TOWARDS CYBER-SECURE GBAS: INITIAL EXPERIMENTAL SYSTEM VALIDATION

Daniel Gerbeth, Maria Caamano, German Aerospace Center (DLR) ION GNSS+ 2024, Baltimore, Maryland September 18th, 2024

OPSGR UP

······

Daniel Gerbeth, German Aerospace Center, September 18th 2024

Cyber Secure DFMC GBAS Current Situation and Threats

Daniel Gerbeth, German Aerospace Center, September 18th 2024

Cyber Secure DFMC GBAS Current Situation and Threats

 Since autumn 2023, a significant increase in spoofing incidents has been observed

- Increasing number of RFI events observed in the last years
- Certain areas are regularly affected by severe interference (jamming)

Cyber Secure DFMC GBAS Current Situation and Threats

- Cybersecurity threats are an increasing problem to GNSS
 - → GBAS as GNSS-based system is affected similarly, even more sensitive to interference
 - \rightarrow MFMC can improve robustness, **but not mitigate ultimately**

INTRODUCTION & METHODS

Daniel Gerbeth, German Aerospa

What is GBAS – Ground Based Augmentation System

Cyber Secure DFMC GBAS Requirements for Cyber Security

Cyber Secure DFMC GBAS Requirements for Cyber Security

- Data link must be cyber-secure
- Current VDB link has basic means to ensure authentic data
- DLR proposed and demonstrated the use of LDACS¹ in GBAS flight trials

Cyber Secure DFMC GBAS Experimental System Overview

- Using DLR-developed resilient DFMC receivers/antennas in ground/airborne
- Ground stations with antennas on PCB design, Airborne in typical footprint
- GBAS processing comparable to current standard L1 processing with dualfrequency ionospheric monitoring
- Authenticated correction data broadcast
- Additional monitoring for interferences

Cyber Secure DFMC GBAS Initial Validation and Flight Campaign

- First successful validation with resilient hardware (ground/air) end of 2023
- 3 array based ground stations and array based airborne GNSS receiver
- Various tests including jamming/spoofing, conventional GNSS as reference

All tests conducted around Cochstedt airport (EDBC)

Initial Validation and Flight Campaign

- ATZ orange
- Spoofing zone magenta

Cyber Secure DFMC GBAS

- Flight paths for circling (green), spoofing trials (red) aerodrome circling (blue)
- Permission to conduct in-flight spoofing and ground based jamming of aircraft on approach (Special Activity Area)

All tests conducted around Cochstedt airport (EDBC)

- ATZ orange
- Spoofing zone magenta
- Flight paths for circling (green), spoofing trials (red) aerodrome circling (blue)
- Permission to conduct in-flight spoofing and ground based jamming of aircraft on approach (Special Activity Area)

RESULTS

Daniel Gerbeth, German Aerospace Center, September 18th 2024

Cyber Secure DFMC GBAS Ground + Airborne Noise & Multipath (Sigma Ground/Air)

- Ground: residual noise and multipath comparably high in low elevations, improving above 40°, between GAD-A and B requirements with preliminary PCB-based array antennas (!) and without dedicated MP suppression
- Air: Preliminary results due to number of samples (~3h usable flight data)

Cyber Secure DFMC GBAS GBAS Ground Station Jamming

- Continuous operation during longer ground jamming tests
- Stable tracking of (remaining) satellites during interference

Cyber Secure DFMC GBAS Airborne In-Cabin Spoofing Test

- Airborne spoofer (in-cabin) used to successfully deviate the position of an onboard Garmin GNSS
- Resilient receiver could reliably detect spoofed signals to avoid corruption of the (GBAS) position solution
- Active mitigation to maintain operation planned for 2024 flight campaign

Cyber Secure DFMC GBAS System Availability in Airport Vicinity

- Good overall system availability throughout various tests in the airport area
- Service loss mainly due to low number of satellites in dynamic sections

Cyber Secure DFMC GBAS System Integrity and Availability

- Integrity plots for all flight segments within 40 km of the airport
- Including jamming/spoofing segments, go-arounds, tight circling etc.

Cyber Secure DFMC GBAS System Integrity and Availability

- Integrity plots for all flight segments within 40 km of the airport
- Excluding jamming/spoofing segments and tight circling

Cyber Secure DFMC GBAS Protection Level Performance on Final Approach

- During approaches, PLs very close to CAT III requirements were achieved, even with current hardware limitations
- Vertical position error typically below 1.5 m on final approach
- Very promising for future tests with planned improvements

F-WXEY

CONCLUSIONS & OUTLOOK

Cyber Secure DFMC GBAS Conclusions & Outlook

- Initial accuracy/availability very promising considering the system limitations
 - Very limited number of tracking channels, air/gound antenna awaiting redesign, ...
- System ensured GBAS integrity during all phases of flight and in static ground tests, even under interference
- Hardware provided stable navigation under interference, indicating the suitability of the approach in demanding, safety-critical applications
- Further flight tests upcoming (October 2024) to test refined hardware based on identified potential for optimizations
- Additional data to further refine models and enable final real-time demonstration of the complete system in 2025

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

→ Daniel.Gerbeth@dlr.de

Cyber Secure DFMC GBAS The Team Behind

- Daniel Gerbeth, Maria Caamano
- Andreas Winterstein, Manuel Cuntz, Philipp Rudnik, Simon Hengstermann
- Andriy Konovaltsev, Emilio Perez, Lothar Kurz, Tobias Bamberg
- Simon Hehenberger, Stefano Caizzone, Veenu Tripathi
- DLR Institute of Flight Experiments
- DLR National Experimental Test Center for Unmanned Aircraft Systems

Imprint

Topic:ION GNSS+ 2024
Towards Cyber-Secure GBAS: Initial Experimental System
ValidationDate:2024-09-18Author:Daniel GerbethInstitute:German Aerospace Center

Institute of Communications and Navigation

Image credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated