consider edges {𝑣1, 𝑣3} and {𝑣2, 𝑣3}. Before the contraction, 𝑡1 should have been paired

with either {𝑣1, 𝑣3} or {𝑣2, 𝑣3}, since edge 𝑒 was paired and 𝑡1 was not a critical triangle. If 𝑡1 was

paired with {𝑣1, 𝑣3}, then {𝑣2, 𝑣3} should have been paired either with one of its endpoints (see

Figure 4(a)), or with another triangle, 𝑡4 (see Figure 4(b)). In both cases, 𝑡3 and 𝑡4 are paired with

the same simplices after the contraction. After the removal of 𝑡1 because of the edge contraction,

edge {𝑣1, 𝑣3} is paired with the simplex originally paired with edge {𝑣2, 𝑣3}, i.e., either with one of

its endpoints (see Figure 4(a)), or with another triangle 𝑡4 (see Figure 4(b)). The same reasoning

applies when 𝑡1 was paired with {𝑣2, 𝑣3}. The same update strategy is applied to the simplices on

the right of the edge 𝑒 to maintain the topology of the discrete gradient [46].

6 TOPOLOGY-AWARE SIMPLIFICATION ON TERRAIN TREES
In this section, we present a new topology-aware simplification algorithm developed on a Terrain

tree 𝑇 to simplify a triangle mesh Σ. To define the terrain topology, this algorithm uses a Forman

gradient 𝑉 computed on Σ inside the Terrain tree, which is encoded as a bit vector using the same

indexing of Σ𝑇 , resulting in a storage cost of one byte per triangle [70]. As an error metric for edge

contraction, we use the Quadric Error Metric (𝑄𝐸𝑀) [36]. Appendix A.1 provides a comprehensive

explanation of the process for computing the initial error quadrics associated with each vertex 𝑣 ,

representing a set of planes incident in 𝑣 .

To simplify Σ, all leaf blocks in𝑇 are visited through a depth-first traversal. Algorithm 1 provides

a pseudo-code description of the simplification procedure within a leaf block b in 𝑇 . The cost of
each edge 𝑒 , which is the error introduced if 𝑒 is contracted, is computed from the initial error

quadrics of its endpoints. In our implementation, edge 𝑒 = {𝑣1, 𝑣2} is contracted to either 𝑣1 or

𝑣2 depending on which vertex leads to the smallest cost for edge 𝑒 . We consider 𝑒 as a candidate
edge for leaf block b only if the vertex to be removed is contained in b, and the cost of 𝑒 is lower
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than a user-defined threshold 𝜔 . Edge 𝑒 is an internal edge for b if also the other vertex of 𝑒 is in b,
otherwise 𝑒 is a cross edge.

For each leaf block b, the algorithm performs the following steps:

(1) Extract the Vertex-Triangle (VT) relations for the vertices in b (row 1): the Vertex-Triangle (VT)
relation for a vertex 𝑣 in b is defined as the set of triangles incident in 𝑣 .

(2) Build a priority queue Q of candidate edges (row 3): the edges in the queue are sorted in

ascending order based on their costs.

(3) Simplify candidate edges (rows 4-21): for each candidate edge 𝑒 , the three validity conditions

discussed before are checked. If these conditions are satisfied, edge 𝑒 is contracted, and the

Forman gradient updated together with the Terrain tree. This step is described in details

below.

The link, fold, and gradient-aware conditions are checked for each edge 𝑒 = {𝑣1, 𝑣2} extracted
from Q. These checks require the VT relations for 𝑣1 and 𝑣2 and the Edge-Triangle (ET) relation of 𝑒

(rows 9-11). 𝐸𝑇 (𝑒) consists of the two triangles sharing edge 𝑒 . If 𝑒 is an internal edge, function

get_vt directly retrieves 𝑉𝑇 (𝜈1) and 𝑉𝑇 (𝜈2) from array local_vts. Conversely, if 𝑒 is a cross edge,
and 𝑣1 is contained by another leaf block 𝑏1, get_vtmust extract the VT relations of 𝑏1. To optimize

this latter step, we use an auxiliary Least Recent Used (LRU) cache 𝐶 for encoding a subset of the

extracted VT relations. When 𝑣1 is in block 𝑏1, get_vt looks first if the VT relations of block 𝑏1
are in 𝐶 . If such relations are not in 𝐶 , then they are extracted and saved to 𝐶 . The ET relation of

a candidate edge 𝑒 is extracted by traversing 𝑉𝑇 (𝑣1) and finding triangles incident to 𝑒 (get_et

procedure at row 11). To check the link condition (row 12), the set of vertices adjacent to 𝜈1 or 𝜈2
are extracted on the fly in link_condition by traversing the VT relations of 𝜈1 and 𝜈2.

If 𝑒 satisfies all three conditions, then it is contracted to its optimized position (i.e., 𝑣1) by function

contract (row 15). This procedure takes as input edge e, the VT relation of 𝜈2, the ET relation of

e, the array of vertex error quadrics E, and TIN Σ. It removes vertex 𝜈2 as well as the two triangles

adjacent to e. In each remaining triangle in 𝑉𝑇 (𝜈2), it replaces 𝜈2 with 𝜈1. After the contraction,
the error quadric of 𝑣1 is updated by adding the quadric of 𝜈2 to it. The pseudo-code of function

contract is in Algorithm 3 (see Appendix A.2).

After the contraction, both the Forman gradient V and the Terrain tree T are updated (rows

16-18). The update of gradient V (update_gradient procedure at row 16) follows the method

introduced in Section 5. This involves up to four triangles adjacent to triangles in 𝐸𝑇 (e) (see Figure
4 for an example). Such triangles are retrieved by using the corresponding VT and ET relations.

The update of T is performed by function update_index (row 17). If 𝑒 is an internal edge, the
current leaf block b is updated by removing the index of 𝜈2 and the indexes of the triangles incident

in 𝑒 . If 𝑒 is a cross edge and 𝜈1 is indexed in leaf block 𝑏1, then both b and 𝑏1 are updated in a similar

way. In this latter case, the indexes of those triangles that were incident in 𝜈2 but not encoded in

𝑏1 are also added to 𝑏1. The VT relation of vertex 𝜈1 is updated by adding the triangles in the VT

relation of 𝜈2 and by removing the triangles adjacent to e (row 18).

Since the error quadric of 𝑣1 is updated after the contraction of 𝑒 , the costs of all edges currently

incident in 𝑣1 need to be updated accordingly (row 19). A local auxiliary array updated_edges which

is initialized in row 4, is used to keep track of the updated edge costs. All updated edges are added

to Q again. Note that we do not update the costs of edges in Q directly, and, therefore, each time

we process an edge e from Q, we check if 𝑒 has been updated in previous contractions (row 6). If 𝑒

has been updated and the cost stored with e is not the one stored in updated_edges then we discard

e and process the next edge in Q.
Finally, after the simplification of leaf block b, the 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 array, containing the updated

vertex-triangle relations, is inserted into 𝐶 (row 22).
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Algorithm 1 leaf_simplification(b, Σ, V, E, 𝜔 , 𝐶 , 𝑏𝑅)
Input:

b: current leaf block
Σ: the TIN
V : the Forman gradient on Σ
E: the array of vertex error quadrics

𝜔 : the edge cost threshold

𝐶: LRU cache

𝑏𝑅 : root block of the hierarchy

// Extract the local 𝑉𝑇 relations for the vertices in b
1: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 ← local_vt(b, Σ𝑇 )

// Create an array for encoding the updated edges costs

2: updated_edges← [ ]

// Create a priority queue of candidate edges

3: Q← candidate_edges(b, Σ𝑇 , E, 𝜔)
4: while Q ≠ ∅ do
5: e← deqeue(Q) // e = {𝜈1, 𝜈2}

// Check if e has been updated and if its cost is updated

6: if e ∈ updated_edges and not same_cost(e, updated_edges) then
7: skip e // If its cost is not updated, then skip this edge

8: end if
9: 𝑉𝑇 (𝜈1) ← get_vt(𝜈1, 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 , 𝐶 , 𝑏𝑅 , Σ)
10: 𝑉𝑇 (𝜈2) ← get_vt(𝜈2, 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 , 𝐶 , 𝑏𝑅 , Σ)
11: 𝐸𝑇 (e) ← get_et(e, 𝑉𝑇 (𝜈1))

// Check three conditions introduced in Section 5 for e
12: if link_condition(e, 𝑉𝑇 (𝜈1), 𝑉𝑇 (𝜈2), 𝐸𝑇 (e))
13: and fold_condition(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e))
14: and gradient_condition(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), V) then
15: contract(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), E, Σ)
16: update_gradient(e, 𝑉𝑇 (𝜈1), 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), V)
17: update_index(e, 𝑉𝑇 (𝜈2), b, 𝑏𝑅)

// Update the VT relation of 𝜈1
18: VT(𝜈1)← 𝑉𝑇 (𝜈1) ∪𝑉𝑇 (𝜈2) - 𝐸𝑇 (e)

// Update the cost of edges, and add these edges to Q
19: updated_edges← update_costs(𝜈1, 𝑉𝑇 (𝜈1), E, Q)
20: end if
21: end while
22: 𝐶 ← 𝐶 ∪ 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 // Add 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 to the LRU-cache

7 PARALLEL TOPOLOGY-AWARE EDGE CONTRACTION ON TERRAIN TREES
In this section, we propose a parallel algorithm that extends and enhances the algorithm described

in Section 6. In subsection 7.1, we introduce the design of this parallel algorithm. The main challenge

of parallel mesh simplification is to prevent conflicts that may occur if two threads modify the same

vertex or triangle concurrently. In subsection 7.2, we discuss why the proposed parallel algorithm

can avoid such conflicts.
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7.1 Parallel edge contraction algorithm
The hierarchical domain decomposition of Terrain trees makes them well-suited for parallel com-

putation since different leaf blocks can be processed at the same time. The key idea behind our

parallel simplification strategy is to assign each leaf block to a single thread from a set of available

threads. To avoid conflicts between two different threads, we have devised a leaf locking strategy,
which is based on the definition of conflict block. A leaf block 𝑏0 is called a conflict block for another

leaf block 𝑏1 if there exists a cross edge 𝑒 = {𝑣1, 𝑣2}, where 𝑣1 is in 𝑏0 and 𝑣2 is in 𝑏1. Clearly, in this

case, 𝑏1 is a conflict block for 𝑏0 as well.

There are four possible statuses a leaf block b may have: (1) active; (2) default; (3) conflict; and (4)
processed. A leaf block b is active when it is being processed. A leaf block b is in the default status if
b is neither being processed nor a conflict block of any active block. A conflict block of an active
block is set to the conflict status. When the simplification process is completed, block b is set to the

processed status. A leaf block b can be processed only if its status is default and none of its conflict

blocks has conflict status.
The parallel simplification strategy performs the following steps:

(1) Generating auxiliary data structures: The list of all conflict blocks of a leaf block b, denoted as
𝐶𝑙 (b), is computed by traversing all triangles encoded in b. Given a triangle 𝑡 with at least

one vertex in b, we check if the other two vertices of 𝑡 are also in b. If a vertex 𝑣 of 𝑡 is not in
b, then, we locate the block 𝑏𝑖 containing 𝑣 , and add 𝑏𝑖 to 𝐶𝑙 (b).

(2) Computing the initial error quadrics: The initial error quadric of each vertex is computed

using a parallel version of the algorithm introduced in Appendix A.1.

(3) Simplification: Each leaf block is simplified by a thread following the steps described in

Algorithm 1 with one difference. Each thread needs to update the lists of conflict blocks

which change due to the undergoing simplifications, as described below.

Assume a cross edge 𝑒 = {𝑣1, 𝑣2} is contracted to vertex 𝑣1, with 𝑣1 in block 𝑏1 and 𝑣2 in block 𝑏2.

Note that 𝑒 is simplified only when 𝑏2 is an active block. Vertices adjacent to 𝑣2, but not to 𝑣1 (for
instance, red vertices in Figure 5(c)), are connected to 𝑣1 after contracting edge 𝑒 to 𝑣1. For example,

if vertex 𝑣6 is not encoded in either 𝑏1 or 𝑏2, the edge connecting 𝑣6 and 𝑣1 is a cross edge and may

create a new conflict block for 𝑏1.

To update the list of conflict blocks after contracting a cross edge, we modify the link_condition

procedure (row 12 of Algorithm 1) to extract also an auxiliary array 𝑣𝑣𝑜𝑢𝑡𝑒𝑟 , which encodes the

vertices adjacent to 𝑣2 that are not contained in either 𝑏1 or 𝑏2. After the contract procedure

(row 15 of Algorithm 1), we add a step for updating the conflict block list. To update 𝐶𝑙 (𝑏1) after
the contraction of 𝑒 , we find, for each 𝑣 ′ in 𝑣𝑣𝑜𝑢𝑡𝑒𝑟 , the leaf block b′ that contains 𝑣 ′, and add it to

𝐶𝑙 (𝑏1) if it has not been added yet. Similarly, 𝑏1 is added to 𝐶𝑙 (b′) when b′ is added to 𝐶𝑙 (𝑏1). The
update of 𝐶𝑙 (𝑏1) and 𝐶𝑙 (b′), when processing 𝑏2, does not affect the concurrent simplification of

other blocks. Thanks to the definition of conflict block, both b′ and 𝑏1 are conflict blocks of 𝑏2 and,
thus, they cannot be active when 𝑏2 is active. Also, being b′ and 𝑏1 in a conflict state, none of leaf
blocks in their conflict lists can have an active state.
In contrast to the sequential algorithm, the parallel one does not use a global LRU cache 𝐶 for

storing VT relations, since it could raise resource conflicts when multiple threads access 𝐶 at the

same time. Instead, a local cache at a thread level provides a safe way to encode just the VT relations

of blocks in𝐶𝑙 (b) when processing b. Similar to the sequential case, the local cache is accessed and

updated only when simplifying a cross edge. Once the simplification of b is finished, the local cache
is discarded. In subsection 7.2, we show why the local caching strategy is thread-safe thanks to the

leaf locking strategy.
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(a) (b) (c)

Fig. 5. (a) Example of 1-neighborhood (vertices in green) and 2-neighborhood (vertices in green and vertices
in blue) of a vertex v. (b) Example of a vertex 𝑣 and two vertices in its 2-neighborhood. (c) Example of edge
contraction on edge 𝑒 = {𝑣1, 𝑣2} (in red), where 𝑣2, 𝑡1, and 𝑡2 are removed by the contraction. Gradient pairing
information of cyan triangles may be modified due to the contraction of 𝑒 . Red vertices are reconnected to 𝑣1
after the contraction during which 𝑣2 is removed.

We use OpenMP [17] to process multiple leaf blocks in parallel in a Terrain tree. It is noteworthy

that, while each step makes use of multi-threading internally, the three steps are organized sequen-

tially, i.e., each step of the pipeline is executed only when the previous one is completed. Since the

computations performed in steps 1 and 2 are entirely local to a leaf block, they can be processed in

a perfectly parallel manner. In step 3, conflicts among threads can prevent the simplification of a

leaf block and, thus, the list of the blocks is traversed multiple times until all blocks are simplified.

7.2 Discussion on the leaf locking strategy
We prove here that the leaf locking strategy introduced in subsection 7.1 ensures that no conflict

occurs between threads during a parallel simplification process. Given a vertex 𝑣 in Σ, we call the
set of vertices adjacent to 𝑣 in Σ as the 1-neighborhood of 𝑣 . We then define the 2-neighborhood of 𝑣

as the set of vertices that share an edge with any vertex in the 1-neighborhood of 𝑣 excluding 𝑣

itself. By this definition, the 1-neighborhood of 𝑣 is a subset of its 2-neighborhood. An example of

1-neighborhood and 2-neighborhood of 𝑣 in Σ is displayed in Figure 5(a).

Let us consider an edge 𝑒 = {𝑣1, 𝑣2} being contracted to 𝑣1 on Σ. We need to ensure that: (1) the

check on 𝑒 is not affected by other threads, (2) the update of Σ, the Forman gradient V, and the

vertex error quadrics after contracting 𝑒 do not conflict with any update operations started by other

threads, and (3) the local cache does not contain conflicting information with other threads.

When a vertex 𝑣 in leaf block 𝑏1 is to be removed in an edge contraction operation in the

parallel simplification, from the definition of 2-neighborhood, we know that a vertex 𝑣 ′ in the

2-neighborhood either is adjacent to 𝑣 (e.g., 𝑣1 in Figure 5(b)) or has a sharing adjacent vertex with

𝑣 (e.g., 𝑣2 in Figure 5(b)). We first consider the case that a vertex 𝑣2 shares an adjacent vertex 𝑣1 with

𝑣 , with two edges 𝑒1 = {𝑣, 𝑣1} and 𝑒2 = {𝑣1, 𝑣2} between 𝑣 and 𝑣2. There are three possible cases for
𝑒1 and 𝑒2: (1) both are internal edges, (2) one is an internal edge and the other one is a cross edge,

(3) both are cross edges. In case (1), 𝑣 and 𝑣2 belong to the same block and cannot be removed at the

same time. In case (2), 𝑣2 belongs to a conflict block of 𝑏, while in case (3), 𝑣2 belongs to a block 𝑏2
which shares a conflict block 𝑏1 with 𝑏 as shown in Figure 5(b). In both cases, the block encoding

𝑣2 cannot be processed when 𝑏 is in status active according to the definition of leaf locking strategy.

Recall that for a leaf block 𝑏, an edge is only considered as candidate if the vertex to be removed is

encoded in 𝑏. Therefore 𝑣2 cannot be removed when the block encoding is not set to active.
Similarly, when 𝑣 ′ is adjacent to 𝑣 , 𝑣 ′ is either in 𝑏 or in a conflict block of 𝑏. In both cases, 𝑣 ′

cannot be considered in an edge contraction operation. Therefore, when the parallel simplification

uses the leaf locking strategy, we have the following:
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Fig. 6. (a) Example of a possible conflict occurring when two edges are contracted at the same time (triangles
are not displayed for clarity). Edge 𝑒1 = {𝑣1, 𝑣2} is contracted to 𝑣2 and edge 𝑒2 = {𝑣3, 𝑣4} is contracted to 𝑣3.
(b) A case that blocks encoding 𝑣1 and 𝑣4 can be active at the same time under the leaf locking strategy (c)
An invalid case in which 𝑣1 and 𝑣4 cannot be removed at the same time.

Proposition 7.1. Any vertex belonging to the 2-neighborhood of 𝑣2 cannot be removed by any
thread while edge 𝑒 = {𝑣1, 𝑣2} is being processed and 𝑣2 is the vertex to be removed.

From Proposition 7.1, we have that no triangle in the VT relations of 𝑣1 or 𝑣2 can be modified

by other threads. Therefore the validation of link and fold conditions, and the update of Σ after

contracting 𝑒 cannot be affected by other threads. Similarly, the error quadric of vertex 𝑣1 can only

be updated by a single thread, otherwise the other vertex being removed is in the 1-neighborhood

of 𝑣1 and in the 2-neighborhood of 𝑣2.

We discuss now how to check and update the Forman gradient V during parallel simplification.

From the description of the gradient-aware edge contraction in Section 5, we have that:

Proposition 7.2. The gradient pairing information associated with a triangle 𝑡 can be modified
during the contraction of edge 𝑒 only if 𝑡 is adjacent to a triangle incident in 𝑒 , i.e., 𝑡 is adjacent to a
triangle to be removed during the contraction of 𝑒 .

The validation of the gradient condition involves only the triangles in VT(𝑣2). It is straightforward

to prove that if another edge contraction operation is modifying the gradient pairing information

of a triangle in VT(𝑣2), then the vertex to be removed by that operation is in the 2-neighborhood of

𝑣2 and, thus, breaks the leaf locking strategy condition.

Nowwe prove that the gradient pairing information associated with a triangle cannot be modified

by two threads at the same time. Suppose triangle 𝑡3 in Figure 5(c) is modified by two threads 𝑇ℎ1
and 𝑇ℎ2 at the same time and edge 𝑒 is being removed by 𝑇ℎ1. From Proposition 7.2, we know that

𝑡3 should be adjacent to two triangles being removed by 𝑇ℎ1 and 𝑇ℎ2, respectively. Without loss of

generality, we assume that 𝑡5 (pink triangle in Figure 5(c)) is a triangle to be removed by 𝑇ℎ2. Then,

either {𝑣4, 𝑣5} or {𝑣3, 𝑣5} is the edge to be removed by𝑇ℎ2. In both cases, the vertex to be removed is

in the 2-neighborhood of 𝑣2, which violates Proposition 7.1.

We have proved that the leaf locking strategy ensures that the validation of three conditions and

most of the update within an active block will not be affected by other threads. But it is possible

that the cost of one edge is updated by different threads at the same time. Let us consider an edge

𝑒1 = {𝑣1, 𝑣2} being contracted to 𝑣2 and another edge 𝑒2 = {𝑣3, 𝑣4} being contracted to 𝑣3 on Σ. If 𝑣2
and 𝑣3 are connected by an edge 𝑒0 (see Figure 6(a)), it is still possible that 𝑒1 and 𝑒2 are contracted

by different threads at the same time since 𝑣1 and 𝑣4 are not in each other’s 2-neighborhood. Assume

that 𝑒1 is contracted on 𝑇ℎ1 and 𝑒2 is contracted on 𝑇ℎ2. If 𝑇ℎ1 updates the error quadric of 𝑣2 and
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the cost of 𝑒0 before error quadric of 𝑣3 is updated on 𝑇ℎ2, then 𝑇ℎ2 will have a different updated

cost of 𝑒0 since it calculates with two updated error quadrics.

But such a conflict will not affect the simplification on either thread, since, this case can only

happen when 𝑒0, 𝑒1, and 𝑒2 are all cross edges (see Figure 6(b)). Otherwise, like the example in

Figure 6(c), leaf blocks encoding 𝑣1 and 𝑣4 must be conflict block of each other and so that 𝑒1 and 𝑒2
cannot be simplified at the same time. When all three edges are cross edges, neither endpoints of 𝑒0
is encoded in the same block as 𝑣1 or 𝑣4, and thus, it is not a candidate edge in 𝑏1 or 𝑏4. Therefore,

even if the cost of an edge is updated by different threads, such edge is not a candidate edge of

current active blocks (i.e., 𝑏1 and 𝑏4) and will not cause a conflict between these threads.

The proof of the thread safety of the local caching strategy is straightforward. Given a leaf

block 𝑏1, the local cache of 𝑏1 only encodes the VT relations of its conflict blocks. If 𝑏2 is one block

encoded in the local cache of 𝑏1, then all conflict blocks of 𝑏2 except for 𝑏1 itself, cannot be active.
Therefore, the information of 𝑏2 is encoded only in the local cache of the thread that simplifies 𝑏1.

8 TERRAIN TREE UPDATE AFTER SIMPLIFICATION
After the simplification, the Terrain tree is no longer as compact or efficient. Since the number

of vertices within each leaf block is reduced, the original tree structure becomes too loose with

respect to the simplices encoded in the simplified mesh. Besides, while initially, each block b in the

Terrain tree encodes vertices that fall in b and triangles intersecting with b, this property is not

guaranteed during the simplification.

As introduced in Section 6, when an edge 𝑒 = {𝑣1, 𝑣2} is contracted to 𝑣1, the update_index

procedure updates related blocks by removing 𝑣2 and adding triangles that are incident to 𝑣2 to the

block in which 𝑣1 falls. However, this procedure does not update the triangle lists of each leaf block

𝑏 when the intersection relation between a triangle and 𝑏 is changed after the contraction. This

design decision is motivated by the fact that: (i) removing an index from ranges encoded through

SRE and performing the triangle-in-block intersection tests are time-consuming operations, and (ii)

keeping this outdated information does not affect the correctness of the simplification operation.

Additionally, when blocks are merged, duplicated triangles in the merged triangle list must be

removed. Therefore, after the simplification, the triangle list of each leaf block needs to be updated.

Lastly, after the simplification and merging, the vertex list and triangle list of each block may

not be accurate since they may contain vertices and triangles that have been removed. In the

update_index procedure, the removed vertices and triangles are flagged as deleted in the corre-

sponding global vertex and triangle arrays. Although one can check the global arrays to determine

if a vertex or a triangle in the local arrays of a block 𝑏 is removed or not, additional time for per-

forming these checks and additional memory for storing this information are required, ultimately

affecting the efficiency of a Terrain tree.

Considering the above factors, a post-processing step is performed to update the Terrain tree Σ
after the simplification of the encoded mesh Σ. This post-processing involves the following steps:

(1) update the subdivision of T based on the remaining vertices;

(2) reindex the vertices in Σ and encode the vertex list within each leaf block through SRE;

(3) check intersections between triangles and blocks and update the triangle list of each block in

the new subdivision;

(4) reindex the triangles in Σ and encode the triangle list within each leaf block through SRE.

In step (2) and step (4), the vertex and triangle lists of each block are encoded through SRE again

to keep the Terrain tree compact. These steps are performed in the same way as the procedures

used during the initial generation of the Terrain tree [27]. In the following, we describe the details

of step (1) and step (3).
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Algorithm 2 update_triangle_lists(b, 𝑙𝑏 )
Input:

b: the current block, can be either leaf block or internal block. 𝑏𝑡 is its original triangle list

𝑙𝑏 : label of the current block with respect to its parent

Output:
𝑚: a hash table stores triangles that need to be checked against other blocks

1: if b is leaf block then // Leaf block case

2: ℎ𝑡 ← { } // Create a hash set storing the triangles that should be kept in 𝑏𝑡
3: for triangle 𝑡 in 𝑏𝑡 do
4: if 𝑡 ∈ ℎ𝑡 or intersect(t, b) == False then // 𝑡 is a duplicate or has no intersection with b
5: continue
6: else
7: add 𝑡 to ℎ𝑡 // The current triangle should be kept

8: n← vertex_in_block(𝑡 , b) // Count the number of vertices of 𝑡 in block b
9: if n ≠ 3 then // If 𝑡 is not fully contained by b
10: add (𝑡, 𝑙𝑏) to𝑚
11: end if
12: end if
13: end for
14: 𝑏𝑡 ← ℎ𝑡 // Set the triangle list of current block to ℎ𝑡
15: else // Internal block case

16: 𝑚𝐼 ← { } // Create a hash table to store the triangles returned by its four sub-blocks

17: for 𝑖 ← get_children(b) do
18: c← get_child(b, 𝑖) // Get the i-th children of b
19: add update_triangle_lists(𝑐 , 𝑖) to𝑚𝐼 // Merge the results to𝑚𝐼

20: end for
21: for 𝑡𝑖 in get_keys(𝑚𝐼 ) do
22: n← vertex_in_block(𝑡𝑖 , b)
23: if n ≠ 3 then
24: add 𝑙𝑏 to𝑚[𝑡𝑖]

25: end if
26: for 𝑖 ← get_children(b) do
27: c← get_child(b, 𝑖)

// If 𝑡𝑖 has not been checked against the sub-block 𝑐 and it intersects with 𝑐

28: if 𝑖 ∉𝑚𝐼 [𝑡𝑖] and intersect(𝑡𝑖 , 𝑐) == True then
29: insert_triangle(𝑡𝑖 , 𝑐) // Insert 𝑡𝑖 to a tree in which 𝑐 serves as the root block

30: end if
31: end for
32: end for
33: end if
34: return𝑚

Since the PR Terrain tree is used in our simplification, the nested subdivision of T depends solely

on the vertices in Σ. Let us assume the capacity of T is 𝑘𝑣 in step (1). To update the subdivision of

T, we visit T through a depth-first-traversal. During the traversal, if an internal block 𝑏𝐼 contains

fewer than 𝑘𝑣 vertices, all of its sub-blocks are merged and 𝑏𝐼 becomes a leaf block. After this, the

resulting subdivision matches the one obtained when we generate a new PR-Terrain tree based on
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the vertices of the simplified mesh. When merging blocks, both the triangle lists and the vertex

lists of these leaves are merged. Since one vertex can only be indexed by one leaf block, there is

need to remove duplicates from the merged vertex list. After this step, duplicates may exist in the

merged triangle list, but they will be removed in step (3).
In step (3), function update_triangle_lists updates the triangle list of each leaf block. All blocks

in T are visited again through a depth-first traversal. Given a block b, update_triangle_lists
takes b and its label with respect to its parent block as inputs and returns a hash table𝑚 storing

triangles in b that intersect with other blocks. The value of 𝑙𝑏 can be 0, 1, 2, or 3 indicating the

position of b in the child list of its parent. The key in𝑚 is the index of a triangle that needs to be

checked against other blocks and the corresponding value is the input 𝑙𝑏 .

When b is a leaf block, each triangle 𝑡 in the triangle list of b is checked to understand if 𝑡 should
be kept in the local list of b and if 𝑡 is fully within b. If 𝑡 is not entirely in b, it is passed to the parent
block of b to be checked in the neighborhood of b. When b is an internal block, triangles passed

from each of its children are checked to understand if they intersect with the other three children

of b and if they are fully within b. Similar to the leaf block case, a triangle partially in b is passed to

the parent block of b to be checked again. Algorithm 2 provides a pseudo-code description of the

algorithm to update the triangle list of a block b.
When the current block b is a leaf block (row 1-14), a hash set ℎ𝑡 is used to store triangles to be

kept in b and to avoid duplicates. For each triangle 𝑡 in the original triangle list 𝑏𝑡 of b, we first
check if 𝑡 is in ℎ𝑡 to understand if it is a duplicate and then we check if 𝑡 has an intersection with b
(row 4, intersect procedure). 𝑡 is added to the new triangle list of b, i.e., ℎ𝑡 (row 7), only if it is not

already in ℎ𝑡 and it intersects b. vertex_in_block procedure counts the number of vertices of 𝑡

within block b, which is denoted as n (row 8). Since the vertex index range of b is encoded through

SRE [30], checking if a vertex v is in b can be done in constant time by comparing the index of 𝑣

to the pair of numbers representing the vertex range of b. If n equals 3, 𝑡 is fully contained by b.
Otherwise, 𝑡 is partially within b and it should be checked against other blocks. The pair (𝑡, 𝑙𝑏) is
then added to𝑚 (row 9-11). The triangle list of b is updated to ℎ𝑡 (row 14).

When the current block b is an internal block (row 15-32), for each child 𝑏𝑖 of b, the triangles to be
checked against other children are collected through function update_triangle_lists and added

to a local hash table𝑚𝐼 (row 17-20). Given a triangle 𝑡 in𝑚𝐼 , the value of𝑚𝐼 [t] is a list of sub-blocks

of b which have 𝑡 in their hash tables. The intersection relations between these sub-blocks and 𝑡

are known, and thus, they are not checked against 𝑡 again. For each triangle t in𝑚𝐼 , we check first

if t partially overlaps b and if so, the pair (𝑡, 𝑙𝑏) is added to𝑚 and passed to the parent of b (row
22-25). Besides, if t intersects with a sub-block 𝑐 of b and 𝑐 is not in𝑚𝐼 [t], t is inserted into the

sub-tree rooted in 𝑐 (row 28-30, insert_triangle procedure).

9 TERRAIN MESH EVALUATION
In this section, we discuss how we evaluate the quality of meshes obtained from the simplification

process. A simplified mesh is an approximation of the original mesh, and therefore it is usually

evaluated based on the approximation error with respect to the original mesh. The approximation
error can be measured by perceptually-based metrics [48], which evaluate the visual appearance

difference between two meshes, or by geometric-based metrics [64]. Visual metrics are usually

used to evaluate meshes for visualization and rendering purposes instead of terrain analysis. Such

measures are computationally complex since rendering methods and lighting environments should

also be considered. Therefore, in most non-rendering applications, geometric measures are often

preferred for evaluating approximation error as they are more computationally efficient [64].

One straightforward geometric measure of error is the distance between the simplified mesh

and the original mesh. Many common geometric measures rely on the concept of the Hausdorff
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distance [1, 12], which evaluates the distance between two surfaces when no distance direction has

been set. When assessing simplified TINs, measures based on vertical distances, i.e., the elevation

difference, between meshes are also widely used [10, 73, 74]. Two commonly used measures are

the maximum vertical distance and the Root Mean Squared Error (RMSE) of the vertical distance.

Compared to the Hausdorff distance, the vertical distance is easier to calculate and more significant

in evaluating terrain models. Since it is computationally intensive to obtain vertical distances of all

points on the two meshes, we calculate the vertical distances of all vertices in the original mesh

to the simplified mesh. The maximum distance and RMSE of such vertical distances are used to

measure the approximation error of the simplified meshes.

In addition to the approximation error, another important metric to evaluate a simplified terrain

mesh is the shape of triangles. Triangle meshes representing terrain surfaces are usually generated

through Delaunay triangulation [39]. A triangle 𝑡 in a mesh Σ satisfies the circumcircle property if

the circumcircle of 𝑡 does not contain other vertices of Σ in its interior. A triangulation where all

triangles satisfy the circumcircle property is a Delaunay triangulation. Delaunay triangulation is

favored when generating terrain meshes because it avoids creating triangles with very small angles,

which deteriorate the interpolation result on the terrain mesh. A terrain mesh is considered to have

good triangle shape quality when its projection on the horizontal plane is a Delaunay triangulation.

But evaluation metrics based on the Delaunay triangulation definition are very sensitive to mesh

modification since contracting a single edge in a Delaunay triangulation may make it invalid.

Moreover, these metrics evaluate the global triangle shape quality of a mesh, and do not provide a

quantitative evaluation of a single triangle. Therefore, quantitative triangle shape measures are

more widely used in mesh evaluation. In this paper, we use the triangle shape measure proposed

by Guéziec [38]:

𝛾 =
4

√
3𝛿

𝑙2
1
+ 𝑙2

2
+ 𝑙2

3

(1)

where 𝛿 is the area of the triangle, and 𝑙1, 𝑙2, 𝑙3 are the lengths of three edges, respectively. The

shape quality of a triangle 𝑡 ranges from 1 (for an equilateral triangle) to 0 (when all three vertices

of 𝑡 are collinear).

Rather than solely focusing on geometric information, some applications, such as nautical

charting [66] and tree segmentation [72], find it more beneficial to preserve high-level information

about terrain structure. One example is topographic information such as a terrain’s peaks, passes,

and basins, which correspond to maxima, saddles, and minima. However, standard simplification

algorithms can disrupt topological information in an uncontrolled manner. That is, a simplification

algorithm can remove critical simplices, introduce new critical simplices or change the connectivity

of critical simplices. Therefore, it is important to evaluate not only the geometric quality of a

simplified mesh but also how much a simplification process affects the mesh topology.

To effectively and efficiently compare the topological information of two terrains, a topological

descriptor and a distance function are required. As introduced in Section 2, one of the most popular

topological descriptors is the persistence diagram [26]. Numerous algorithms have been defined to

compute the persistence diagram by efficiently pairing points on an input scalar function [45].

For the sake of this work, it is important to notice that any change in the topology of a terrain

corresponds to a change in the persistence diagram in the form of disappearing, appearing, or

moving points. The major advantage provided by this descriptor is that it enables the measurement

of differences between two persistence diagrams by means of distances such as the bottleneck

distance [14], the Wasserstein distance [15], or the sliced Wasserstein distance [5].

In this work, we use the sliced Wasserstein distance to measure the distance between two

persistence diagrams because faster to compute [5]. Formally, the q-thWasserstein distance between
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two persistence diagrams 𝑋 and 𝑌 [15] is defined as:

𝑊𝑞 (𝑋,𝑌 ) =
[
inf

𝑓 :𝑋→𝑌

∑︁
𝑥∈𝑋
∥𝑥 − 𝑓 (𝑥)∥𝑞

]
1/𝑞

(2)

where 𝑓 ranges over all bijections from 𝑋 to 𝑌 . This distance measures the minimum total cost to

match one persistence diagram 𝑋 with another diagram 𝑌 . As computing all possible matchings in

a 2D space is computationally expensive, the sliced Wasserstein distance approach [5] involves

sampling this space by projecting all points onto a line passing through the origin. Subsequently,

the Wasserstein distance is calculated in 1-dimension. In practice, the sliced Wasserstein distance

is obtained by computing the 1-dimensional Wasserstein distances with respect to a group of lines

and then getting the average of these distances.

We expect that using the topology-aware simplification method, the sliced Wasserstein distance

between the simplified and the original mesh is zero. This is because the simplification process does

not remove, add, or move critical simplices, thereby resulting in no change in the corresponding

persistence diagram.

10 EXPERIMENTAL RESULTS
In this section, we evaluate the sequential and parallel topology-aware terrain simplification algo-

rithms from three aspects: computing performance, compression rate, and the quality of simplified

meshes. We evaluate both algorithms by comparing them to the topology-aware simplification on

the most compact triangle-based data structure for meshes.

In subsection 10.1, we evaluate the computing performance of both algorithms. In subsection

10.2, we evaluate the compression rate, defined as the ratio between the number of removed

vertices and the number of vertices in the original mesh. In subsection 10.3, we evaluate the

quality of the simplified meshes by considering triangle shape quality, approximation error, and

topological quality. An optimization strategy to improve output mesh quality is raised and evaluated

in subsection 10.4. Additionally, we discuss how the selection of leaf block capacity for Terrain tree

generation affects the output mesh quality in subsection 10.5. Note that the time measurements

reported in the following experiments represent the elapsed time.

