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Abstract
This paper presents an advanced workflow for collaborative aircraft design, extending the Common Parametric
Aircraft Configuration Schema (CPACS) with knowledge-based engineering and custom geometry parametriza-
tion. By integrating domain-specific tools through the parametric modeling framework grunk, we offer a flexible
solution to enhance CPACS’s capabilities. Two approaches are demonstrated: the integrated plugin approach,
where all tools are available as grunk plugins, and the recipe export approach, where domain-specific tools gen-
erate parametric models, called grunk recipes. These methods enable the seamless combination of standardized
data models with custom parametric extensions, improving collaboration and automation in multidisciplinary
design processes. We exemplify the presented process by applying geometric modifications from both the CAD
kernel OpenCascade Technologies and the knowledge–based engineering framework Codex to an existing CPACS
model.
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1. INTRODUCTION

1.1. Motivation

The Common Parametric Aircraft Configuration
Schema (CPACS) [1] as a central data model is an
indispensable enabler for multidisciplinary aircraft
design. As a hierarchical data model, it provides a fi-
nite range of standardized descriptions. Additionally,
different experts maintain domain–specific knowl-
edge that is not yet properly representable within
CPACS. While the standard is actively maintained
and extended, the time required for the definition
of new data types as well as the implementation in
CPACS-based tools such as TiGL [2] often exceeds
the constraints of design projects.
In collaborative aircraft design projects, different de-
partments often use custom tools to extract or mod-
ify geometry from CPACS files according to their spe-
cific needs. This leads to the proliferation of scripts
and code snippets that are difficult for other project
partners or automated MDAO processes to reproduce.
These tools, scripts, and code snippets are typically
tailored to run in local environments set up by individ-
uals, making them inaccessible or incompatible with
broader workflows. Furthermore, it is often unclear
what the exact inputs and outputs are, or whether
these tools and scripts are parametrically linked to the

data model, which complicates their integration into a
cohesive and automated design process.
When the focus of collaboration is a simulation or op-
timization workflow, tools like RCE [3] help address
these issues by providing a structured framework for
process integration and automation. However, when
the collaborative effort centers around a parametric
(geometry) model that needs to be tailored to the re-
quirements of all project partners, the question of how
to effectively manage and synchronize these custom
CPACS extensions remains an open challenge.

1.2. Objective and Methodological Overview

In this study, we present a workflow that extends
a CPACS model of an aircraft by parametrically
incorporating domain–specific models. We do this
systematically using the parametric modeling engine
grunk [4].
We use CPACS and TiGL to describe the overall air-
craft design, while employing the knowledge-based en-
gineering (KBE) tool Codex [5, 6] to parametrically
model the geometry of a fuel system, a component
which is absent in the CPACS standard. We use Open-
Cascade Technology (OCCT) [7] for geometry model-
ing.
We demonstrate two different ways of using the
parametric modeling framework grunk for this task,
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namely the integrated plugin approach and the recipe
export approach.
In the integrated plugin approach we use the functions
and types of domain specific tools such as TiGL and
OCCT within a single parametric model, a so–called
grunk recipe. For this approach, all involved tools
must be available as a grunk plugin, each providing
building blocks for a certain domain or level of abstrac-
tion. The TiGL plugin provides methods and types
from the domain of aircraft predesign, with types such
as wings, fuselages, rips and spars. An OCCT plu-
gin provides methodology to manipulate geometries
based on a boundary representation with types such
as points, curves and B-spline surfaces.
Vice versa, the recipe export approach is an integration
of grunk via its API into a domain specific tool to be
able to export grunk recipes for further manipulation.
In this scenario, the domain specific tool does not need
to be available as a grunk plugin. The domain specific
tool is needed to generate the parametric model, but
it is not needed to evaluate the model for a different
parameter set or to extend the parametric model with
further customizations.
The integrated plugin approach is ideal when all
necessary tools can be made available as grunk plug-
ins, which can be reused and shared across different
workflows, but it requires the provision, installation
and maintenance of multiple plugins. In contrast,
the recipe export approach is more flexible, as it
doesn’t require the tools to be available as plugins,
but it depends on external tools for model generation
and may limit the ability to modify or extend the
model parametrically afterwards. Users should opt
for the plugin approach when tight integration and
reusability are needed, and the export approach when
tool availability or simpler workflows are prioritized.
We demonstrate the integrated plugin approach by
creating a grunk recipe that interprets a CPACS
file using a plugin as an interface to TiGL, extracts
geometric information using TiGL and extents it using
grocc, a grunk plugin for OCCT. We demonstrate the
recipe export approach by exporting a fuel system,
that has been created in Codex as a grunk recipe.
We note, that it is not our objective to provide a
realistic model of a fuel system, but rather to pro-
vide and demonstrate the methodology and design
workflow in principle. Finally, both grunk recipes are
merged into a single parametric model that leverages
CPACS where possible and incorporates a custom
parametrization where necessary.

