KONDO BREAKDOWN AND MAGNETIC MOMENT REVIVAL IN MULTI-ORBITAL ANDERSON LATTICES

Fabian Eickhoff¹, Frithjof B. Anders² and Benedikt Fauseweh¹²

¹Institute For Software Technology, German Aerospace Center, Cologne, Germany ²Department of Physics, condensed matter theory, TU Dortmund University, Dortmund, Germany *fabian.eickhoff@dlr.de*

- **motivation towards a unified understanding of strange metals**
- **Kondo lattice and Kondo breakdown**
- **local moment revival in dilute Kondo lattices (preliminary results)**

strange metal phenomena are observed across different material platforms

• linear-in-temperature electrical resistivity

Joseph G. Checkelsky, B. Andrei Bernevig, Piers Coleman, Qimiao Si, Silke Paschen, arXiv:2312.10659

flat band systems

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity
- Fermi volume jump at T=0
- dynamical scaling in optical conductivity *and* spin susceptibility

flat band systems

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity
- \cdot Fermi volume jump at T=0
- dynamical scaling in optical conductivity *and* spin susceptibility

Joseph G. Checkelsky, B. Andrei Bernevig, Piers Coleman, Qimiao Si, Silke Paschen, arXiv:2312.10659

flat band systems

$$
H=\sum_{\langle i,j\rangle}tc_i^\dagger c_j+Un_{i,\uparrow}n_{i,\downarrow}
$$

 $D/U \gg 1$ **metal insulator** $\phi(\omega)$ ω $-D$ \overline{D}

$$
\begin{aligned} \n\mathsf{DMFT}\,\text{self consistency condition}\\ \n\mathcal{G}^{\text{lat}}(z) &= \mathcal{G}^{\text{imp}}(z) \\ \n\Delta(z) &= z - \Sigma(z) - [\mathcal{G}^{\text{lat}}(z)]^{-1} \n\end{aligned}
$$

DMFT self consistency condition
\n
$$
\mathcal{G}^{\text{lat}}(z) = \mathcal{G}^{\text{imp}}(z)
$$
\n
$$
\Delta(z) = z - \Sigma(z) - [\mathcal{G}^{\text{lat}}(z)]^{-1}
$$

DMFT removes magnetism from phase diagram

$$
\bullet \texttt{t} \texttt{u} \texttt{t} \texttt{t} \texttt{t} \texttt{t}
$$

$$
H=\sum_{\langle i,j\rangle}tc_i^\dagger c_j+Un_{i,\uparrow}n_{i,\downarrow}
$$

Hubbard model – Mott transition:

- \cdot U=0 \longrightarrow metal
- U>>t \longrightarrow insulator

localization due to strong interactions! without the need of magnetic order!!

Hubbard model – Mott transition:

- $U=0$ \longrightarrow metal
- \cdot U>>t \longrightarrow insulator

localization due to strong interactions! without the need of magnetic order!!

from McWhan et al., Phys. Rev. B (1973)

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity
- Fermi volume jump at $T=0$
- dynamical scaling in optical conductivity *and* spin susceptibility

Lets put that on a lattice: PAM / KL

Lets put that on a lattice: PAM / KL strong coupling $T>T_0$ $T < T_0$

spins get eaten up by conduction band electrons

Kondo effect / emergence of heavy quasiparticles

can we break up these new quasiparticles ?

Doniach scenario

SDW – critical order parameter magnetism enforced transition

OSM – critical fermions magnetism as a byproduct

J. Phys. Soc. Jpn. 81 **011001**

what becomes critical at QCP? $CeCu_{6-0.1}Au_{0.1}$: $\chi_s^{-1}(q,\omega) \approx f(q) + \omega^{\alpha}$

local criticality

Doniach scenario

SDW – critical order parameter magnetism enforced transition

OSM – critical fermions magnetism as a byproduct

Phys. Soc. Jpn. 81 01100

what becomes critical at QCP? Т $CeCu_{6-0.1}Au_{0.1}$: $\chi_s^{-1}(q,\omega) \approx f(q) + \omega^{\alpha}$ *local criticality*

\n $\begin{array}{r}\n 1 \\ 1 \\ 1 \\ 1\n \end{array}$ \n	\n $\begin{array}{r}\n 1 \\ 1 \\ 1 \\ 1\n \end{array}$ \n	
\n DMFT? \n	\n $\begin{array}{r}\n 1 \\ 1 \\ 1 \\ 1\n \end{array}$ \n	
\n SMFT? \n	\n $\begin{array}{r}\n 1 \\ 1 \\ 1 \\ 1\n \end{array}$ \n	
\n small Fermi surface \n	\n $\begin{array}{r}\n 0 \\ 0 \\ 0 \\ 0\n \end{array}$ \n	\n $\begin{array}{r}\n 1 \\ 1 \\ 1 \\ 1\n \end{array}$ \n