All experiments are performed on a dual Intel Xeon E5-2630 v4 @2.20Ghz CPU (20 cores in total),

and 64GB of RAM. A total of six TINs, generated from raw point clouds using the CGAL library [8],

are used in our comparisons. The number of vertices per TIN varies from 25 to 113 million (see

Table 1). Molokai is a dataset consisting of both hydrographic and topographic point cloud data

provided by NOAA National Centers for Environmental Information [55]. Great Smokey Mountains,
Canyon Lake, Yosemite Rim Fire, Dragons Back Ridge, andMoscow Mountain, are topographic LiDAR
point clouds from the OpenTopography repository [57]. All six datasets are publicly available and

can be accessed either from the NOAA data portal or the OpenTopography website. The source

code of the Terrain trees-based simplification algorithm is available at [67].

10.1 Performance evaluation
In this subsection, we evaluate the performances of both the sequential and parallel topology-

aware terrain mesh simplification algorithms on the Terrain tree. In subsection 10.1.1, we compare

the performance of the sequential topology-aware simplification on the Terrain trees against

our implementation on the most compact triangle-based data structure for meshes, the Indexed

data structure with Adjacencies (IA data structure) [58]. In subsection 10.1.2, we compare the

performance of the sequential and parallel simplification strategies implemented on the Terrain

trees.
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Table 1. Overview of experimental datasets. For each terrain, the number of vertices |Σ𝑉 | and triangles |Σ𝑇 |
are listed.

Molokai Great Smokey

Mountains

Canyon

Lake

Yosemite

Rim Fire

Dragons

Back Ridge

Moscow

Mountain

|Σ𝑉 | 25M 34M 49M 78M 91M 113M

|Σ𝑇 | 50M 68M 98M 155M 182M 226M

Table 2. Time T (in minutes) and peak memory usageM (in Gigabytes) of the simplification on the IA data
structure and the Terrain tree (TT) when using different cost threshold 𝜔 . Q1, Q2, and Q3 represent the first,
second, and third quartile edge costs of each dataset, respectively. The best performance value is denoted in
bold face and blue color.

Molokai Great Smokey Mountain Canyon Lake

𝜔 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT

T 13.6 10.5 21.6 13.2 31.8 17.4 15.0 15.0 26.7 20.5 44.3 23 39.4 28.5 79.2 36.1 96.8 39.3
M 17.5 12.7 18.7 12.7 20.0 12.7 23.7 17.2 25.5 17.2 27.2 17.2 34.2 24.6 36.9 24.6 39.2 24.6

The generation of the Terrain tree we use in this paper relies on a single parameter that defines

the maximum number of vertices allowed in each leaf block of the decomposition, known as the leaf
block capacity. [27] introduced a strategy to select the suitable block capacity for each dataset. With

the same strategy, we evaluate the computing performance of the simplification when different

capacity values are used for each dataset. This process is elaborated upon in Appendix A.3. In

the following, for each dataset, we use the capacity value showing the best trade-off between

simplification time and memory requirements.

10.1.1 Topology-aware mesh simplification on the Terrain tree and IA data structure. The IA data

structure encodes a vertex array, containing the coordinates of the vertices of the TIN plus the

elevation, and a triangle array that encodes, for each triangle 𝑡 , the indexes to its three vertices plus

the indexes in the triangle array of the three triangles sharing an edge with 𝑡 . In our implementation

[28], we use an enhanced version that also encodes for each vertex 𝑣 , the index of one triangle

incident in 𝑣 . Such an optimization allows extracting all vertex-based relations in optimal time, i.e,

in time linear in the size of the output, thereby significantly enhancing the efficiency of the IA data

structure during edge contractions.

Given a user-defined threshold 𝜔 , we simplify all contractible edges with a cost lower than 𝜔 .

Based on the initial error quadrics, we compute the costs for all edges in Σ, and use the quartile

values as three different thresholds for the simplification. Table 2 compares the time and memory

cost of the two methods when the cost threshold is set to the first, the second, and the third quartile

edge costs, referred to as Q1, Q2, and Q3, respectively. The result shows that the simplification

on the Terrain tree is always faster. When using a larger value of 𝜔 , the Terrain tree is at least

twice as fast as the IA data structure. Moreover, as 𝜔 increases, the memory requirements on the

IA data structure also increase, whereas they remain stable on the Terrain tree. The difference in

the timings and memory requirements is even more relevant when edges are simplified in bulk

without setting a specific threshold for the edge cost.

Table 3 summarizes the results obtained when simplifying all contractible edges. The results

include the timings required for computing initial error quadrics and performing the topology-

aware simplification, as well as the memory footprint required by the simplification. On average,

Terrain trees use from 45% to 56% less time than the IA data structure. Additionally, the memory
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Table 3. Time T (in minutes) and peak memory usageM (in Gigabytes) of topology-aware mesh simplification
on the IA data structure, and on sequential (seq.) and parallel (para.) versions on Terrain trees. The best
performance value is denoted in bold face and blue color.

Molokai

Great Smokey Canyon Yosemite Dragons Back Moscow

Mountain Lake Rim Ridge Mountain

IA TT IA TT IA TT IA TT IA TT IA TT

seq. para. seq. para. seq. para. seq. para. seq. para. seq. para.

T 58.0 29.0 2.38 71.0 39.1 3.31 144.1 65.1 5.34 - 100.1 8.12 - 99.8 7.85 - 170.9 13.7
M 21.3 12.7 12.8 29.0 17.2 17.4 41.8 24.6 25.0 O.O.M. 39.0 39.6 O.O.M. 45.9 46.5 O.O.M. 57.4 58.0
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(b) Efficiency

Fig. 7. (a) Speedup and (b) efficiency achieved by the parallel simplification algorithm when different numbers
of threads are used.

peak on Terrain trees is approximately 41% less than that of the IA data structure. Due to the higher

memory requirements, only three of the test datasets can be simplified using the IA data structure.

10.1.2 Parallel topology-aware mesh simplification on the Terrain tree. We evaluate here the per-

formance of the parallel topology-aware mesh simplification algorithm introduced in Section 7.1

when using from 1 to 64 threads.

The speedup of a parallel algorithm is defined as 𝑆 = 𝑇1/𝑇𝑁 , where𝑇𝑁 is the time for the parallel

algorithm using 𝑁 threads,𝑇1 is the time for the parallel algorithm using a single thread. Figure 7(a)

shows the speedup achieved by the parallel simplification algorithm when the number of threads

increases. The approach scales well as long as the number of threads is lower than the number of

physical cores (20 in our setup). Although the speedup continues to slightly increase with more

than 20 threads, it starts to decrease beyond 40.

The efficiency of the parallel algorithm is computed as 𝐸 = 𝑆/𝑁 , where 𝑆 is the speedup of the

parallel algorithm using 𝑁 threads. Figure 7(b) shows the efficiency results, revealing a reduction in

efficiency as the number of threads increases. This is common for parallel algorithms due to possible

load imbalance and overheads during the computation. When using 20 threads, the efficiency of the

parallel simplification is 67% on all experimental datasets. With more than 20 threads the efficiency
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Fig. 8. The time for updating Terrain trees when using two different methods: (1) new update algorithm and
(2) original reinsert method. Q1, Q2, and Q3 represent the result when the cost threshold is set to the first,
second, and third quartile edge costs of each dataset, respectively. All represents the result when contracting
all contractible edges without a cost threshold. The text labels on the boxes in figure indicate the time when
Q1 cost threshold is used and when All edges are contracted.

decreases faster. Considering these results, we observe that the best trade-off is achieved when the

thread number is equal to the number of available cores.

Comparing the parallel and sequential mesh simplifications using the same Terrain tree and with

20 threads, the parallel simplification strategy provides a 12x speedup compared to the sequential

strategy (see Table 3). Furthermore, despite processing multiple leaf blocks concurrently, the parallel

strategy maintains a stable memory footprint. On average, it uses only 1% more memory than the

sequential algorithm. These results underscore the scalability and efficiency of the Terrain tree

representation, particularly when using shared-memory processing techniques.

10.1.3 Performance of Terrain trees update. In subsection 8, we introduced an algorithm to update

the triangle lists of leaf blocks after simplification. An alternative solution is to clear all triangle

lists and insert all triangles to the Terrain tree again. We call the former method as the update
method and the latter one the reinsert method.

In this subsection, we evaluate the updatemethod by comparing it with the reinsert method. Since

the comparison shows the same result on all datasets, in this section, we show just the results from

the Molokai dataset, the Great Smokey Mountains dataset, and the Canyon Lake dataset and results

on the other three datasets can be found in Appendix A.4. Figure 8 shows the time for updating

the Terrain trees after simplifying the same mesh with different cost thresholds. As expected, the

time for updating the Terrain tree decreases when more edges are contracted. This is because both

methods need to iterate through all triangles in the simplified mesh, thus requiring more time to

update the tree if fewer triangles are removed.

We can see that the updatemethod is always faster than the reinsert method, requiring 68-77% less

time. When the cost threshold is set to the first, second, or third quartile edge costs, the tree update

time with the reinsert method is longer than the simplification time of the parallel simplification,

requiring 113-291% of the simplification time. Conversely, the tree update time with the update
method ranges from 27-63% of the simplification time. Compared to the reinsert method, the update
method requires additional space to store triangles to be processed by other blocks. However, our

experiments show that there is no significant difference in the memory costs between the two

methods, and both require less memory than the simplification itself.
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Fig. 9. The compression rates of three simplification methods IA, Seq-TT, and Para-TT when the cost threshold
is set to three edge cost quartiles (Q1, Q2, and Q3) and when all contractible edges are contracted (All).

10.2 Compression rate evaluation
Both the Terrain tree and the IA data structure use a priority queue for sorting candidate edges, as

described in Algorithm 1. The Terrain tree uses a local priority queue for candidate edges within

each leaf block, while the IA data structure utilizes a global queue for storing all candidate edges of

the TIN. The use of different priority queues leads to different orders in which edges are contracted.