2. TOOLS

In this section we describe the two main tools used in
the workflow, the parametric modeling engine grunk
and the knowledge–based engineering framework
Codex.

2.1. grunk

grunk is a parametric modeling engine written in
C++ that is developed at the German Aerospace
Center (DLR). The framework is distinct from tradi-
tional CAD tools by decoupling geometry generation
from the parametric engine, offering flexibility for
integration with different modeling and simulation
tools. The key feature of grunk is its plugin system,
allowing custom types and functions to be added
without altering the core engine. Plugins can provide
building blocks for parametric models for any kind of
domain or level of abstraction.
One of the primary goals of grunk is to facilitate consis-
tent geometry generation across different departments
working on a design, ensuring reproducibility and ef-
ficient parameter modifications. Built-in lazy evalua-
tion and caching allows efficient re-evaluation of para-
metric models after parameter changes. Grunk recipes
can be exported to a human-readable exchange format
based on YAML.
Internally, grunk represents a parametric model as a
directed acyclic graph of inputs, computations and
their outputs. There are two kinds of nodes in the
tree, namely so–called features and steps. A feature
represents an independent parameter or an interme-
diate or final calculation result. A step represents a
computation. Steps can have any number of input or
output features. A feature can have at most one input
step, but can be used in any number of steps as an
input.
At the time of writing, there are five distinct kinds of
steps that are supported in a grunk recipe, namely ex-
pressions, actions, scripts, recipe evaluations and vec-
tors.
An expression corresponds to the evaluation of a term
or formula.
An action simply represents the evaluation of a func-
tion, usually provided by a plugin. To ensure a consis-
tent data flow from inputs to outputs, functions used
in actions may not alter their inputs. This requirement
poses a hard restriction when using legacy object ori-
ented code, where many classes have member functions
mutating the class instance, such as setters.
Scripts are a step kind specifically to work around this
limitation: A script consists of a sequence of actions
within a single step of a parametric tree. Variables
created within a script may be altered by other calcu-
lations within the same script. When a script exits,
its outputs are returned as immutable objects.
Grunk recipes can contain any number of grunk recipes
and can therefore be nested indefinitely. On the one
hand, this allows structuring complex models in hi-
erarchies. On the other hand, this allows calling a
subrecipe just like a function, mapping feature nodes
from the outer recipe to inner nodes and then map-
ping the inner result nodes to new result features in
the containing recipe. This kind of recipe step is called
a recipe evaluation.
The fifth and final step kind is a vector. It represents
the collection of any number of feature nodes in a con-
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tainer. This container can be used as input to actions
that expect vectors or lists of values.
The engine grunk itself makes no assumptions on the
data types and functions that are used as actions in a
recipe. All modeling functionality is implemented in
plugins that can be loaded at runtime.
Geometric functionalities are provided through plug-
ins like grocc, which integrates OCCT, and geo, which
extends it further, making the platform highly modu-
lar and extendable. geo is the plugin for the geometry
library geoml, also developed at DLR.

