
École des Ponts ParisTech

Master II – End-of-studies intership report

Development of a finite volume library on GPUs using the adaptive
mesh refinement library t8code

Author:

Maël Karembe

Supervisors:

Johannes Markert

Johannes Holke

Contents Contents

Contents

1 Introduction 2

1.1 Context . 2

1.2 Objectives . 2

2 GPGPU programming concepts 2

2.1 CPU architecture strenghs and weaknesses . 2

2.2 GPU architecture basics . 4

2.2.1 GPU execution model . 4

2.2.2 GPU memory model . 5

2.3 GPU programming paradigms . 6

2.4 GPU best practices . 6

2.4.1 Kernel level . 6

2.4.2 Application level . 9

3 Adaptive mesh refinement 9

3.1 A quick survey of dynamic mesh adaptation techniques . 9

3.2 T8code . 10

4 T8gpu 11

4.1 Challenges associated to AMR and the CPU/GPU model 12

4.2 Design considerations . 12

4.2.1 GPU memory handling . 13

4.2.2 Mesh management . 14

4.2.3 Subgrid elements . 16

4.2.4 User workflow . 17

4.3 Test cases . 17

4.3.1 Finite volume formulation . 18

4.3.2 The HLL and KEPES fluxes . 19

4.4 Validation . 20

4.4.1 Sod shock tube . 21

4.4.2 Isentropic Euler vortex problem . 21

5 Results and performance analysis 22

5.1 Example showcase . 22

5.2 Motivating example of AMR with subgrid elements . 24

5.3 Performance analysis . 24

5.3.1 First approach . 25

5.3.2 Second approach: AMR with subgrid elements . 26

6 Conclusion and perspectives 27

A Appendix 28

B Glossary 30

1

2 GPGPU programming concepts

1 Introduction

1.1 Context

In recent years, supercomputers started relying more heavily on GPUs due to their power efficiency and

massively parallel capabilities in order to accomodate machine learning workloads and reach the exascale.

For instance, the record breaking Frontier supercomputer contains 9,472 AMD Epyc 7713 Trento CPUs, each

having 64 cores and 37,888 Instinct MI250X GPUs for a total of 8,335,360 cores. On this machine, each

node contains one CPU for 4 GPUs. Therefore, for numerical simulation, it is necessary to develop software

to target those new hybrid architectures to reach exascale computing. Those new heterogeneous machines

introduce numerous challenges as operation on a GPU are fundamentally different from conventional CPUs.

Thus, programming for GPU is a very demanding task requiring handling communication between CPU and

GPU, managing two different address spaces, generating GPU-specific code. In addition, multi-node multi-

CPU/GPU adds another layer of complexity with the necessity of coupling multiple parallel programming

paradigms (MPI and CUDA for example). A lot of hardware details need to be known in order to efficiently

use those machines. Therefore, building abstraction layers imitating GPU architecture are needed to increase

programmer productivity while ensuring maximum performance and portability.

Furthermore, to more efficiently use compute resources, dynamic mesh adaptation is a very effective

technique to focus computational capabilities on regions of interest and is used in many scientific fields:

astrophysics, fluid dynamics. However, this technique as it is, is not well suited for GPUs as complex dynamic

logic flow is required. In addition, doing mesh adaptation incurs an extra overhead that needs to be offset by

the gain in efficiency. Doing mesh adaptation entirely on the GPU is tricky as it is not a task that suits

the GPU execution model and thus requires designing new algorithms. Doing refinement on the CPU and

computation on theGPU also has difficulties as data transfers between the CPU andGPUneed to beminimized

as CPU/GPU communication is relatively slow. Nevertheless, both approaches have been explored in many

CPU/GPU AMR frameworks/codes.

1.2 Objectives

The objective of this end-of-studies intership is to develop a prototype numerical simulation framework using

the adaptive mesh refinement library t8code developed by the work group scalable adaptive mesh refinement

where I did this internship at the DLR (Deutsches Zentrum für Luft- und Raumfahrt). This framework should

expose an API that allows any user to easily implement a finite volume solver without compromising ease of

use for performance. After having done that, the goal is to assess t8code’s suitability as an AMR library used

to do numerical simulation on GPUs while doing mesh adaptation on the CPU.

This report is structured in multiple sections: firstly, we will detail the difference between GPU and

CPU architectures to show what are the challenges when programming on GPUs and present various GPU

programming models and optimization considerations. Then, we will present the different ways of doing

adaptivemesh refinement and focus on t8code’s approach toAMR.Afterwards, wewill present the framework

that I developed as well as the design choices behind it. Next, we will show performance results and end with

conclusions and perspectives by analysing the overhead of AMR and also the computational efficiency of the

GPU solver.

2 GPGPU programming concepts

Before delving into the GPU architecture, it is a good idea to summarize quickly the modern CPU architecture

to see what sets appart GPU fromCPU architecture and how targetting and optimizing for such devices require

a different model.

2.1 CPU architecture strenghs and weaknesses

A modern CPU is composed of multiple cores, each core being able to run one (or more with hyperthreading

or simultaneous multithreading SMT) execution thread at a time. Each core of a CPU is optimized to reduce

latency i.e. minimize the number of cycles each CPU instruction takes to be executed. Multiple optimizations

are taken to drastically reduce execution time. The most important ones are:

2

2 GPGPU programming concepts 2.1 CPU architecture strenghs and weaknesses

Figure 1: Intel skylake microarchitecture diagram.

• Speculative execution: Instruction are executed speculatively. This means in particular that the CPU

is able to guess which path of execution the program will take and execute preemptively instructions

while at the same time checking if the path taken was the correct one. This can reduce execution time

as latencies fetching memory addresses (needed to evaluate a branching condition for example) can

be hidden by going forward without waiting on the memory subsystem sending bytes back. Modern

CPU possesses branch predictors that are able to guess pattern based on previous behavior. However,

programs with unpredictable logic do not benefit much from the branch predictor as misspredicting a

branch requires the whole pipeline to be thrown out and execution to be resumed to a previous state.

Thus, it is the programmer’s responsibility to optimize a program to accomodate for the branch predic-

tor: e.g. doing branchless programming whenever possible.

• Out of order execution: Modern processors can schedule instructions out of order, meaning that up

to denpendencies, they are able to execute instructions however they see fit to better utilize the core’s

resources. Modern CPU have a front end responsible for decoding instructions (for instance x86-64

instructions) into µ-ops (proprietary CPU-dependant lower-level instruction set). Those µ-ops are then
scheduled to saturate the execution units and reduce stalls and idle cycles.

• Hyperthreading/simultaneous multithreading (SMT): Hyperthreading allows two or more threads to

have their stack and program counter on the same core but share computational resources. This allows

the CPU core to quickly switch between threads to hide memory latencies.

• A cache hierarchy: Asmemory speeds have nearly reached their physical limits, a hierarchy of caches is

used for better throughput and latency. They serve as buffer spaces to store regularily accessed memory

closer to the execution units (and thus reducing latency). However, the closer the cache is to the core,

the smaller it is. Thus, a greater emhpasis on optimizing for size and data access patterns can lead to

better performance.

All of those optimization take away precious die space (that could have been used towards compute ca-

pabilities) but it is the price to pay have a CPU that can handle all types of workloads decently well. Having

said that, in recent years, the emphasis has been put on increasing throughput as well by increasing the core

count of a CPU and relying on:

• Instruction level parallelism (ILP):Modern CPU use instruction piplelining allowing multiple instruc-

tions to be overlapped by havingmultiple steps of the pipeline (e.g. instruction fetch, decode, execution,

3

2 GPGPU programming concepts 2.2 GPU architecture basics

memory writes) running concurrently like an assembly line. Together with the scheduler, this can in-

crease the throughput by being able to execute multiple independant instructions simultaneously.

• data level parallelism: Modern processors have Single Instruction Multiple Data (SIMD) instructions

that operate on vector of elements instead of scalars increasing dramatically throughput. Contrary to

previous techniques, vectorization (i.e. the act of leveraging those instructions) is not done automat-

ically but requires either using an optimizing compiler able to generate those special SIMD instruc-

tions or using a programming model that encapsulates those instructions (e.g. using Intel intrinsics or

OpenMP).

More than ever, the world of computing and HPC is focusing more and more on many-cores architectures

(instead of increasing clock frequency which have reached a wall) with complex memory hierarchies (to have

memory the closest to computation to optimize memory throughput) and the use of accelerators such as GPUs

(presented in the next subsection) to gain in efficiency.

2.2 GPU architecture basics

Contrarily to CPUs, GPUs are not tailored towards general purpose computation with arbitrarily complex

program logic but focus on compute intensive workloads. This is achieved thanks to a simpler core design.

There is no branch predictor, no out of order execution, fewer caches. Thus a higher percentage on the die

is dedicated to arithmetic computation. Moreover, GPUs make extensive use of SIMT (Single Instruction

Multiple Threads): threads of execution execute concurrently in groups of 32 called warps.