Doniach scenario

SDW – critical order parameter magnetism enforced transition

 $CeCu_{6-0.1}Au_{0.1}$: $\chi_s^{-1}(q,\omega) \approx f(q) + \omega^{\alpha}$ *local criticality*

DMFT? $\mathsf{T}_{\sf FL}$. large Fermi surface **QCP**

itinerant electrons V_1 spins V_2 itinerant electrons $+$ $+$ $-1. \epsilon_{\vec{k}}$

 $\sum_{k} \epsilon_k (c_k^{\dagger} c_k - a_k^{\dagger} a_k)$ $\sum_{k} V_1 f_k^{\dagger} c_k + V_2 f_k^{\dagger} a_k + \text{h.c.}$

itinerant electrons V_1 spins V_2 itinerant electrons $1 \cdot \in \overline{\mathcal{F}}$

why on earth…?

 $\sum_{k} \epsilon_k (c_k^{\dagger} c_k - a_k^{\dagger} a_k)$ $\sum_{k} V_1 f_k^{\dagger} c_k + V_2 f_k^{\dagger} a_k + \text{h.c.}$ **DLR**

why on earth…?

I. band folding due to larger unit cell

why on earth…?

I. band folding due to larger unit cell

II.destructive hybridization interference?

why on earth…?

results arXiv:2401.04540

definition of low energy scale

results arXiv:2401.04540

- exponentially suppressed T_0 due to destructive interference
- generic effect in multi-orbital Kondo systems

results arXiv:2401.04540

- exponentially suppressed T_0 due to destructive interference
- generic effect in multi-orbital Kondo systems
- Kondo breakdown! w/o the need of magnetism
- ➔ non trivial pseudo-gap SIAM due to self consistency
- local PH symmetry: universal power law scaling

to do

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

to do

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- **distance to interacting non-Fermi-liquid fixed point?**

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

to do

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- **distance to interacting non-Fermi-liquid fixed point?**

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

Phys. Rev. B, 70, 214427

to do

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- **distance to interacting non-Fermi-liquid fixed point?**

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

to do

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- **distance to interacting non-Fermi-liquid fixed point?**

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

 $V_{\rm DMFT} < V_c$

*premilinary results***: local moment revival in dilute periodic Anderson models**

 $\Delta R_f/a=2$

 $\Delta R_f/a=2$

$$
\Delta R_f/a=1
$$

standard Kondo lattice / periodic Anderson model

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM)

 $\Delta R_f/a=2$

$$
\Delta R_f/a=1
$$

standard Kondo lattice / periodic Anderson model

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM):

Lieb Mattis theorem: (spins on A-site only + PH symmetry)

$$
\langle S_z \rangle = 0
$$

$$
\langle S_z \rangle = \frac{N^{\rm u} - 1}{2}
$$
 N^u = number of unit cells

$$
\Delta R_f / a = 2
$$

$\Delta R_f/a=1$

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM):

Lieb Mattis theorem: (spins on A-site only + PH symmetry)

for DMFT we need to integrate Greens functions...

$$
\overrightarrow{P_{\text{DLR}}}
$$

$$
G_0^{-1}(k) = \begin{bmatrix} i\omega - V_i & -t & -t & 0 & \dots \\ -t & i\omega - V_i & -t & -t & \dots \\ -t & -t & i\omega - V_i & -t & \dots \\ 0 & -t & -t & i\omega & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \qquad (2)
$$

$$
G^{-1}(k) = \begin{bmatrix} G_0^{-1}(k) & V_{if} \\ G_0^{-1}(k) & V_{if} \\ 0 & \vdots \\ V_{if} V_{if} & V_{if} & 0 \dots | \epsilon_f - \Sigma \end{bmatrix} .
$$
 (3)

Here V_{if} , ε_f , t, and V_i are defined in (1), $i\omega_n$ is the *n*'s Matsubara frequency, while the substrate sites are ordered in such a way that the three sites connected to the adatom are listed first.

 G_0 is obtained via matrix products for all n_{freq} (N^2 operations), G is then updated from G_0 . Since only three substrate sites hybridizes with the adatom, the updating process scales linearly with N.

Lee et al. *Commun Phys 2, 49 (2019)*

Common feature: emergence of sharp dip in effective medium due to self consistency condition

➔ explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

➔ explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

➔ explore SIAM toy-model to gain better understanding

revival of magnetic moment

Common feature: emergence of sharp dip in effective medium due to self consistency condition

DLR

➔ explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

➔ explore SIAM toy-model to gain better understanding

PAM: dilute limit vs Lieb Mattis theorem