2.2. Codex

The COllaborative DEsign and eXploration (Codex)
platform [5, 6] is a platform for the development
of knowledge-based engineering (KBE) applications
based on Semantic Web Technologies (SWT), which
is currently being developed at the German Aerospace
Center. It allows the creation of domain-specific
knowledge-bases and enables integrating these into a
single model of the overall product. Thereby, it aims
to support the digitalization of the aircraft design
process and to allow designers to focus on the creative
part of their design tasks.
The codex-geometry module [8], which is part of the
Codex framework, allows the user to model complex
geometries as well as geometric requirements, which
can be automatically evaluated by Codex. It provides
an ontology for the description of geometric shapes, in-
cluding primitive shapes like spheres, cylinders, curves
etc. as well as operations like union or intersection.
In combination, these can be used to describe even
complex geometries. codex-geometry also allows the
definition of geometric requirements and can automat-
ically check if these requirements are met by a given ge-
ometry. These automatic consistency checks can help
to detect design errors early in the aircraft design pro-
cess.

3. DESIGN WORKFLOW

In this section we demonstrate the use of both the
integrated plugin approach and the recipe export
approach for extending an existing parametric model
with grunk. We shortly outline how two parametric
models can be integrated into a single recipe.

3.1. Integrated Plugin Approach

As a prerequisite for the integrated plugin approach,
we first needed to create a grunk Plugin for TiGL.
The command line interface of grunk offers a semi-
automated code generation process for the creation of
grunk plugins from existing C++ libraries. This func-
tionality has already been used to generate the grunk
plugin for OCCT as well as for the geometry mod-
eling library geoml. A plugin author must setup a
project directory from a template with a YAML input
file for the code generator. This input file specifies the
name, version and some metadata of the plugin, as
well as the header files of the C++ library that shall

FIG 1. Generation of the wing box geometry for
the D150, similar in size to the A320 [9]
research configuration. The cut geometries
of the leading edge and trailing edge spars
are used to define the design space of the
fuel system.

be parsed for type and function declarations. It is
possible to specify blacklists and wildcards. From this
information, the C++ code for the grunk plugin is gen-
erated, registering all class declarations together with
their base class declarations, data members and mem-
ber functions, constructors and conversions as well as
free functions in grunk’s dynamic type system, as spec-
ified in the YAML input file. A plugin author can
customize type and function registrations, e.g. for the
serialization and deserialization of class instances to
the YAML representation of a grunk recipe or to add
additional functionality that is unavailable in the un-
derlying C++ library.
Plugins created in this way can be made availabe both
in source code and in binary form to all project part-
ners involved in an aircraft design project. grunk has
a package manager to facilitate the sharing and in-
stallation of plugins from local or remote registries.
This ensures that all participating parties work with
the same tools and everybody can easily interpret and
manipulate the same underlying parametric model.
With the TiGL plugin available, the next step is to
extract certain geometric information from an exist-
ing CPACS file within a grunk recipe. TiGL already
provides a wide range of functionality for geometry ex-
traction. For some use cases this functionality might
not suffice. For instance, TiGL currently has no func-
tions to generate a solid wing box geometry, that is the
space confined in between two spars, two ribs as well
as the lower and upper skin of the wing. This wing
box is the confining space for fuel lines and pumps in
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the wing and is needed to check the validity of the fuel
system geometry.
To still obtain a valid wing box from a CPACS file,
we can use TiGL to get the so-called cut geometries of
ribs and spars, which are the rib and spar geometries
before trimming with the outer wing shape. These
cut geometries can be used to cut out a solid section
from the wing to create the wing box using Boolean
operations, see Figure 1.
The grunk recipe responsible for opening a CPACS
file, extracting geometric information and creating the
wing box is generated using the python bindings of
grunk. The recipe is exported to YAML, see Figure 2.