We will detail the architecture of the Nvidia RTX A6000 GPU (2). It is composed of 84 streaming

multiprocessors (SM). Each streaming multiprocessor has 4 schedulers each able to schedule one instruction

per cycle to be executed on a warp (group of 32 execution threads). It also has multiple caches for instructions,

a register file used to store the stack of each thread of execution running (i.e. the variables defined in the

program running on the GPU). Most of the space remaining is dedicated towards single precision and double

precision arithmetic. Shared between all streaming multiprocessors is a L2 data cache, a PCIe express to

interface with CPU memory and multiple memory controllers to access GPU global memory. It also has a

global scheduler that distributes the workload onto the streaming multiprocessors.

Figure 2: Nvidia RTX A6000 chip diagram (left), Streaming Multiprocessor diagram (right).

At this point, it is important to detail the GPU execution model to be able to better understand how the

GPU distributes and execute a workload.

2.2.1 GPU execution model

There exists multiple GPU executionmodels. Themost common ones are CUDA (stands for Compute Unified

Device Architecture), and openCL (open Compute Language). Those two models are very similar as only the

terminology changes. We will focus here on CUDA as this is the one that will be used. To fit the extreme

parallelism of the GPU, a SPMD (Single Program, Multiple Data) paradigm is employed. This means that

the same program is run on all threads of execution but deal with different data. Thus, there is no explicit

4

2 GPGPU programming concepts 2.2 GPU architecture basics

blockIdx.x

blockIdx.y

threadIdx.x

threadIdx.y

thread block or cooperative thread array (CTA)

thread

warp

Figure 3: Example 2D kernel grid.

global memory

shared memory

register file

SM 0

shared memory

register file

SM 1

shared memory

register file

SM 2

Figure 4: GPU memory hierarchy.

outer parallelized loop (this is the same approach used by MPI). Those program are called GPU kernels and

are executed on a grid hierarchy. Each element of the grid is called a thread, and each thread can retrieve its

position within the grid using implicit variables and then use its position to fetch specific data. Grids can either

be 1D, 2D and 3D to better fit the use case. Grids are arranged in block of threads (also called cooperative

thread arrays in CUDA or work groups in openCL terminology). Within the same block, threads are able to

share data between them as well as synchronize. However, no synchronization between threads belonging

to different blocks is possible. This allows the GPU to schedule block independently on different streaming

multiprocessors. Thus, algorithm have to take into account this restricted level of communication that allows

greater parallelism. Furthermore, within a block, groups of 32 threads called warps (or wave in openCL

terminology) execute instruction in lockstep. When a kernel is queued up to be executed, the scheduler

distributes blocks to multiple streaming multiprocessor (streaming multiprocessors are called compute units

in openCL). Depending on the resources needed for a block, a streaming multiprocessor is able to run multiple

blocks at a time. This oversubscription of blocks (and thus warps) per streaming multiprocessor/scheduler

allows the GPU to hide latencies by letting the 4 schedulers switching to different warps within the same block

or of a different block scheduled to the SM while waiting on memory, synchronization primitives, instruction

fetch etc. This is made possible because there is not cost associated to switching contexts between different

warps. Therefore, it is recommended to tune the block size to maximize the occupancy of the SM (i.e. the

number of warps at a given time that the SM can schedule). For the RTX A6000, each scheduler can hold a

maximum of 12 warps, so each SM can hold at most 48 warps.

2.2.2 GPU memory model

GPU have different memory spaces. Contrarily to CPU programming, the GPU memory model exposes to

the programmer different memory spaces. CUDA distinguishes 4 memory spaces:

5

2 GPGPU programming concepts 2.3 GPU programming paradigms

• Global memory: This constitutes memory accessible to all threads in a grid. This is the slowest but

largest memory space on the GPU. Moreover, this is the only memory space that is retained between

kernel invocations.

• Shared memory: This is memory located in the streaming multiprocessor that can be used to shared

data between threads of the same thread block. This is a faster memory space that can be used to cache

global memory that may be used multiple times by different threads of a thread block.

• Register: This is memory accessible per thread located in the register file. This constitutes where the

stack local variables of a kernel are stored if there is enough space.

• Local memory: (not to be mistaken with shared memory) This is global memory that can be used when

too many variables are in use and cannot be all stored in the register file.

2.3 GPU programming paradigms

Here is a short survey of the most common GPU programming models:

• The CUDA platform is able to seamlessly integrate GPU code as well as CPU (called host code). As

such, source files in CUDA C++ can both contain regular C++ functions and classes targetting the CPU

and GPU kernels as well as code that can be ran on both CPU and GPU. This ease of use together with

the high adoption of CUDA makes it a great choice to program on GPUs. The only downside is that

with CUDA, you are tied to the Nvidia ecosystem of GPU as you cannot compile for other GPUs.

• OpenCL (Open Compute Language) is a framework initiated by the Khronos group for offloading

computation using a similar programming model than CUDA. It uses C/C++ on the host side and either

OpenCL C or OpenCL C++ for device code (device here means GPU). The advantages of OpenCL is

that it is an open standard that can target many devices: CPUs, GPUs, FPGA. However, the need to

separate device code from host code is error prone (as no type checking can be done between device

and host code) and the compilation toolchain is rather complicated.

• SYCL is an effort by the Khronos group tomake a single source programming abstraction using openCL

as a backend.

• KOKKOS is a C++ library initiated by the US department of Energies Exascale Project that can target

multiple backends: CUDA, SYCL, OpenMP, C++ threads. It heavily relies on C++ templates and is

designed to target supercomputers. Both SYCL and KOKKOS exposes a higher level abstraction than

CUDA and OpenCL making it easier to port an existing codebase using those libraries.

• OpenMP and OpenACC are two programming models that rely on compiler directives to offload com-

putation.

In this report, we have chosen to use CUDA for its ease of use and lower-level capabilities.

2.4 GPU best practices

In this section, we will describe a few optimization concepts specific to GPUs.

2.4.1 Kernel level

• warp divergence: As stated previously, groups of 32 threads are executed in lockstep in a SIMT fash-

ion. Therefore, if threads in a warp go through different code paths, the GPU needs to go through all

codepaths that the threads in a warp visit. The way this is done is using bitmasks: when threads in a

warp encouter an if statement, the GPU construct a bitmask of the if condition. If all threads in a warp

visit the same branch, only the instructions of this branch are executed. However, when the bitmask

contains both zeros and ones, the GPU masks off the lanes taking the else branch and executes the in-

struction in the if branch (the masked lanes are idle) and then masks of the lanes taking the if branch

and executes the instructions in the else branch. This means that the instructions in the if and else

branch are being serialized. This results in poor GPU utilization (as the lanes masked off do not con-

tribute to advancing further the algorithm). Furthermore, nested if conditions reduces GPU utilization

even more. It is then recommended to try whenever possible to have all threads in a warps take the

same path to avoid needing to execute all paths. Figure 5 illustrates a warp divergence.

6

2 GPGPU programming concepts 2.4 GPU best practices

if ((threadIdx.x % 32) < 16) {

A;

B;

} else {

C;

D;

}

E;

di
ve

rg
e

re
co

nv
er

ge

A; B;

C; D;

E;
time

w
ar

p

Figure 5: warp divergence: on the left, an example kernel where each warp branches depending on the lane

index and on the right a representation of the execution of such a kernel.

global memory

threads

Figure 6: coalesced global memory access.

• Coalesced global memory accesses: Accessing global memory in a kernel is relatively slow. Therefore,

it is recommended to minimize the number of transactions. To do so, prefer accessing consecutive

memory addresses from adjacent threads (this is called coalescing) and avoid strided accesses. It is

then recommended to favor structure of arrays (SoA) instead of arrays of structures (AoS) to avoid

strided accesses to global memory.

• Avoid bank conflicts: A great way to reduce accessing global memory is to cache data to sharedmemory

for faster retrieval. The shared memory is composed 16 memory banks. If each half warp fetch shared

memory in different banks, only one transaction is required. Otherwise, there is a bank conflit (see figure

7): and shared memory accesses are serialized within memory banks. There is however one exception:

if every thread in a warp fetch the same address, a broadcast happens and only one transaction is needed

(rather than having a 16-way bank conflict). For that reason, it is recommended to favor reads to shared

memory that minimize bank conflicts.

• Optimize kernel launch parameters: As stated before, a GPU kernel is launched on a grid hierarchy.

To better utilize the GPU, we need to oversubscribe the streaming multiprocessors as much as possible.

To do so, the grid and block size must be carefully chosen. As blocks are distributed among streaming

multiprocessors, the block size must be ajusted so that as many block as possible can fit in the resources

of a streaming multiprocessor. The maximum occupancy of a kernel (i.e. the maximum of warps that a

SM can handle at a given time) depends on multiple factors: number of registers used, shared memory,

block size. As such, optimization tools provide us with graphs representing the maximum theoretical

occupancy of a given kernel with respect to those factors (see figure 8). Moreover, the grid size must

also be taken into account. A grid size too small might not keep the GPU fed. Blocks are distributed to

SMs in waves. Ideally, a grid should be divided in a certain amount of full wave (each wave containing

as many block as needed to fully occupy every streaming multiprocessor) to utilize the whole GPU.

A partial wave at the end might be needed if the grid cannot be divided exactly into full waves but it

should be avoided as it underutilize GPU resources.

