KONDO BREAKDOWN AND MAGNETIC MOMENT REVIVAL IN MULTI-ORBITAL ANDERSON LATTICES

Fabian Eickhoff¹, Frithjof B. Anders² and Benedikt Fauseweh¹²

¹Institute For Software Technology, German Aerospace Center, Cologne, Germany ²Department of Physics, condensed matter theory, TU Dortmund University, Dortmund, Germany fabian.eickhoff@dlr.de

- motivation towards a unified understanding of strange metals
- Kondo lattice and Kondo breakdown
- local moment revival in dilute Kondo lattices (preliminary results)

strange metal phenomena are observed across different material platforms

linear-in-temperature electrical resistivity ٠

Joseph G. Checkelsky, B. Andrei Bernevig, Piers Coleman, Qimiao Si, Silke Paschen, arXiv:2312.10659

flat band systems

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity ٠
- Fermi volume jump at T=0
- dynamical scaling in optical conductivity **and** spin susceptibility ۲

flat band systems

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity ٠
- Fermi volume jump at T=0
- dynamical scaling in optical conductivity **and** spin susceptibility ۲

Joseph G. Checkelsky, B. Andrei Bernevig, Piers Coleman, Qimiao Si, Silke Paschen, arXiv:2312.10659

flat band systems

$$H = \sum_{\langle i,j \rangle} t c_i^{\dagger} c_j + U n_{i,\uparrow} n_{i,\downarrow}$$

DMFT self consistency condition

$$\mathcal{G}^{\text{lat}}(z) = \mathcal{G}^{\text{imp}}(z)$$

$$\Delta(z) = z - \Sigma(z) - [\mathcal{G}^{\text{lat}}(z)]^{-1}$$

DMFT self consistency condition

$$\mathcal{G}^{\text{lat}}(z) = \mathcal{G}^{\text{imp}}(z)$$

$$\Delta(z) = z - \Sigma(z) - [\mathcal{G}^{\text{lat}}(z)]^{-1}$$

$$H = \sum_{\langle i,j \rangle} tc_i^{\dagger} c_j + U n_{i,\uparrow} n_{i,\downarrow}$$

Hubbard model – Mott transition:

- U=0 → metal
- U>>t → insulator

localization due to strong interactions! without the need of magnetic order!!

Hubbard model – Mott transition:

- U=0 → metal
- U>>t → insulator

localization due to strong interactions! without the need of magnetic order!!

from McWhan et al., Phys. Rev. B (1973)

strange metal phenomena are observed across different material platforms

- linear-in-temperature electrical resistivity
- Fermi volume jump at T=0
- dynamical scaling in optical conductivity **and** spin susceptibility

Lets put that on a lattice: PAM / KL

Lets put that on a lattice: PAM / KL

spins get eaten up by conduction band electrons

Kondo effect / emergence of heavy quasiparticles

can we break up these new quasiparticles ?

Doniach scenario

SDW – critical order parameter magnetism enforced transition

OSM – critical fermions magnetism as a byproduct

J. Phys. Soc. Jpn. 81 011001

what becomes critical at QCP?

 $CeCu_{6-0.1}Au_{0.1}:$

 $\chi_{S}^{-1}(q,\omega) \approx f(q) + \omega^{\alpha}$

local criticality

Doniach scenario

SDW – critical order parameter magnetism enforced transition

what becomes critical at QCP? $\begin{aligned} \mathrm{CeCu}_{6-0.1}\mathrm{Au}_{0.1}: \\ \chi_s^{-1}(q,\omega) \approx f(q) + \omega^\alpha \end{aligned}$

local criticality

Doniach scenario

SDW – critical order parameter magnetism enforced transition

J. Phys. Soc. Jpn. 81 011001

Т

what becomes critical at QCP?

 $CeCu_{6-0.1}Au_{0.1}:$

 $\chi_{_S}^{-1}(q,\omega)\approx f(q)+\omega^\alpha$

local criticality

CP large Fermi surface δ

 $\sum_{k} \epsilon_{k} (c_{k}^{\dagger} c_{k} - a_{k}^{\dagger} a_{k}) \qquad \qquad \mathbf{V}_{\mathsf{DL}}$ $\sum_{k} V_{1} f_{k}^{\dagger} c_{k} + V_{2} f_{k}^{\dagger} a_{k} + \text{h.c.}$

 $\sum_{k} \epsilon_{k} (c_{k}^{\dagger} c_{k} - a_{k}^{\dagger} a_{k}) \qquad \qquad \mathbf{P}_{\mathbf{D}\mathbf{L}}$ $\sum_{k} V_{1} f_{k}^{\dagger} c_{k} + V_{2} f_{k}^{\dagger} a_{k} + \text{h.c.}$

why on earth...?