3.2. Recipe Export Approach

In [8] and [10], Codex and codex-geometry were used
to create a geometric model of a conventional aircraft
fuel system. Certain parameters of the fuel system,
like the wall thickness of the fuel pipes can be automat-
ically determined by Codex based on requirements,
such as the required fuel mass or pressure. Further-
more, a variety of geometric requirements were cre-
ated for these fuel system models. The aircraft fuel
system has a large volume, a complex geometry and
is highly integrated with other components of the air-
craft, which makes it an important use case for this
work.
As the fuel system can currently not be described using
the CPACS standard, in this work we aim at extending
the CPACS model using a fuel system model created
in Codex. We create the fuel system for an aircraft
based on the domain-specific model introduced in [8,
10]. The resulting geometry is exported as a grunk
recipe and thus can be easily combined with the wing
box extracted directly from CPACS.

3.3. Unification of recipes

grunk recipes can be nested indefinitely. Therefore the
grunk API can be used to easily create a signle recipe
that contains the recipe for the wing box and aircraft
shape as one subrecipe and the fuel system recipe as a
second. These subrecipes can be invoked in the outer
recipe like functions. This way, the inputs and outputs
of subrecipes could be connected to obtain a consistent
fully parametric model, see Fig. 3.

4. RESULTS

As design space to test our approach, we use the
outer aircraft geometry from the Avacon project [11],
similar to a B767. The resulting geometry is shown
in Figure 4. For the integrated plugin approach a
grunk recipe was prepared using the python bindings
of grunk, see Figure 2. The fuel system was generated
on the basis of the same aircraft geometry in Codex
and a grunk recipe was created. Using the grunk API
from python, the input parameters for the wing box
recipe, such as the indices of the rips and spars as
well as the CPACS file name are modified and the
two recipes are merged into a single recipe. Currently,

parameteric changes within CPACS will not affect the
fuel system. The fuel system recipe currently has 165
Carthesian points as independent input parameters.
To fully couple the CPACS configuration to the fuel
system model, these parameters must be set based
on the CPACS geometry. This coupling will be
performed in a future task.

5. CONCLUSION AND OUTLOOK

By incorporating domain-specific models from Codex
and leveraging the parametric modeling engine grunk,
we offer a practical approach to extend CPACS func-
tionality while maintaining its benefits.
In the future, we plan to connect the inputs and out-
puts of the two submodels for a fully automatic design,
respecting the requirements that were used in the ge-
ometry definition in Codex.
One of TiGL’s primary goals is to eliminate ambiguity
in geometry interpretation left by CPACS. When all
project partners use TiGL for geometry generation,
it ensures that everyone operates with the same
geometric model. However, this advantage is lost
when CPACS lacks certain geometric features or
when TiGL has yet to implement them. Extending
CPACS or TiGL can be time-consuming and may not
fit within the tight deadlines of a design project. By
enabling the extension of CPACS parametrizations
with custom geometries and domain-specific models
in a consistent manner, design projects are no longer
constrained by the absence of standard functional-
ity. Custom parametric models can be exchanged
seamlessly across the consortium, and if they remain
consistently parametric, they could serve as the
foundation for future CPACS definitions and TiGL
implementations, such as for fuel systems, thereby
accelerating future aircraft design efforts.
Additionally, we want to enable grunk recipes in which
low level CPACS parameters such as transformations
and positionings are calculated from arbitrary custom
high level parameters, such as wing aspect ratio or
wing span. A graphical user interface for grunk is un-
der development to facilitate parametric modeling for
the end user.
By addressing these challenges, we aim to create a fully
integrated, parametric design workflow that not only
extends CPACS but also ensures consistency across di-
verse domain-specific requirements, setting the foun-
dation for future advancements in collaborative and
automated aircraft design.
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wingbox:

# truncated

FIG 3. An examplatory excerpt of the unified grunk recipe. It contains the fuel system and the wing box
as subrecipes, which can be invoked like functions to overwrite parameters and extract results.
Note that the subrecipes fuelsystem and wingbox have the same structure as any other grunk
recipe. They have been truncated here for better readibility.
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(a) The wing box and fuel system for the aircraft
geometry from the Avacon project

(b) A closeup of the wing box and fuel system near
the engine pylon

FIG 4. The extended geometry model including the wing box and fuel system.
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