• Maximize floating point performance: A good indicator of a kernel’s performance is the number of

floating point operation that it does per seconds. To judge a kernel’s performance, the roofline model

is often used. On a roofline model, kernels are plotted in the space of arithmetic intensity (i.e. the

number of operations per byte) in abscissa and FLOPS (i.e. the number of floating-point operations

per second) in ordinate. The maximum FLOP rate is plotted as a roofline and depends on the device

used. For kernel with low arithmetic intensity, we are limited by the bandwidth of the GPU: too few

operation are done compared to the memory needed, the GPU is starving for data, we are memory

bound. On the contrary, when the arithmetic intensity is high enough, we can reach the peak FLOP rate

of the device: the kernel is compute bound. Ideally, to fully utilize the memory bandwith and compute

7

2 GPGPU programming concepts 2.4 GPU best practices

memory banks

threads

memory banks

threads

memory banks

threads

Figure 7: top:no bank conflict, middle 4-way bank conflict, bottom: broadcast.

128 256 384 512 640 768 896 1,024
0

16

32

48

block size (threads)

oc
cu

pa
nc

y
(w

ar
p/

SM
)

8,192 16,384 24,576 32,768 40,960 49,152 57,344 65,536
0

16

32

48

shared memory usage (bytes)

oc
cu

pa
nc

y
(w

ar
p/

SM
)

Figure 8: maximum theoretical occupancy of a kernel with respect to block size and sharedmemory utilization.

capabilities of the device, a kernel should aim at the limit between being compute bound and memory

bound where both the memory bandwidth and compute power is fully utilized. In practice, this is hard

to achieve. Moreover, a kernel should be as close as possible to the roofline. However in practice,

for non trivial workloads, other factors than the arithmetic intensity can hinder performance: such as

8

3 Adaptive mesh refinement

10−3 10−1 101 103 105 107
108

109

1010

1011

1012

1013

1014

1015

Center!

Arithmetic Intensity (FLOP/byte)

pe
rf

or
m

an
ce

(F
L

O
PS

)

m
em

or
y bo

un
d re

gi
on

ba
nd

wid
th

76
8 Gb/

s

compute bound region
peak FLOPS 38.7 TFLOPS

Figure 9: roofline model for the RTX A6000 in floating point single precision.

synchronization, branching. Figure 9 is a roofline model of the Nvidia RTX A6000 that we will use

showing its performance characteristics in single precision.

2.4.2 Application level

Once the GPU kernels have been optimized, we can focus on whole program optimization. One of the most

important aspect to think about is when to do memory transfers. It is recommanded to try to overlap host to

device and device to host memory transfers with computation as the memory bandwidth between CPU and

GPU is low. This can be done using CUDA asynchronous API calls allowing the CPU to do computation

while the transfer is being done (instead of blocking the CPU waiting for the transfer to be done). More-

over, independant kernels and memory transfers should be run concurrently as modern GPUs are able to do

computation tasks and memory transfers simultaneously.

Moreover, storing intermediary results to memory for later use in another kernel can lead to worse perfor-

mance than doing the same computation twice. Indeed, as reading from global memory is slow, computing the

same value twice instead of fetching memory leads to greater arithmetic intensity as less memory bandwidth

is necessary and more computation is done. As reaching the peak FLOPS is in practice difficult, avoiding

storing intermediary results counterintuitively in most cases leads to better performance. For the same rea-

son, it is preferable whenever possible to group multiple kernels working on the same CUDA grid into one

big kernel to avoid storing intermediary results to global memory (that was used to be retrieved intermediary

results in later kernels). Doing so reduces global GPU memory usage and bandwidth. This has the added

benefit of reducing the GPU scheduling overhead. This can lead to much better GPU utilization at the cost

of violating programming best practices: one kernel has now multiple possibly unrelated concerns that were

expressed before in multiple indivisible kernels.

I will consider all of those optimization aspects when building my library.

3 Adaptive mesh refinement

In this section, we will briefly introduce different techniques of adaptive mesh refinement and then focus on

detailing the t8code library.

3.1 A quick survey of dynamic mesh adaptation techniques

Adaptive mesh refinement is a technique used in numerical simulations to adapt the accuracy of a solution

in certain regions of interest. This is especially useful in fields tackling problems where features at differ-

9

3 Adaptive mesh refinement 3.2 T8code

ent scales can appear: in astrophysics, hydrodynamics, acoustics to track wave fronts for instance. During

the simulation, mesh elements can be refined in place where more accuracy is needed or derefined. The ad-

vantages of adaptive mesh refinement are computational and storage savings compared to static grids, a finer

control of the grid resolution using a fine-tuned refinement criteria. However, using adaptive mesh refinement

adds a layer of complexity and performance cost associated to the refinement procedures. When dealing with

simulation running on multiple cores or distributed memory architectures, load balancing plays a significant

role in an efficient implementation. Moreover, mesh refinement may introduce more singular grids containing

hanging nodes or highly deformed mesh elements that require developping a solid numerical scheme that can

handle those types of meshes.

There exists multiple approaches to adaptive mesh refinement:

• Unstructured AMR: This type of adaptation deals with unstructured meshes and is able to refine a mesh

keeping the mesh conformal.

• Block-structured AMR: This type of adaptation works on a hierarchy of overlapping patches of struc-

tured grids. With this type of adaptation, there is less fine control over the refinement compared to other

types of AMR but it has many advantages: it is easier to port an existing code for structured grids to

use AMR. Substepping can also be used to reduce computation: the timestep depend on the patch mesh

element size, bigger element uses bigger timesteps. It can also have better performance as there is less

book-keeping and data access patterns are more predictable. For those reasons, this is the type of AMR

that is best suited for GPUs. AMReX [19] is an example of such a block-structured AMR framework

targetting modern HPC system architectures.

• Tree-based AMR: This type of AMR uses a quadtree or octree data structure to partition the spatial

domain. Refining amesh element consists in adding children nodes to the node representing the element

and coarsening consists in discarding children of a node. This data structure can also be layed out

linearily in memory using space filling curves ensuring good cache utilization. To deal with more

complex domains, a forest of trees can be considered. P4est [3] and t8code [10] are two highly scalable

tree-based AMR libraries. In this work, we will use the latter.

Figure 10: regular grid (left), block-structured AMR (center), tree-based AMR (right).

GPUs can be used in two manners for AMR: either the mesh adaptation is done on the CPU and the GPU

only computes numerical scheme stencils, or both the AMR and stencil computation are done one the GPU.

The former approach is the most common as it is the easiest to implement and mesh adaptation routines are

not well suited for GPU because of their complex logic. Moreover, most AMR libraries targetting GPUs use

a block-structured approach [16, 18, 1]. Nevertheless, some codes developed to do adaptation on the GPU

using tree-based AMR for specific problems do exist [5, 13] but no generic frameworks have been developed

to my knowledge.

3.2 T8code

T8code is a software library for scalable adaptive mesh refinement that has been shown to scale to over one

trillion mesh element [9] using up to one million parallel processes [8]. T8code starts with a base unstructured

mesh called coarse mesh. This mesh can contains different element types: tetrahedron, pyramids, hexes. On

each coarse mesh element, it constructs a tree structure to be able to refine each coarse mesh element further.

The collection of forests are then distributed and form a forest of trees (see figure 11). One of the strength of

t8code is that it is able to do tree-based AMR on element types different than quads in 2D and hexes in 3D. To

do so, it separates high-level (mesh global) algorithms from low-level (element) implementation. The low-

level constructs thus depend on the element type (pyramid, hex, tetrahedron) and the high-level algorithms do

10

4 T8gpu

Figure 11: Example of a t8code forest on the left containing two trees distributed over 3 processes and on

the right the associated mesh qnd order of traversal of the mesh element along the space filling curve. By

courtesy of Johannes Holke taken from [10].

not depend on the different element types. This makes the library extendable to many element types easily.

Moreover, space-filling curves had to be developed to handle pyramid and tetrahedral [2] element types.

Data associated to element is stored linearily using the ordering induced by the space filling curves per tree

(see figure 11). Moreover, these curves possess fundamental properties necessary for the mesh adaptation

routines and have the added benefit that neighboring elements have data associated to them close to each

other increasing performance with good cache locality.

The t8code library relies on user provided callback functions to handle mesh refinement and coarsening.

To do so, the API exposes a few important routines:

• New: This operation constructs a uniformly refined mesh from a coarse mesh supplied by the user

distributed across parallel processes.

• Adapt: Given a callback function, this procedure decides which element need to be refined and coars-

ened.

• Balance: This procedure ensure that neighboring elements have a refinement level different no bigger

than 1. This 2:1 balance condition might be necessary for certain numerical schemes.

• Interpolate: This procedure allows the user to interpolate variable data from one tree to its refinement.

• Partition: This procedure together with the partition data procedure redistributes the elements accross

parallel processes to balance the load. Custom weights per element can also be provided to have a fine

control over the mesh partition.

• Ghost: and ghost related operations allow the user to fetch data from ghost elements that are owned by

other processes.

• Iterate: This procedure allows the user to iterate through the mesh and request face neighbor informa-

tion as well.

Figure (12) shows how an application can use t8code for a numerical simulation loop. In order to cus-

tomize the refinement behavior and interpolation, the user needs to provide callback functions.