For clarity, we refer to the sequential topology-aware simplification on Terrain trees as the Seq-TT
method, the parallel topology-aware simplification on Terrain trees as the Para-TT method, the

topology-aware simplification on the IA as the IA-based method. To assess the impact of local

queues on the simplification process, we compare the compression rates of the Seq-TT, Para-TT,

and IA-based methods while varying the quality control parameter.

Similar to the experiments in subsection 10.1, we compute the compression rates of these three

methods using different cost thresholds: the first quartile edge costs (Q1), the second quartile edge

costs (Q2), and the third quartile edge costs (Q3) in the original mesh. Additionally, we compute

the compression rate when we simplify all contractible edges, which we refer to as All. The results,
illustrated in Figure 9, reveal that the difference in the compression rate between the Seq-TT and the

Para-TT methods is very small (less than 0.003%). When comparing the two methods to the IA-based

method, the IA-based method always yields a slightly higher compression rate compared to the

two methods on the Terrain trees, ranging from 0.02 to 1.7%. This difference is almost negligible

when the cost thresholds are small, while it becomes more evident when all contractible edges are

simplified. The reason behind it is that the simplification process on the IA data structure relies

on a global queue to determine the contraction sequence, allowing it to always contract the edge

that introduces the least error. On the other hand, the simplification process on the Terrain trees

simplifies the mesh block by block, so the sequence of contractions is not the global optimum.

10.3 Mesh quality evaluation after simplification
In this subsection, we evaluate the quality of the simplified meshes by using the metrics introduced

in Section 9. In subsection 10.3.1, we evaluate the triangle shape quality of the simplified mesh

using the triangle shape measure. In subsection 10.3.2, we evaluate the approximation error of a

simplified mesh by calculating the maximum and the RMSE of vertical distances. In subsection

10.3.3, we evaluate the topological quality of the simplified meshes by comparing the topology-

aware method to simplification algorithm does not take into account the gradient, which we refer to

as the geometric simplification method. The geometric simplification uses just the edge contraction
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(a) Maximum distance wrt. range (b) RMSE

Fig. 10. (a) The maximum vertical distance with respect to the elevation range of the original mesh and (b)
the RMSE of vertical distances between the original mesh and the simplified mesh obtained from Para-TT
and IA-based simplification.

operator introduced in Section 5. Specifically, we refer to the parallel geometric simplification on

Terrain trees as the Geometric-TT method.

10.3.1 Triangle shape measure. When evaluating the average triangle shape measure, our experi-

ment shows that the average triangle shape measures of simplified meshes obtained from different

topology-aware simplification methods are quite similar. Therefore the result is not displayed

here and we refer interested readers to find the result in Figure 16 in Appendix A.4. When all

contractible edges are contracted, meshes simplified with the IA-based method have slightly better

triangle shape quality than those from the other two methods (around 0.35% better on average).

The Para-TT and the Seq-TT methods show comparable results. When the cost threshold is set

to Q2, meshes from three different methods have very similar shape quality, with less than 0.1%

difference. These findings suggest that the local queues used by Terrain trees can lead to a slightly

worse triangle shape quality when the cost threshold is set to infinity or if it is very large. One

potential explanation for this is that the contraction of longer edges tends to deteriorate the shape

quality of a mesh since adjacent edges are stretched more after updating the mesh. When the cost

threshold is small, all three methods do not contract very long edges, so the difference in shape

quality is not evident. Conversely, when all contractible edges are contracted (i.e., the cost threshold

is set to infinity), the simplification process on the Terrain trees may remove edges with very high

costs in the early stage of the simplification if they are in the blocks that are visited early. On the

contrary, in the IA-based method, those edges are always contracted in the late stage since a global

edge queue is used.

10.3.2 Approximation error evaluation. To evaluate the approximation error of the simplified mesh,

we compute measures based on the vertical distances between the original mesh and the simplified

mesh. We compare the Para-TT method and the IA-based method when the same number of edges

are contracted. The results from the sequential simplification on the Terrain trees are very similar

to the parallel one. Figure 10(a) and Figure 10(b) show the maximum and the RMSE of vertical

distances between the original mesh and the simplified mesh when 30% edges and 75% edges of

the original mesh are contracted. When 30% edges are contracted, the difference in the maximum
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Fig. 11. The sliced Wasserstein distance between the original mesh and the simplified mesh when the mesh
is simplified with the Geometric-TT method.

vertical distance between two methods is not evident. For the Great Smokey Mountains dataset, the
maximum distance on the Terrain trees is 6.5% more than that on the IA data structure. Conversely,

for the Canyon Lake dataset, we get the opposite result, where the maximum distance of the Para-TT

method is 12% less than that of the IA-based method. The RMSE of the Para-TT method is around

1-2% less than that of the IA-based method, indicating a slightly better global approximation quality.

When 75% edges are contracted, the IA-based method produces meshes with 10-21% smaller

maximum distance and 3% smaller RMSE compared to the Terrain trees. The usage of the local

queues in the Terrain trees changes the sequence of contractions, which leads to the difference in

both the maximum vertical distance and the RMSE. However, this change is dataset dependant and

there is no significant quality difference between the two methods when fewer edges are contracted.

Similar to the change in the triangle shape measure, when more edges are contracted, the Para-TT

method is likely to contract high-cost edges in the earlier stage of the simplification process, so the

error increases faster than when using the IA-based method.

10.3.3 Topological mesh quality evaluation. To evaluate how the topology of the mesh may change

if the gradient condition is not considered, we remove all contractible edges with the Geometric-TT

method. Then we evaluate the topological quality of the simplified meshes with two metrics: (1)

the sliced Wasserstein distance between the original mesh and the simplified mesh, and (2) the

change of critical simplices.

We use an open-source program Persim [60] for the calculation of the sliced Wasserstein distance.

For each dataset, we extract the persistence diagrams of the original mesh and of the simplified mesh

when all contractible edges are removed. Figure 11 shows the sliced Wasserstein distance between

those two diagrams when the mesh is simplified with the geometric simplification. The sliced

Wasserstein distance remains zero when meshes are simplified with topology-aware simplification

and is therefore not shown in the figure. This result aligns with our expectation, as stated in Section

9, that the critical simplices are preserved and the persistence diagram does not change during

this process. As it can be noted with the sliced Wasserstein distance, the persistence diagrams

of different datasets have variable degrees of change when they are simplified by the geometric

method. This is because the geometric method does not consider the topology of the terrain during

the simplification, and such topology can drastically change during the simplification process.

Among six datasets, it is noteworthy that the sliced Wasserstein distance of the Dragons Back
Ridge dataset is much smaller compared to the others. This happens since the percentage of critical

simplices in this dataset is significantly lower, with only 0.05% of simplices being critical, compared
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(a) Dragons Back Ridge (b) Moscow Mountain

Fig. 12. The change in the number of critical simplices in two tested dataset when they are simplified with
the Geometric-TT method.

to other datasets, where 0.3-0.6% of simplices are critical. As a result, the change in the topology of

the Dragons Back Ridge dataset during geometric simplification is less evident.

We also evaluate how the number of critical simplices changes when the mesh is simplified by

the Geometric-TT method. In Figure 12, we show the changes in the two larger datasets, i.e., the

Dragons Back Ridge dataset and the Moscow Mountain dataset. The numbers of all types of critical

simplices change significantly in both datasets. For the Dragons Back Ridge dataset, the numbers of

minima, saddles, and maxima increase around 33%. Conversely, for the Moscow Mountain dataset,

the numbers of minima, saddles, and maxima are reduced by 22%. The changes in other datasets

(see Figure 17 in Appendix A.4) show a similar pattern as the Moscow Mountain dataset. Notably,

the Dragons Back Ridge dataset presents a unique case among the tested datasets, as it exhibits an

increase in the number of critical simplices after a Geometric-TT simplification. This deviation is

likely caused by the same factor leading to its low sliced Wasserstein distance. The percentage

of critical simplices in the original Dragons Back Ridge dataset was significantly lower compared

to other datasets, indicating a relatively simple terrain topology. Consequently, the geometric

simplification introduces artificial irregularities or distortions to the terrain, resulting in an increase

of the number of critical simplices. In contrast, the geometric simplification removes significant

features from the terrain in other datasets.

These observations suggest that, when a mesh is simplified with the geometric method, the

number of critical simplices in the terrain may either increase or decrease, depending on the terrain

topology. In contrast, the number of critical simplices remains constant when a mesh is simplified

by a topology-aware simplification.

10.4 Progressive strategy for improving output mesh quality
As shown in the above experiments, the simplification on the Terrain trees sometimes produces

meshes with higher approximation errors and a lower compression rates compared to the IA-based

method, especially when the cost threshold is huge. This difference is mainly caused by the local

queues used by the Terrain trees. To improve the geometric quality when the cost threshold is set

to a large value, we can use a progressive strategy to optimize the simplification on the Terrain

trees. Instead of simplifying the mesh with the cost threshold in one round, we can simplify it

with several increasing cost thresholds. This optimization helps us to avoid contracting edges

with high costs in the early stages of the simplification, which is the major cause of the quality

difference between Terrain trees and IA-based methods. We employ a progressive strategy in both

the sequential (named Pro-TT ) and parallel (named Pro-Para-TT ) simplification methods. In this
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(a) compression rate (b) Simplification time

(c) Average shape measure (d) RMSE of vertical distances

Fig. 13. The performance and quality evaluation of the parallel simplification on Terrain trees when a
progressive optimization is applied to the Great Smokey Mountains dataset.

section, we use the Great Smokey Mountain dataset as an example to evaluate the Pro-Para-TT
method by comparing it with the parallel simplification on the Terrain trees (i.e., Para-TT method)

and the IA-based method. The experiments on other datasets show similar results and are shown

in Appendix A.4.