I. band folding due to larger unit cell

why on earth ...?

I. band folding due to larger unit cell

II. destructive hybridization interference?

why on earth ...?

<u>results</u> arXiv:2401.04540

definition of low energy scale

<u>results</u> arXiv:2401.04540

- exponentially suppressed T_0 due to destructive interference
- generic effect in multi-orbital Kondo systems

<u>results</u> arXiv:2401.04540

- exponentially suppressed T_0 due to destructive interference
- generic effect in multi-orbital Kondo systems
- Kondo breakdown! w/o the need of magnetism
- non trivial pseudo-gap SIAM due to self consistency
- local PH symmetry: universal power law scaling

<u>to do</u>

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

<u>to do</u>

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

<u>to do</u>

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

Phys. Rev. B, 70, 214427

<u>to do</u>

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

effective SIAM at KB point :

 $\rho_0(\omega) \propto |\omega|^r \quad r < 0.5$

<u>to do</u>

- calculate thermodynamic and transport properties
- analytical insight? (large N mean filed, ...)
- distance to interacting non-Fermi-liquid fixed point?

effective SIAM at KB point :

 $ho_0(\omega) \propto |\omega|^r \quad r < 0.5$

DMFT self-consistency: $V_{\rm DMFT} < V_c$

premilinary results: local moment revival in dilute periodic Anderson models

PAM: dilute limit vs Lieb Mattis theorem

 $\Delta R_f/a = 2$

 $\Delta R_f/a = 2$

$$\Delta R_f/a = 1$$

standard Kondo lattice / periodic Anderson model

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM)

 $\Delta R_f/a = 2$

$$\Delta R_f/a = 1$$

standard Kondo lattice / periodic Anderson model

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM):

Lieb Mattis theorem: (spins on A-site only + PH symmetry)

$$\langle S_z \rangle = 0 \\ \langle S_z \rangle = \frac{{\rm N}^{\rm u} - 1}{2} \qquad {\rm N}^{\rm u} = \ {\rm number \ of \ unit \ cells}$$

 $\langle S_z \rangle = 0$

 $\langle S_z$

$$\Delta R_f/a = 2$$

$$\Delta R_f/a = 1$$

standard Kondo lattice / periodic Anderson model

 $\Delta R_f/a \gg 1$

single impurity limit (SIAM):

Lieb Mattis theorem: (spins on A-site only + PH symmetry) How to combine the SIAM limit with LM theorem ?

correlations should be local in the dilute limit DMFT is well suited

 $N^{u} =$ number of unit cells

 $\Delta R_f/a = 2$

for DMFT we need to integrate Greens functions...

 $G_0^{-1}(k) = \begin{bmatrix} i\omega - V_i & -t & -t & 0 & \dots \\ -t & i\omega - V_i & -t & -t & \dots \\ -t & -t & i\omega - V_i & -t & \dots \\ 0 & -t & -t & i\omega & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$ (2)

$$G^{-1}(k) = \begin{bmatrix} V_{if} \\ V_{if} \\ 0 \\ \vdots \\ V_{if} V_{if} & V_{if} & 0 \\ \vdots \\ V_{if} V_{if} & V_{if} & 0 \\ \cdots & \epsilon_{f} - \Sigma \end{bmatrix}.$$
(3)

Here V_{if} , ε_{f} , t, and V_i are defined in (1), $i\omega_n$ is the *n*'s Matsubara frequency, while the substrate sites are ordered in such a way that the three sites connected to the adatom are listed first.

 G_0 is obtained via matrix products for all n_{freq} (N^2 operations), G is then updated from G_0 . Since only three substrate sites hybridizes with the adatom, the updating process scales linearly with N.

Lee et al. Commun Phys 2, 49 (2019)

Common feature: emergence of sharp dip in effective medium due to self consistency condition

→ explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

→ explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

• explore SIAM toy-model to gain better understanding

revival of magnetic moment

Common feature: emergence of sharp dip in effective medium due to self consistency condition

explore SIAM toy-model to gain better understanding

Common feature: emergence of sharp dip in effective medium due to self consistency condition

→ explore SIAM toy-model to gain better understanding

PAM: dilute limit vs Lieb Mattis theorem