4 T8gpu

T8gpu [11] is the name of the numerical simulation framework that I developed. It is a header-only C++17

library using CUDA relying heavily on C++ template metaprogramming to provide an easy to use API but

compiles down to optimized code. A first framework to build finite volume scheme was developed that

can handle hybrid meshes with different element types. As this naive approach is not efficient, a second

subgrid approach was developped working on quad and hex elements which proved to be more efficient as

the simulation loop is better suited towards GPU computations.

11

4 T8gpu 4.1 Challenges associated to AMR and the CPU/GPU model

Figure 12: flowchart of a typical utilization of t8code. By courtesy of Johannes Holke taken from [10].

4.1 Challenges associated to AMR and the CPU/GPU model

One of the biggest hurdles on hybrid CPU/GPU AMR is communication between CPU and GPU. On most

system, data transfers are done through the PCIe bus. This bus can have a bandwidth up to 64Gb/s. However,

this pales in comparison with the 768Gb/s bandwidth that the RTXA6000 has between its global memory and

streaming multiprocessors. Thus, minimizing data transfer and/or hiding transfer by overlapping computation

is necessary to garantee adequate performance.

Moreover, as tree-based AMR offer fine grained control over the refinement and coarsening of mesh ele-

ments, mesh adaptation routines take more time per mesh element compared to block-structured approaches.

That is why the subsequent idea of using subgrid element to mimic certain block structured AMR methods

proves to be efficient: the amount of computation on the GPU per mesh element is greatly increased making

the mesh adaptation and data transfers manageable. This subgrid approach also has better GPU data access

patterns.

Another challenge is that the t8code library distributes the mesh among processes. Therefore, it is neces-

sary to communicate between multiple CPU processes but also to one or more GPUs from multiple processes.

4.2 Design considerations

In order to use a GPU on a multiprocessing program, two choices can be made regarding managing the GPU:

• One option is to have each process launch kernels to do computation on the mesh elements that the

process owns. The advantage of this approach is that it is symmetric and aligns nicely with t8code’s

mesh distribution. However synchronization between kernels launched by different processes needs to

be taken care of.

• The other option is to have a main process that aggregates every GPU computation from all other

processes into one kernel launch from this main thread. The advantage of this approach is that the

synchronization is easier. Having only one big kernel launch instead of one kernel launch per process

can results in better GPU utilization as well. However this approach may lead to CPU load imbalance

between the main process and the other processes.

For our library, I have chosen to implement the first option because it copies more closely t8code’s data

management to the GPU.

12

4 T8gpu 4.2 Design considerations

4.2.1 GPU memory handling

To easily handle GPU memory, I have devised a C++ class that encapsulates GPU memory allocation that

can be shared between processes. Contrary to the distributed memory model between CPU processes, as

we for now only use one GPU, we have decided to share GPU memory between CPU processes resulting

in better GPU memory usage (as we do not need to have ghost element and copy memory around to handle

interfaces between processes). To do so, we created the t8gpu::SharedDeviceVector<T> vector class templated

on the element type T . This class lets the user allocate GPU memory from every process with their own size

(ideally to fit information related to the process owned mesh elements). Moreover, each process can retrieve

the memory allocated by the other processes to access data associated to ghost mesh elements. To access

GPU memory allocated by another CPU process, an address translation needs to be done using IPC (inter

process communication). As its name implies, the t8gpu::SharedDeviceVector can be resized to accomodate

for mesh repartitioning, adaptation. However, contrarily to the std::vector , resizing discards the previous

data allocated. Thus the user needs to explicitely copy information from the previous sized allocation to the

new allocation. This is intentional to force the user to correctly copy data (by projecting variable data when

adapting a mesh for example). This class is the backbone of t8gpu and is used everywhere to more easily

handle GPU memory allocation.

An overload of this class for the std::array<T, N> array element types has been implemented to convert

the data layout from an array of structures (in this case the structure being an std::array<T, N>) to structure of

arrays for better data access patterns. This overload provides an interface to access specific elements within the

vector of arrays. This array of structures to structure of array transformation (see figure 13) is crucial because

it allows GPU kernel memory access into such a vector to be coalesced when accessing neighboring element

data. Figure (14) represents how the class access GPU memory allocation from other processes for 3 MPI

processes. Similarily to std::vector , the resize method allocates extra space (usually 1.5 times the requested

size) to avoid allocating GPU memory often. One of the downside of this class is that resizing requires global

communication of all processes to translate the new allocations into process local dereferencable pointers.

That is why, to minimize communication, all further classes use only one shared vector of a struct element type

containing all the data per mesh element (we use exclusively the optimized overload for the std::array<T, N>

type).

Furthermore the t8gpu::MemoryManager template class encapsulates the t8gpu::SharedDeviceVector class

providing a better interface for numerical simulation codes. This class is templated on an VariableType enum

class containing the name of the variables of interest at the mesh elements and another enum type called

StepType enumerating the names of the timestepping substeps (this allows the user to get as many storage

for variables as there is substeps). This allows the user to implement multiple timestepping routines: explicit

Euler, Runge-Kutta with ease and reference variable data by their name making this class more convenient.

By specializing the t8gpu::variable_traits struct on a VariableType enum class, the user is able for now to

switch from using double precision or single precision. In the future, this t8gpu::variable_traits approach

can be used to customize further the behavior of t8gpu and make it more extensible.

For instance, to deal with the compressible Euler equations in 3D using 3rd order Runge-Kutta timestep-

ping, you can define:

#include <t8gpu/memory/memory_manager.h>

enum VariableList {

Rho, // density.

Rho_v1, // x-component of momentum.

Rho_v2, // y-component of momentum.

Rho_v3, // z-component of momentum.

Rho_e, // energy.

nb_variables // number of variables.

};

enum StepList {

Step0, // used for RK3 timestepping.

Step1, // used for RK3 timestepping.

Step2, // used for RK3 timestepping.

Step3, // used for RK3 timestepping.

Fluxes, // used to store face fluxes.

nb_steps // number of steps.

};

13

4 T8gpu 4.2 Design considerations

structure with 4 fields

AoS to SoA

array of structures (AoS)

structure of arrays (SoA)

Figure 13: Array of structures to structure of arrays transformation.

rank 0 rank 1 rank 2

GPU memory:

CPU shared vector:

Figure 14: shared vector data layout diagram for 3 MPI processes.

// We modify the MemoryManager class behavior by specializing this trait struct:

template<> struct t8gpu::variable_traits<VariableList> {

using float_type = double; // we explicitely select double precision.

using index_type = VariableList // we use VariableList enum to select variable.

static constexpr size_t nb_variables = VariableList::nb_variables;

};

// This class is then tailored to our use case:

using MemoryManager = t8gpu::MemoryManager<VariableList, StepList>;

4.2.2 Mesh management

The mesh management is done through the template class t8gpu::MeshManager class that takes ownership of

a t8code mesh. This class encapsulates a t8gpu::MemoryManager class as well to store variable data per mesh

element. It provides an API to do mesh adaptation by allowing the user to implement a mesh refinement

criteria and provides many CPU and GPU helper function to query mesh connectivity information. This class

provides a good level of flexibility allowing the user to be able to compute mesh refinement criterion on the

GPU, compute face fluxes and do timestepping.

As t8gpu distributes the mesh among processes (see figure 15) but t8gpu uses a GPU shared memory ap-

proach, some extra bookkeeping is needed to reconciliate both approaches. To do so, the t8gpu::MemoryManager

class stores MPI rank information and index information for both process owned mesh element and process

ghost mesh elements. This allows the user to seamlessly fetch mesh data for owned elements and remote

(ghost) element in an uniform fashion (see figure 16). This is especially needed when iterating over faces:

as they are distributed among process, some face at the interface between the domain of two processes need

access to data associated to other processes.

Likewise, similar rank and index correspondance arrays are used for the projection procedure: instead of

projecting from the previous mesh to the new mesh on the CPU, we send correspondance arrays (i.e. from

the perspective of the new mesh, the correspondance array gives the index and ranks of the elements from

the previous mesh it needs to project from) so that the projection can be done on the GPU. This minimizes

the amount of data sent from and to the GPU (especially when dealing with subgrid elements in the next

subsection).

14

4 T8gpu 4.2 Design considerations

rank 0

rank 1

rank 2

rank 1

ghost elements

Figure 15: Mesh distribution along z-curve on one tree with uniform refinement to level 2 on 3 processes

(left), mesh owned by the second process and its ghost layer elements.

rank 0

0 0 0 0 0 0 2 1 3ranks:

0 1 2 3 4 5 0 2 1

rank owned elements remote elements

(remote) indices:

GPU memory:

rank owned elements remote elements

rank 1

1 1 1 1 1 1 0 4 3ranks:

0 1 2 3 4 5 2 1 0(remote) indices:

GPU memory:

Figure 16: Ghost layer bookkeeping example.

15

4 T8gpu 4.2 Design considerations

CPU mesh GPU mesh

Figure 17: CPU and GPU mesh with 8× 8 subgrid mesh elements.