In the Pro-Para-TT method, we first simplify the mesh in four rounds using cost thresholds set

to the first quartile (Q1), second quartile (Q2), third quartile (Q3) of edges costs, and a very large

value. In the fifth round, we remove all contractible edges remained in the mesh. Based on the

distribution of edge costs, we consider 1000 to be sufficiently large to contract most normal edges

while avoiding edges with abnormally high costs which could significantly deteriorate the mesh

quality. For the IA-based method and the Para-TT method, all contractible edges are contracted.

Figure 13 shows the simplification time and quality of the simplified meshes using these three

different methods.

The results show that the difference in compression rate between the Para-TT and the IA-based

methods is reduced from 0.6% to 0.01% and the difference in average shape measure is reduced

from 0.37% to 0.18% when a progressive optimization is used. These results confirm our assumptions

that the differences in the compression rate and average shape measure between the two methods

are caused by the use of local queues. One interesting finding is that the RMSE of the Para-TT

method is smaller than the one of the IA-based method, which indicates that the mesh simplified

by the Para-TT method has a better global approximation quality. A possible explanation is that

the compression rate of Para-TT method is slightly lower than that of the IA-based method and it

is somehow expected to have a better mesh quality when fewer edges are removed. Therefore, it is

also expected that the Pro-Para-TT method has a higher RMSE compared to the Para-TT method

as it has a higher compression rate. The RMSE of the Pro-Para-TT method is 0.02% larger than
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(a) Compression rate (b) Simplification time

(c) Average shape (d) RMSE of vertical distances

Fig. 14. The performance and quality evaluation of the simplification of the Great Smokey dataset when
it is simplified by the parallel simplification on Terrain trees with different leaf capacity values and by the
simplification on the IA data structure. The TT- refers to the Terrain trees method, and the number after it
corresponds to leaf capacity value used for the Terrain tree generation.

the IA-based method, which is a very small difference. Comparing the timings, we notice that

the Pro-Para-TT method requires only 5.9% of the time used by the IA-based method, yet it is

30% slower than the original Para-TT method. This happens since the Pro-Para-TT method has to

traverse more times the tree compared to the Para-TT method. Consequently, this method extracts

local edge queues and local topological relations more frequently, resulting in slower processing

times.

These experiments show that by performing a progressive simplification users can define a trade-

off between simplification quality and time requirements. The progressive strategy has proven to

effectively narrow down the quality difference between the IA-based method and Para-TT method

while requiring slightly more time than the Para-TT method.

10.5 Selection of leaf capacity on mesh quality
In Appendix A.3, we evaluate how the leaf capacity affects the computing performance of the

simplification on Terrain trees. In this subsection, we evaluate the influence of the leaf capacity

on the output mesh quality by using the Great Smokey Mountains dataset as an example. The

experiments on other datasets show similar results and are displayed in Appendix A.4. We compare

only the Para-TT method with the IA-based method as the quality of meshes obtained from Seq-TT

and Para-TT methods are similar. Our initial experiment in Appendix A.3 shows that the mesh

quality does not change significantly when the leaf capacity is changed within a small range.

Therefore, in this experiment, we use several capacity values that are much larger than the optimal
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range for computing performance. We evaluate the simplification time and mesh quality measures

when all contractible edges are contracted.

Figure 14 shows the simplification time and several quality measures when different leaf capacity

values are used for generating the Terrain trees. The numbers on X-axis denote leaf capacity values.

The experiments show that when the capacity is 800, the compression rate of the Para-TT method

is 0.6% lower than the IA-based method, and this difference is reduced to 0.12% when the capacity

value is 16000. Similarly, the difference in the average shape measure changes from 0.37% to 0.1%

when the capacity increases from 800 to 16000. When comparing the RMSE based on the vertical

distances, the Para-TT method has a smaller error than the IA-based method when the capacity

value is 800. However, such a result is obtained with fewer edges contracted by the Para-TT method.

Therefore, when the capacity value increases to 4000, the RMSE of the Para-TT method surpasses

that of the IA-based method. The difference between the two methods is reduced from 0.08% to

0.02% when the capacity value continues to increase.

These findings suggest that using a larger leaf capacity enhances both the compression rate

and the quality of the output meshes. This happens since a coarser Terrain tree is generated,

resulting in simplification results closer to those obtained when using a global queue, such as in the

IA-based method. Additionally, larger leaf capacities lead to increased sizes of local queues, thereby

reducing the likelihood of contracting higher-cost edges during the early simplification stages. It

is noteworthy that very large leaf capacities lead to increased simplification times. For instance,

when the capacity value is set to 16000, the simplification requires 39% more time compared to a

capacity of 800. This increase is due to the higher costs of extracting auxiliary data structures of

cross edges in a leaf block. Nevertheless, even with larger leaf capacity values, the Para-TT method

remains significantly faster, consuming only 6.3% of the time required by the IA-based method.

11 CONCLUDING REMARKS
We introduced a new method for simplifying very large triangle meshes representing terrains

on a compact data structure, the Terrain tree. Our method extends the strategy defined in [46],

which is based on the gradient-aware edge contraction operator, to a global data structure. The

proposed method is capable of reducing the resolution of a TIN while preserving the topology of

the underlying terrain.

We have experimentally demonstrated how the method based on the Terrain trees can effectively

reduce the time and memory requirements of a simplification procedure. Compared to the IA data

structure, which is the most widely used data structure for triangle meshes, Terrain trees achieve

similar simplification level in half the time and with only 40% of the memory. Our evaluation

also shows that the gradient-aware simplification on the Terrain trees produces meshes with

comparable geometric quality as the simplification on the IA data structure. These results prove

the scalability and efficiency of our method for processing large-scale triangle meshes. Thanks

to the distributed nature of Terrain trees, we also defined a parallel version of the simplification

method and implemented it with OpenMP [17]. Comparing the sequential and parallel strategies

based on Terrain trees, we observed a further performance increase. The parallel strategy achieved

a 12x speedup when using 20 threads while maintaining similar memory requirements.

We discussed how the selection of the leaf capacity values for generating Terrain trees influences

the simplification time and quality. Our experiments in Appendix A.3 show that the simplification

on Terrain trees has the best time and memory performance when smaller leaf capacities are used

for generating the tree, while the simplified meshes have slightly lower quality compared to the

IA-based method. In Section 10.5, we show that larger leaf capacities lead to better mesh quality

but worse computing performances compared to smaller leaf capacities. One optimization strategy

to reduce the difference in quality between Terrain trees and the IA-based method is to avoid
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using a single large cost threshold for the simplification process. Instead, by using a progressive

simplification strategy, i.e., a set of increasing cost thresholds, it is possible to improve the final

mesh quality at the expense of slightly slower simplification times.

We also designed a new algorithm for updating the Terrain tree after the simplification. This

bottom-up method uses 68-77% less time compared to a naive solution that simply rebuilds the tree

from scratch. The proposed update algorithm is independent of the gradient-aware simplification

algorithm and can be applied to any case in which the mesh encoded in a Terrain tree is modified.

Topology-aware simplification keeps all critical simplices in a terrain. However, original TIN

datasets may be noisy or may contain too many insignificant terrain features. To address this issue,

one can remove critical simplices originated from noise and insignificant features in a pre-processing

step using a persistence-based cancellation operator introduced in [46].

The parallel strategy developed here can be easily extended to other topology-aware edge

contraction operators, such as the one introduced in [24], since the range of simplices involved in

those topology-preserving conditions is the same as for our gradient-aware simplification operator.

While the gradient-aware contraction operator is efficient and produces high-quality meshes,

some applications require maintaining the triangle shape quality while simplifying the mesh.

Especially in terrain analysis, a mesh with good triangle shape quality is required for the following

interpolation or simulation. Future work can explore incorporating a triangle shape constraint

into the gradient-aware edge contraction operator to ensure good triangle shape quality after

simplification. We also plan to investigate optimized parameters to simplify meshes for coastal

ocean modeling applications, especially in storm surge and tide simulation [4].

Our current parallel strategy is compatible with shared-memory processing based on OpenMP

[17]. In the future, we want to check if it is possible to increase its efficiency by using specialized

compilers, such as ISPC
1
, and libraries, such as TBB

2
. Lastly, a natural extension of our simplification

method is to support large-scale data processing through the distributed-memory processing

strategy based on MPI [13].
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A APPENDIX
A.1 Computing the quadric error matrix on Terrain trees
The Quadric Error Metric (QEM) [36] defines the error at one vertex 𝑣 of a triangle mesh Σ is as

the sum of the squared distances to the planes of the triangles incident in 𝑣 . Specifically, the error

at 𝑣 with respect to a plane 𝑃 is calculated as Δ𝑃 (𝑣) = 𝑣𝑇𝐾𝑃𝑣 , where 𝐾𝑃 is a 4 × 4 matrix called

the fundamental error quadric. The overall error at 𝑣 can be represented as Δ(𝑣) = 𝑣𝑇𝑄𝑣𝑣 . 𝑄𝑣 is

called the initial error quadric at 𝑣 , and it is the sum of the fundamental error quadric with respect

to the plane defined by each triangle incident in 𝑣 . The cost, or error, introduced by contracting

edge 𝑒 = {𝑣1, 𝑣2} is defined as Δ(𝑣) = 𝑣𝑇 (𝑄1 +𝑄2)𝑣 , where 𝑄1 and 𝑄2 are the initial error quadrics

at 𝑣1 and 𝑣2, respectively. The quadric error of 𝑣2 is accumulated to 𝑣1 when e is contracted to 𝑣1.

Therefore, the cost of e reflects the change from the original mesh to the approximation after the

contraction of e.
In each leaf block b, the quadric error matrices E of vertices in b are computed during traversal

of its triangle list. For each triangle 𝑡 in b:
(1) check if at least one vertex of 𝑡 is contained in b. If not, skip 𝑡 , otherwise, proceed to step (2);

(2) calculate the fundamental error quadric 𝐾𝑃 of the plane on which 𝑡 lies;

(3) for each vertex 𝑣 of 𝑡 , if 𝑣 is contained in b, add 𝐾𝑃 to its initial error quadric E[𝑣].
Note that the fundamental error quadric associated with a triangle may be computed more than

once if its vertices are in different leaf blocks. This will slightly increase the computation time

compared to traversing through the global triangle array Σ𝑇 of Σ and calculating the corresponding

fundamental error quadrics. However, the computation of the initial error quadrics at the vertices

in different leaf blocks are completely independent and fully local to each leaf block, making it

possible to compute the quadric error matrices of Σ in parallel.

A.2 Performing an edge contraction

Algorithm 3 contract(e, VT(𝜈 𝑗 ), ET(e), E, Σ)
Input:

e = {𝜈𝑖 , 𝜈 𝑗 }: edge to be contracted to 𝜈𝑖
𝑉𝑇 (𝜈 𝑗 ): the Vertex-Triangle relation of 𝜈 𝑗
𝐸𝑇 (e): the Edge-Triangle relation of e
E: the array of vertex error quadrics

Σ: the triangulated terrain

1: for each 𝑡 in 𝐸𝑇 (e) do
2: Σ← Σ − {𝑡} // Remove 𝑡 from Σ
3: end for

// For each triangle 𝑡 incident in 𝜈 𝑗 but not adjacent to e
4: for each 𝑡 in (𝑉𝑇 (𝜈 𝑗 ) − 𝐸𝑇 (e)) do
5: 𝑡 ← (𝑡 − 𝜈 𝑗 ) ∪ 𝜈𝑖 // Replace 𝜈 𝑗 with 𝜈𝑖 in 𝑡
6: end for
7: E[𝑖] ← E[𝑖] + E[ 𝑗] // Update the error quadric at vertex 𝜈𝑖
8: Σ← Σ − {𝜈 𝑗 } // Remove 𝜈 𝑗 from Σ

In this section, we describe how an edge contraction is performed. Algorithm 3 depicts the

contraction operation at row 15 of Algorithm 1. The algorithm removes the two triangles

adjacent to e and vertex 𝜈 𝑗 (row 2 and row 8). In each remaining triangle in 𝑉𝑇 (𝜈 𝑗 ), it replaces 𝜈 𝑗
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with 𝜈𝑖 (row 4 to 6). After the contraction, the error quadric of the remaining vertex 𝜈𝑖 is updated

by adding the quadric of 𝜈 𝑗 to it (row 7).

A.3 Experiments on leaf capacity selection

Table 4. Time (in minutes) (denoted as T), peak memory usage (in Gigabytes) (denoted asM), and compression
rate (in %) (denoted as R) of simplification when using different capacity values (denoted as C) in the Terrain
tree generation. The capacity value in bold face is the capacity value used to generate the Terrain tree of each
dataset.

Molokai Great Smokey Mountains Canyon Lake Yosemite Rim Fire Dragons Back Ridge Moscow Mountain

C T M R C T M R C T M R C T M R C T M R C T M R

300 36.3 12.8 73.1 300 44.8 17.4 74.7 450 70.9 24.9 74.6 600 104.2 39.5 70.6 600 117.3 46.3 80.4 900 186.4 57.2 77.5

400 35.1 12.8 73.2 400 45.2 17.3 74.9 600 68.7 24.7 74.6 800 99.1 39.4 70.6 900 100.5 46.2 80.4 1200 185.7 57.6 77.5

500 29.5 12.7 73.3 500 39.4 17.3 74.9 750 68.8 24.9 74.6 1000 100.1 39.0 70.6 1200 99.8 45.9 80.5 1500 192.9 57.1 77.6

600 29.0 12.8 73.3 600 41.9 17.3 75.0 900 65.1 24.6 74.7 1200 100.5 39.4 70.6 1500 129.2 46.0 80.6 1800 188.7 57.4 77.6

700 29.0 12.7 73.3 700 39.8 17.3 75.0 1050 68.4 24.9 74.7 1400 100.3 39.4 70.6 1800 126.7 45.9 80.6 2100 172.0 57.5 77.6

800 29.5 12.7 73.4 800 39.1 17.2 75.0 1200 66.5 24.6 74.7 1600 100.9 39.3 70.6 2100 127.9 46.1 80.6 2400 170.9 57.4 77.7

900 29.1 12.7 73.4 900 39.4 17.3 75.0 1350 66.7 24.8 74.7 1800 102.2 39.2 70.6 2400 131.7 45.7 80.6 2700 176.9 57.3 77.7

1000 29.2 12.7 73.4 1000 39.4 17.3 75.0 1500 73.2 24.8 74.8 2000 106.7 38.9 70.7 2700 131.8 46.1 80.6 3000 176.3 56.9 77.7

1100 29.2 12.8 73.4 1100 39.6 17.4 75.0 1650 75.5 24.7 74.8 2200 111.4 39.3 70.7 3000 129.8 46.1 80.6 3300 177.2 57.3 77.7

1200 29.8 12.7 73.4 1200 39.5 17.3 75.1 1800 73.3 24.6 74.8 2400 106.8 39.2 70.7 3300 129.6 46.0 80.6 3600 173.9 57.2 77.7

In this section, we evaluate the performance of the simplification algorithmwith different capacity

thresholds on Terrain trees. Recall that a capacity defines the maximum number of vertices that each

leaf block can contain. We established an initial range for capacity values between 1/100000 and
1/30000 of the total number of vertices in the data set. This is in order to have coarser hierarchical

subdivisions, usually beneficial for tasks requiring intense navigation of the hierarchy. Within this

range, we selected ten different capacity values for each dataset and compared the performance

in sequentially simplifying the meshes encoded by the resulting Terrain tree. Our comparisons

show that the memory footprint and the compression rate do not change significantly when using

different capacity values (up to 1.7%). Also, simplification times are highly dataset-dependent, and

the best performances are achieved with values in the middle of the tested range.

Table 4 shows the performances of sequential topology-aware mesh simplification on the Terrain

tree. The memory footprint does not change significantly when using different leaf capacities. The

same holds for the percentage of edges contracted. Depending on the dataset, timings may vary.

For example, on the Molokai dataset, the simplification is 21% faster when a shallower hierarchy

(larger capacity) is used, while on Dragons Back Ridge, using a deeper hierarchy (smaller capacity)

reduces the simplification time by 24%. The simplification time is stable when the capacity value

varies in a small range. Overall, the results show that even selecting a sub-optimal capacity for

generating a Terrain Tree, the algorithm’s performance is not severely affected, and it still performs

well. For the experiments presented in the paper, we use only one capacity value for each dataset.

Generally, we use the capacity value that results in the shortest simplification time. But when the

variation in time is small (less than 1%), we also consider the memory cost and the compression

rate. The capacity value selected for each dataset is denoted in Table 4 in bold face.

A.4 Additional experiment results
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Fig. 15. The time for updating Terrain trees when using two different methods: (1) new update algorithm
and (2) original Q1, Q2, and Q3 represent the result when the cost threshold is set to the first, second,
and third quartile edge costs of each dataset, respectively. All represents the result when contracting all
contractible edges without a cost threshold. The text labels on the boxes in figure indicate the time when Q1
cost threshold is used and when All edges are contracted.

Fig. 16. The average triangle shape measure of meshes obtained from three simplification methods IA, Seq-TT,
and Para-TT when the cost threshold is set to three edge cost quartiles (Q1, Q2, and Q3) and when all
contractible edges are contracted (All).
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(a) Molokai (b) Great Smokey Mountains

(c) Canyon Lake (d) Yosemite Rim

Fig. 17. The change in the number of critical simplices in each dataset when it is simplified with the Geometric-
TT method.
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(a) Compression rate (b) Simplification time

(c) Average shape measure (d) RMSE of vertical distances

Fig. 18. The performance and quality evaluation of the parallel simplification when a progressive optimization
is applied to the Molokai dataset.

(a) Compression rate (b) Simplification time

(c) Average shape measure (d) RMSE of vertical distances

Fig. 19. The performance and quality evaluation of the parallel simplification when a progressive optimization
is applied to the Canyon Lake dataset.
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(a) Compression rate (b) Simplification time

(c) Average shape measure (d) RMSE of vertical distances

Fig. 20. The performance and quality evaluation of the simplification of the Molokai dataset when it is
simplified by the parallel simplification on Terrain trees with different leaf capacity values and by the
simplification on the IA data structure. The TT- refers to the Terrain trees method, and the number after it
corresponds leaf capacity value used during the Terrain tree generation.
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(a) Compression rate (b) Simplification time

(c) Average shape measure (d) RMSE of vertical distances

Fig. 21. The performance and quality evaluation of the simplification of the Canyon Lake dataset when it
is simplified by the parallel simplification on Terrain trees with different leaf capacity values and by the
simplification on the IA data structure. The TT- refers to the Terrain trees method, and the number after it
corresponds leaf capacity value used during the Terrain tree generation.
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