4.2.3 Subgrid elements

As seen in the previous subsection, a lot of overhead is associated with mesh connectivity information. More-

over, as the GPU architecture is highly parallel, we expect an numerical simulation application using t8gpu

and AMR to spend most of its time in the CPU mesh refinement routines. To remedy that, we have deciced

to use subgrid elements to increase the ratio of GPU computation relative to CPU mesh transformation op-

erations. By subgrid elements, we mean each mesh element on the CPU is considered to be a coarse mesh

on the GPU and is further refined uniformly on the GPU (see figure 17). This requires additional bookkeep-

ing (notably extra face neighbor mesh elements orientation information), but we expect the greater among

of computation done per CPU mesh element to conteract the extra overhead. Another advantage of subgrid

elements is that data access patterns can be made better. Indeed, in a kernel where each consecutive thread

access the same variable at neighboring subgrid mesh elements, using a structure of arrays (where each array

stores one variable for all mesh elements) to store variable data in column major order results in coalesced

memory accesses. Moreover, choosing GPU kernel block to be the size of a subgrid is highly advandageous:

it simplifies development and allows the user to use shared memory effectively to cache variable data.

Toworkwith subgrid elements, the template classes t8gpu::SubgridMemoryManager and t8gpu::SubgridMeshManager

have been implemented. As per the none subgrid equivalent classes, they are templated on a VariableType

and StepType user-defined enum classes and an extra SubgridType . This type must be an instance of the

t8gpu::Subgrid<int... extents> parametric helper struct. This type describes the subgrid size and dimension

and provides helper functions to access multidimensional data in column major order and retrieve subgrid

information. Here is what a simple kernel iterating over all mesh elements looks like using subgrid elements:

using namespace t8gpu;

__global__ void set_momentum(SubgridMemoryAccessorOwn<VariableList, Subgrid<8, 8, 8>> variables) {

int const e_idx = blockIdx.x;

int const i = threadIdx.x;

int const j = threadIdx.y;

int const k = threadIdx.z;

auto [rho_u, rho_v, rho_w] = variables.get(Rho_u, Rho_v, Rho_w);

// element index

// ┌─┴─┐

rho_u(e_idx, i, j, k) = ...

// └──┬──┘

// subgrid coordinates

...

}

This kernel showcases the ease of use of the library and results in optimal memory access patterns. T8gpu

provides a high-level API while still being a no-cost abstraction layer. For now, subgrid are only implemented

for hexahedral and quad meshes.

Another strength of t8gpu is its ability to allow the user to implement reusable generic schemes. For

instance, the user can implement timestepping schemes routines independantly of the variable type simply by

iterating over the variables. This reduces code duplication and results in less error-prone code. Only when

necessary, the user can do computation on a specific variable refered by its name, for instance when computing

fluxes.

16

4 T8gpu 4.3 Test cases

Adapt/balance/
Interpolate

Partition

compute edge
connectivity

Iterate

Init mesh

refinement criteria

correspondance array

refinement
criteria

interpolate

rank/indicesrepartition
data

edge connectivity info

send initial condition

iterate kernel/synchronization

GPU
kernels

CPU/GPU
communication CPU

Figure 18: t8gpu flow diagram.

4.2.4 User workflow

From the perspective of an user, the typical application follows the workflow diagram (18). The mesh data

structure is initialized on the CPU and the GPU can then compute the initial condition of the simulation.

The main simulation loop begins by calculating a refinement criteria per mesh element on the GPU and send

it to the CPU. Using this criteria, the mesh adaptation routines and balance can be run on the CPU and a

correspondance array can be sent to the GPU containing the space filling curve indices of the new mesh

elements. This information is enough to be able to project variable data from the previous mesh to the new

mesh directly on the GPU. The partition CPU routine can optionally be used to balance the load on the CPU

ranks either uniformly or by providing user defined weights. The new ranks and indices of of each cell of

the newly partitioned mesh needs to be send to the GPU to be able to copy the necessary variable data from

the previous partition to the new one. The next step consist in computing the face connectivity data and send

it to the GPU to be able to correctly compute fluxes between mesh elements. Then multiple user defined

iteration can be run on the GPU, needing only synchronization between ranks in-between iterations but no

data transfers are needed and the next iteration of the loop can start. An example of this workflow diagram

will be illustrated in the following sections.

4.3 Test cases

We are interested in the compressible Euler equations, which is the following system of hyperbolic conser-

vation laws in 2D: 
ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + (u(E + p))x + (v(E + p))y = 0.

The unkown quantities are the fluid density ρ, energy density E and the fluid momentum m = ρv =
[ρu, ρv]T as well as the pressure p. To close the system, we need one more equation. We use here the ideal

17

4 T8gpu 4.3 Test cases

gas law and to get p = (γ − 1)
[
E − 1

2 (u
2 + v2)

]
where γ = 1.4 is the specific heat ratio for a monoatomic

gas.

4.3.1 Finite volume formulation

We have decided to implement a first order Godunov scheme using two different fluxes. The Godunov

scheme can be derived from the following observation: for a 1D linear scalar conservation law, starting with

a piecewise constant initial condition, for a small enough timestep ∆t, the exact solution can be computed

by piecing together analytical solution to Riemann problems at cell interfaces [12]. The idea of the Godunov

scheme is thus starting from piecewise constant initial data, to evolve the hyperbolic equation exactly (or

approximately) for one timestep and average the resulting function over the grid cells to get the new initial

data used to compute the next timestep. This method can be generalised to multidimensional system of non-

linear conservation laws as well. This provides a first order scheme in space and time but can be augmented

to yield higher-order methods.

One way to get a higher order accuracy method in space is to use a linear or polynomial reconstruction

instead of a constant reconstruction. One of the downsides of this approach is that such schemes are usually

unstable and an artificial dissipation term needs to be added to get stability near shocks resulting in a lower

order in those regions (the typical approach consists in blending a high-order scheme in smooth regions and

the first oder Godunov scheme near discontinuities by introducing a dissipation term or flux-limiting).

The usual approach to get a higher order accuracy method in time is to use a method of lines approach:

discretize in space first resulting in a system of differential equations and use a high order timestepping scheme

such as the Runge-Kutta methods. This is the approach that we will take.

Spatial discretization: We can rewrite the compressible Euler equations in conservative form as:

∂tq+ div f(q) = 0, with:

q =

 ρ
ρu
E

 , f =

 ρu
ρu⊗ u+ p Id
u(E + p)

 .

Then, we integrate over each cellK ∈ K of the mesh and use the divergence theorem:

d

dt

(∫
K

q

)
+

∫
∂K

f(q) · ndΓ = 0.

We denote by qK the mean value of q inK. We make the following approximation:

dqK
dt

= − 1

|K|

∫
∂K

f(q) · ndΓ ≈ − 1

|K|
∑
e∈∂K

∫
e

f̂(qK ,qL) · ndΓ := L(q)K . (1)

where f̂ is the numerical flux: i.e. an approximation of the flux at the origin of the Riemann problem with left

and right states (qK ,qL). We then get a system of non-linear differential equations.

Time discretization: Wehave chosen to implement an optimal third order strong stability perservingRunge-

Kuttamethod [6] (or SSP-RK3). This scheme belong to a family of schemes for which the TVD (total variation

diminishing) property holds:

TV (qn+1) ≤ TV (qn), TV (q) :=
∑
j

|qj+1 − qj |, in 1D.

More generally, this property holds true for every semi-norm, not just the total variation. Therefore, these

scheme preserve the stability: i.e. if the Euler forward scheme is stable, then the SSP-RK scheme are also

stable. More specifically, these scheme are chosen so that they preserve this TVD property while maximizing

the CFL condition for a linear numerical scheme with the same number of stages.

In general, a m-stage Runge-Kutta method for the differential equation
dq
dt = L(q) can be written in the

form:

18

4 T8gpu 4.3 Test cases



q(0) = qn,

q(i) =

i−1∑
k=0

(
αi,kq

(k) +∆tβi,kL
(
q(k)

))
,∀i ∈ J1,mK,

qn+1 = q(m),

with (βi,k)1≤i≤m
0≤k<i

∈ R+ and (βi,k)1≤i≤m
0≤k<i

∈ R+ such that
∑i−1

k=0 αi,k = 1 for all i ∈ J1,mK.

More precisely, if the Euler method is strongly stable under the CFL condition ∆t ≤ CFL:

(|qn +∆tL(qn)| ≤ |qn|,

with | · | a semi-norm. Then, the Runge-Kutta method is SSP:

|qn+1| ≤ |qn|,

provided the following CFL condition is fulfilled:

∆t ≤ c · CFL, c = min
i,k

αi,k

βi,k
. (2)

It can be shown that c ≤ 1 and the value c = 1 is attainable.
An optimal third-order SSP Runge-Kutta method that we will use is given by:

q(1) = qn +∆tL(qn),

q(2) =
3

4
qn +

1

4
q(1) +∆tL(q(1)),

qn+1 =
1

3
qn +

2

3
q(2) +∆tL(q(2)),

where q = (qK)K∈K, n ∈ N is the current iteration and L(q) = (L(q)K)K∈K is defined in (1). The CFL

coefficient for this scheme is c = 1 defined in (2).

4.3.2 The HLL and KEPES fluxes

The HLL (for Harten, Lax and van Leer) approximate Riemann solver introduced in [7] is derived by applying

the conservation law on multiple control volumes and assuming a two wave model. The HLL solver and

its improved HLLC (adding a third wave to better resolve contact discontinuities) are still widely used in

numerical methods for the Euler equations of gas dynamics for their simplicity and decent accuracy.

Let’s consider a Riemann problem with left and right states (qL,qR). The HLL solver requires approx-

imate value or the smallest and largest wave speeds SL and SR. We assume a two wave configuration sep-

arating three constant states qL,qHLL,qR as represented in (19). We assume that the timestep ∆t and cell

size (xR − xL) is chosen such that xL ≤ ∆tSL and ∆tSR ≤ xR. The conservation law integrated over the

control volume [xL, xR]× [0,∆t] yields:

∫ xR

xL

q(x,∆t) dx =

∫ xR

xL

q(0, x) dx+

∫ ∆t

0

f(q(xL, t)) dt−
∫ ∆t

0

f(q(xR, t)) dt (3)

= xRqR − xLqL +∆t(fL − fR), (4)

where fL = f(qL) and fR = f(qR). Splitting the left hand side of (3) into three terms:

∫ xR

xL

q(∆t, x) dx =

∫ ∆tSL

xL

q(∆t, x) dx+

∫ ∆tSR

∆tSL

q(∆t, x) dx+

∫ xR

∆tSR

q(∆t, x) dx,

and evaluating the first and third integrals by applying the integral form of the conservation law on the

control volumes [xL, SL∆t]× [0,∆t] and [SR∆t, xR]× [0,∆t] yields:

19

4 T8gpu 4.4 Validation

xRxL

∆t

x

t

SRSL

T SL T SR

qHLLqL qR

Figure 19: wave structure assumed for the HLL solver.

∫ xR

xL

q(∆t, x) dx =

∫ ∆tSR

∆tSL

q(∆t, x) dx+ (∆tSL − xL)qL + (xR −∆tSR)qR. (5)

Combining (3) and (5) produces:

∫ ∆tSR

∆tSL

q(∆t, x) dx = ∆t (SRqR − SLqL + fL − fR) .

By dividing this by ∆t(SR − SL), we get the average state in-between the two waves at t = ∆t that we
set to be the intermediate state qHLL:

qHLL :=
1

∆t(SR − SL)

∫ ∆tSR

∆tSL

q(∆t, x) dx =
SRqR − SLqL + fL − fR

SR − SL
. (6)

We now make the further assumption that xL ≤ 0 and xR ≥ 0. By evaluating the integral form of the

conservation law on the control volume [xL, 0]× [0,∆t] or and substituting qHLL by (6), we get:

f0,L = fL + SL(qHLL − qL)

=
SRfL − SLfR + SLSR (qR − qL)

SR − SL
.

We notice that doing the same computation on the control volume [0, xR]× [0,∆t] yields the consistency
condition f0,L = f0,R. The HLL flux is then defined as:

fHLL :=


fL, if 0 ≤ xL,

SRfL − SLfR + SLSR (qR − qL)

SR − SL
if SL ≤ 0 ≤ SR,

fR if 0 ≥ SR.

The KEPES flux is another numerical flux for the compressible Euler equation introduced by Praveen

Chandrashekar in [4]. We have chosen to use the KEPES flux as well as it is more computationally expensive

than the rather simple HLL flux and is thus better suited for GPU computation. Therefore, we have decided

to implement both HLL and KEPES fluxes to observe if such numerical flux better utilize GPU resources.

4.4 Validation

In order to validate the implementation of the Godunov scheme, after verifying basic properties of the scheme

(testing conservation for example and trivial examples), we have used the following two classical test cases

in the following subsections.

20

4 T8gpu 4.4 Validation

4.4.1 Sod shock tube

The Sod shock tube is a common test case for numerical schemes for solving the compressible Euler equations

for an ideal gas. It is a Riemann problem with left and right states:

ρLPL

uL

 =

1.01.0
0.0

 ,

ρRPR

uR

 =

0.1250.1
0.0

 .

This test case contains the tree kind of discontinuities encoutered for the Euler equations, namely a rar-

efaction wave, contact discontinuity and a shock discontinuity. We notice in figure (20), that both HLL and

KEPES fluxes together with the Godunov scheme correctly resolve the expansion fan, contact discontinuity

and shock discontinuity. However, a great deal of numerical diffusion is present around the contact disconti-

nuity. For the HLL flux, this is easily explained by the fact that the simple two wave model that doesn’t take

into account the contact discontinuity.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

ρ

analytical
HLL flux

KEPES flux

Figure 20: density profile at t = 0.2.

4.4.2 Isentropic Euler vortex problem

The vortex in isentropic flow [17] is one of the few exact non-trivial solutions for the compressible Euler

equations in 2D that can be used to numerically compute the convergence rate of a scheme as the analytical

solution is smooth. This test case consists of a convection of an isentropic vortex in inviscid flow. It can be

constructed by the superposition of the uniform free-stream conditions ρ = 1,u = u∞ ∈ R2, p = 1 perturbed
by the velocity field:

[
δu
δv

]
=

β

2π
exp

(
1− r2

2

)[
−(y − yo)
(x− xo)

]
,

with β ∈ R, (x0, y0) ∈ R2 and r =
√
(x− x0)2 + (y − y0)2. We then get the initial condition:



ρ =

[
1− (γ − 1)β2

8γπ
e1−r2

] 1
γ−1

,

ρu = ρ(u∞ + δu) = ρ

[
1− β

2π
e

1−r2

2

]
,

ρv = ρ(v∞ + δv) = ρ

[
1 +

β

2π
e

1−r2

2

]
,

E =
p

γ − 1
+

1

2
ρ(u2 + v2).

21

5 Results and performance analysis

We chose the domain [−5, 5]2 with periodic boundary conditions, x0 = y0 = 0 and β = 5, u∞ = 1, v∞ =
1 (so that the vortex flow is negligible near the boundary of the domain closely resembling the free-stream

condition chosen). As the isentropic flow with null free-stream condition is stationary, we expect with the

chosen u∞ the flow to be periodic with period 10. The convergence results for the Godunov scheme using

both HLL and KEPES fluxes are given in figure 21. The absolute errors are computed after one period. As

expected, we observe an order one convergence rate for the scheme with both numerical fluxes.

KEPES HLL

h error order error order

2−4 1.63× 10−3 – 2.22× 10−3 –

2−5 1.38× 10−3 0.24 1.63× 10−3 0.44

2−6 9.39× 10−4 0.56 1.01× 10−3 0.68

2−7 5.77× 10−4 0.78 5.67× 10−4 0.83

2−8 2.95× 10−4 0.89 3.00× 10−4 0.92

2−9 1.53× 10−4 0.95 1.55× 10−4 0.96 2−9 2−8 2−7 2−6 2−5 2−4

10−3

10−2

h

∥ρ
−

ρ
ex

ac
t∥

L2

KEPES flux
HLL flux
order 1

Figure 21: convergence of the Godunov scheme.

5 Results and performance analysis

5.1 Example showcase

To show the capabilities of the t8gpu library, I have run multiple simulations in 2D and 3D. Here are described

some of them:

• The figure 22 depicts a simulation ran using t8gpu using subgrid elements and a gradient based refine-

ment criteria in 2D together with the refinement level. The initial conditions inspired by [15] are:

Figure 22: Kelvin-Helmholtz instability with reflective boundary conditions using 16× 16 subgrid elements.

The left plot represents the density field for t = 1.0. The grid and subgrid are represented. For legibility

reason, the smaller subgrid and grid are not represented. The plot on the right represents the refinement level.

22

5 Results and performance analysis 5.1 Example showcase

p = 2.5,

ρ(x, y) =

{
2 if |x| ≤ 0.25,

1 otherwise,

vx(x, y) =

{
0.5 if |x| ≤ 0.25,

−0.5 otherwise,

vy(x, y) = w0 sin(4πx)

[
exp

(
− (y − 0.25)2

2σ2

)
+ exp

(
− (y + 0.25)2

2σ2

)]
sign(y),

with σ = 0.035.

The domain is Ω = [−0.5, 0.5]2 with reflective boundary conditions:

∀x0 ∈ ∂Ω,



ρ(x0) = lim
x→x0
x 6=x0

ρ(x), E(x0) = lim
x→x0
x 6=x0

E(x),

u⊥(x0) = −[lim
x→x0
x 6=x0

u⊥(x)],

u‖(x0) = lim
x→x0
x 6=x0

u‖(x).

With this initial condition and the refinement criteria described in a previous section, we notice that the

mesh refinement closely follows the boundary between the low density and high density fluids from the

initial condition. Moreover, the symmetry of the test case with respec t to the x-axis is kept throughout
the simulation as expected.

• The figure 23 is the exact same test case as in [15] using different subgrid sizes (16× 16 and 32× 32)
but the same total number of sugrid mesh elements to test the implementation of the numerical scheme.

As expected, the finaly density distribution is identical with both subgrid sizes.

Figure 23: Kelvin-Helmholtz instability using a 32×32 grid of 8×8 subgrid elements on the left and 16×16
grid of 16×16 subgrid elements without mesh refinement. We notice that, as expected, both simulation yield

the same identical solution.

• Figure 24 represents the density of a 2D Riemann problem introduced in [14]. This is a generalization

of Riemann problems to 2D. The plane is divided in 4 quadrants with different initial conditions:

23

5 Results and performance analysis 5.2 Motivating example of AMR with subgrid elements

Figure 24: density field and refinement level of 2D Riemann problem.

x

y

I II

IIIIV


(ρI, UI, VI, pI) = (1.0,−0.75,−0.5, 1.0),

(ρII, UII, VII, pII) = (2.0,−0.75, 0.5, 1.0),

(ρIII, UIII, VI, pIII) = (1.0, 0.75, 0.5, 1.0),

(ρIV, UIV, VIV, pIV) = (3.0, 0.75,−0.5, 1.0).

• Figure 25 represents the density field obtained simulation the Kelvin-Helmholtz instability on a 3D

spherical-shell. This demonstrates the ability of t8gpu to treat AMR with meshes containing prism

elements as well as geometry-aware AMR (by this I mean the ability to refine elements to closer match

a certain geometry: in this case a 3D shell) as thanks to t8code’s support of those features. The domain

is Ω = {x ∈ R3|rmin ≤ |x| ≤ rmax} with rmin = 0.8, rmax = 1.0. The initial conditions in spherical

coordinates are:

ρ(r, ϕ, θ) =

{
2 if θ ≤ π

1 otherwise
, p(r, ϕ, θ) = 2.5,

uϕ(r, ϕ, θ) =


1

2
r sin(θ) if θ ≤ π,

−1

2
r sin(θ) otherwise,

vθ(r, ϕ, θ) =
1

2
r sin(2ϕ) exp

([
− (θ − π)

2σ

]2)
, ur(r, ϕ, θ) = 0,

with σ = 0.15, tfinal = 1.0 and reflective boundary conditions.

5.2 Motivating example of AMR with subgrid elements

As a example of the possible gain that we can obtain using AMR, I ran the validation case of section 4.4.2

using subgrid elements with and without AMR. Using a uniform grid, we get an absolute error of 5.1 · 10−4

and the simulation ran in 19.4 seconds using 9 MPI ranks. With AMR, we get the absolute error 5.6 · 10−4

and the simulation ran in 2.7 seconds with the same number of MPI ranks. Thus, for a similar error, we get a

speedup of ×7.

5.3 Performance analysis

All performance results were obtained on a compute node with two Intel Xeon Gold 6258R CPUs and one

Nvidia RTXA6000GPU. It important to note that the RTXA6000 single precision floating point performance

24

5 Results and performance analysis 5.3 Performance analysis

Figure 25: Kelvin-Helmholtz instability in a 3D spherical shell using AMR on a mesh of prism elements.

to double precision ratio is a staggering 64. Even though scientific computing usually requires the full 64 bit

double precision range, we will analyze performance in single and double precision. A lot of modern GPU

for HPC nowadays have the same performance in single precision and double precision.

5.3.1 First approach

Kernel performance The naive approach uses two kernels:

• The most important kernel is the flux computation kernel using either the HLL or KEPES flux. We

notice in the roofline model 26 that both flux computation kernels in double precision are compute

bound as their arithmetic intensity is high enough to reach the compute bound region. Even though

the KEPES flux kernel has a higher arithmetic intensity, this kernel performs worse than the HLL

flux computation kernel. As for these kernels in single precision, this time we are memory bound.

As the KEPES flux kernel has double the arithmetic intensity as the HLL flux kernel, this kernel is

able to reach 6 TFLOPS while the HLL kernel only reaches 3.5 TFLOPS. Here, the vastly different

performance profile of this GPU in single and double precision makes a significant difference when

it comes to the better performing flux computation kernel. Indeed, in double precision, there does not

seem to be any performance benefit in using the KEPES flux rather than the HLL flux (other than for

accuracy considerations). However, in single precision, the more computationally expensive KEPES

flux allows us to more efficiently use the GPU resources.

• The second important GPU kernel is the timestepping kernel (there are actually three similar kernels

to handle the 3 stages of the Runge Kutta integration scheme chosen that have identical performance).

For these kernels, the arithmetic intensity is so low that the performance in single precision and double

precision is almost identical and we only reach 80 GFLOPS. In this approach, there is no way around it
as we cannot merge the flux computation kernel with the timestepping kernel as they iterate on different

entities: the flux computation kernel iterates on the faces and timestepping kernel on the mesh elements.

The subgrid approach will be able to fuse the flux computation and timestepping kernels yielding better

GPU utilization.

Whole programperformance Figure 28 depicts a timeline graph of the simulation ran for the last showcase

example. Even though 50 solver steps are executed in-between the mesh adaptation routines, we notice that

the majority of the runtime is spent on the CPU side doing mesh related operation. Thus, as expected AMR

using this approach is detrimental as the mesh adaptation routines on the CPU are slow compared to the

solver iteration on the GPU. This is due to the highly parallel architecture of the GPU. Moreover, the mesh

adaptation routines on the CPU require much more process to process communication compared to the almost

embarassingly parallel nature of the numerical solver. This is why the subgrid approach is considered in the

following section.

25

5 Results and performance analysis 5.3 Performance analysis

10−2 10−1 100 101 102 103
1010

1011

1012

1013

1014

Arithmetic Intensity (FLOP/byte)

pe
rf

or
m

an
ce

(F
L

O
PS

)
HLL FP64

KEPES FP64
HLL FP32

KEPES FP32
RK FP32
RK FP64

peak FLOPS single precision

peak FLOPS double precision

Figure 26: roofline model for the flux computation and timestepping kernels in single and double precision.

5.3.2 Second approach: AMR with subgrid elements

Starting from this section, we will only consider the KEPES flux.

Kernel performance The subgrid approach uses three types of kernels:

• A first kernel is necessary to compute the inner fluxes. This kernel uses a GPU grid composed of blocks

(or CTA) the size of the subgrid (here we have chosen 16× 16 subgrid in 2D). The number of blocks is

the number of global mesh elements. We expect here the cartesian arrangement of the subgrid elements

within a block to yield better GPU utilization as all global memory accesses are now coalesced and

we can make good use here of local memory to store intermediary results efficiently. Moreover, we

expect the arithmetic intensity to be higher because in 2D, for the same amount of bytes fetched per

GPU thread, we are able to compute two fluxes instead of one (we compute fluxes in both x and y
direction whereas the naive approach computes one flux per thread per face). However, this higher

arithmetic intensity does not seem to greatly increase performance compared to the naive approach

as we get in single precision 6.5 TFLOPS similarily to the compute kernel of the naive approach. In

double precision, as we were already compute bound in the naive approach, this does not yield any

more performance.

• Another kernel is needed to compute the remaining fluxes in-between mesh elements. The grid for this

kernel iterates over face elements. As seen in figure 27, this kernel’s performance is poor compared to

the inner flux kernel. This is due to a very low arithmetic intensity and possibly wrong choice of GPU

kernel grid size.

• As it currently stands, additional kernels for the timestepping are used that exhibit similar performance

to the ones in figure 26. However, those kernel could be fused into the inner flux computation kernel.

That would get rid of the low performing timestepping kernels and reduce the overhead of GPU kernel

launch from the CPU.

Whole program performance Figure 30 depicts a timeline graph of the simulation ran for the first show-

case example. This time, we observe that mesh adaptation routines take up a minor fraction of the runtime.

Moreover, GPU utilization is higher.

Figure 29 focuses on a single solver iteration. We notice that the GPU utilization is rather low. This is

expected as each ranks possesses its own CUDA context and a single CUDA context can run at the same

time on the GPU by default. Thus, as kernels are launched by all MPI ranks, the GPU needs to do multiple

context switches which are really expensive. Fortunately, the Multi-Process Service (MPS) is an alternative

implementation of the CUDA runtime provided by Nvidia that was designed for programs usingMPI together

with CUDA. It allows multiple CPU processes to share the same CUDA context and thus avoid expensive

26

6 Conclusion and perspectives

10−2 10−1 100 101 102 103
1010

1011

1012

1013

1014

Arithmetic Intensity (FLOP/byte)

pe
rf

or
m

an
ce

(F
L

O
PS

)
outer fluxes FP64
inner fluxes FP64
outer fluxes FP32
inner fluxes FP32

peak FLOPS single precision

peak FLOPS double precision

Figure 27: roofline model for the inner and outer flux computation kernels in single and double precision

using subgrid elements.

context switches. When activating the MPS, the GPU utilization looks like figure 31. Here, we notice that

kernels launched from different processes are able to overlap and we get a way higher GPU utilization. We

also notice that the runtime taken by the timestepping kernels is substantial. Fusing those kernels with inner

flux computation would results in a big efficiency gain.

Moreover, on the CPU side, we notice that the majority of the runtime is spent on synchronization primi-

tives rather than doing any meaningful work. One way to better use the CPU during solver iterations would

be to do the mesh adaptation asynchronously on a copy of the mesh while doing solver iterations on the GPU.

This would also hide most of the overhead of the AMR routines.

6 Conclusion and perspectives

To conclude, I have sucessfully designed and implemented a finite volume library using the dynamic AMR

library t8code to target GPUs. This framework uses modern C++17 and CUDA to be able to target GPUs as

their use in HPC is becoming prevalent. To test this library, I have implemented a finite volume solver for

the compressible Euler equations in 2D/3D using a Godunov scheme and the HLL and KEPES fluxes. Fur-

thermore, a naive first approach was implemented that was shown to have poor performance. Then, a subgrid

approach was shown to yield way better performance and be a proof of concept for further developments.

From what I have developed, I have identified the following possible improvements:

• Multi-GPU support: for now t8gpu only uses one GPU. To be able to target supercomputers with

thousand of nodes and multiple GPUs per nodes, some data structures needs to be rethought.

• higher order scheme: a higher order scheme would better represent modern numerical schemes (using

WENO reconstruction for instance or a discontinuous galerkin method).

• support for multiple element types with subgrids: one of the strenghs of t8code is its ability to use

mesh with multiple mesh elements types (hexahedron, prism, tetrahedron) all within the same mesh.

Thus, extending subgrid elements to those elements types is important to support one of t8code’s most

important feature.

27

A
A
p
p
en
d
ix

A Appendix

CPU

GPU

Solver::iterate
Solver::adapt
Mesh::adapt
Mesh::connectivity
Mesh::partition

0.2 0.3 0.4 0.5 0.6 0.7
time

0

25

50

75

100

G
PU

ut
ili

za
tio

n Compute Warps In Flight
Unallocated Warps in Active SMs

Figure 28: timeline graph of a numerical simulation using the first approach.

Solver::iterate Solver::iterate

rank 0

rank 1

rank 2

rank 3

rank 4

C
PU

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronizeMPI barrier
cuda synchronize
kernel launch

rank 0

rank 1

rank 2

rank 3

rank 4

G
PU

inner fluxes
outer fluxes
RK step 3
RK step 1
RK step 2

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065
time

0

25

50

75

100

G
PU

ut
ili

za
tio

n Compute Warps In Flight
Unallocated Warps in Active SMs

Figure 29: timeline graph of a solver iteration without using the MPS.

2
8

A
A
p
p
en
d
ix

CPU

GPU

Solver::iterate
Solver::adapt
Mesh::adapt
Mesh::connectivity
Mesh::partition

0.02 0.03 0.04 0.05 0.06 0.07 0.08
time

0

50

100

G
PU

ut
ili

za
tio

n Compute Warps In Flight
Unallocated Warps in Active SMs

Figure 30: timeline graph of solver iterations and mesh adaptation routines.

Solver::iterate Solver::iterate

rank 0

rank 1

rank 2

rank 3

rank 4

C
PU

MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier MPI Barrier

MPI Barrier MPI Barrier

MPI Barrier MPI Barrier MPI Barrier

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize

cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronize cudaDeviceSynchronizeMPI barrier
cuda synchronize
kernel launch

rank 0

rank 1

rank 2

rank 3

rank 4

G
PU

inner fluxes
outer fluxes
RK step 3
RK step 1
RK step 2

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
time

0

50

100

G
PU

ut
ili

za
tio

n Compute Warps In Flight
Unallocated Warps in Active SMs

Figure 31: timeline graph of a solver iteration using subgrid elements.

2
9

References

B Glossary

AMR adaptive mesh refinement

API application programming interface

AoS array of structures

CPU central processing unit

CUDA compute unified device architecture

device designates a GPU

FLOPS floating point operations per second

GPGPU general purpose graphics processing unit

GPU graphics processing unit

host designates a CPU responsible for queuing up GPU kernels

IPC interprocess communication

MPI message passing interface

MPS multi-process service

PCIe Peripheral Component Interconnect Express

SIMD single instruction, multiple data

SIMT single instruction, multiple threads

SM streaming multiprocessor

SoA structure of arrays

SPMD single program, multiple data

References

[1] David A. Beckingsale et al. Parallel block structured adaptive mesh refinement on graphics processing

units. 2014. url: https://wrap.warwick.ac.uk/id/eprint/90866/.

[2] Carsten Burstedde and Johannes Holke. “A Tetrahedral Space-Filling Curve for Nonconforming Adap-

tive Meshes”. In: SIAM Journal on Scientific Computing 38.5 (2016), pp. C471–C503. doi: 10.1137/

15M1040049. eprint: https://doi.org/10.1137/15M1040049. url: https://doi.org/10.1137/

15M1040049.

[3] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. “p4est: Scalable Algorithms for Parallel

Adaptive Mesh Refinement on Forests of Octrees”. In: SIAM Journal on Scientific Computing 33.3

(2011), pp. 1103–1133. doi: 10.1137/100791634.

[4] Praveen Chandrashekar. “Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for

Compressible Euler andNavier-Stokes Equations”. In:Communications in Computational Physics 14.5

(Nov. 2013), pp. 1252–1286. issn: 1991-7120. doi: 10.4208/cicp.170712.010313a. url: http:

//dx.doi.org/10.4208/cicp.170712.010313a.

[5] Andrew Giuliani and Lilia Krivodonova. “Adaptive mesh refinement on graphics processing units for

applications in gas dynamics”. In: Journal of Computational Physics 381 (2019), pp. 67–90. issn: 0021-

9991. doi: https://doi.org/10.1016/j.jcp.2018.12.019. url: https://www.sciencedirect.

com/science/article/pii/S0021999118308155.

[6] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. “Strong Stability-Preserving High-Order Time Dis-

cretization Methods”. In: SIAM Review 43.1 (2001), pp. 89–112. doi: 10.1137/S003614450036757X.

eprint: https://doi.org/10.1137/S003614450036757X. url: https://doi.org/10.1137/

S003614450036757X.

[7] Amiram Harten, Peter D. Lax, and Bram van Leer. “On Upstream Differencing and Godunov-Type

Schemes for Hyperbolic Conservation Laws”. In: SIAM Review 25.1 (1983), pp. 35–61. doi: 10.1137/

1025002. eprint: https://doi.org/10.1137/1025002. url: https://doi.org/10.1137/1025002.

[8] Johannes Holke. Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with General

Element Types. 2018. arXiv: 1803.04970 [cs.DC]. url: https://arxiv.org/abs/1803.04970.

[9] Johannes Holke, David Knapp, and Carsten Burstedde. An Optimized, Parallel Computation of the

Ghost Layer for Adaptive Hybrid Forest Meshes. 2019. arXiv: 1910.10641 [cs.DC]. url: https:

//arxiv.org/abs/1910.10641.

30

https://wrap.warwick.ac.uk/id/eprint/90866/
https://doi.org/10.1137/15M1040049
https://doi.org/10.1137/15M1040049
https://doi.org/10.1137/15M1040049
https://doi.org/10.1137/15M1040049
https://doi.org/10.1137/15M1040049
https://doi.org/10.1137/100791634
https://doi.org/10.4208/cicp.170712.010313a
http://dx.doi.org/10.4208/cicp.170712.010313a
http://dx.doi.org/10.4208/cicp.170712.010313a
https://doi.org/https://doi.org/10.1016/j.jcp.2018.12.019
https://www.sciencedirect.com/science/article/pii/S0021999118308155
https://www.sciencedirect.com/science/article/pii/S0021999118308155
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://arxiv.org/abs/1803.04970
https://arxiv.org/abs/1803.04970
https://arxiv.org/abs/1910.10641
https://arxiv.org/abs/1910.10641
https://arxiv.org/abs/1910.10641

References References

[10] Johannes Holke et al. t8code. Version v2.0.0. Apr. 2024. doi: 10.5281/zenodo.10996663. url: https:

//doi.org/10.5281/zenodo.10996663.

[11] Maël Karembe, Johannes Markert, and Johannes Holke. t8gpu. Oct. 2024. url: https://github.com/

DLR-AMR/t8gpu.

[12] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied

Mathematics. Cambridge University Press, 2002.

[13] I Menshov and P Pavlukhin. “GPU-native gas dynamic solver on octree-based AMR grids”. In: Journal

of Physics: Conference Series 1640.1 (2020), p. 012017. doi: 10.1088/1742-6596/1640/1/012017.

url: https://dx.doi.org/10.1088/1742-6596/1640/1/012017.

[14] Liang Pan, Jiequan Li, and Kun Xu. A Few Benchmark Test Cases for Higher-order Euler Solvers.

2016. arXiv: 1609.04491 [math.NA]. url: https://arxiv.org/abs/1609.04491.

[15] Kevin Schaal et al. “Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme

and adaptive mesh refinement”. In: Monthly Notices of the Royal Astronomical Society 453.4 (Sept.

2015), pp. 4279–4301. issn: 1365-2966. doi: 10.1093/mnras/stv1859. url: http://dx.doi.org/

10.1093/mnras/stv1859.

[16] Hsi-Yu Schive, Yu-Chih Tsai, and Tzihong Chiueh. “GAMER �: A GRAPHIC PROCESSING UNIT

ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS”. In: The As-

trophysical Journal Supplement Series 186.2 (Feb. 2010), pp. 457–484. issn: 1538-4365. doi: 10.1088/

0067-0049/186/2/457. url: http://dx.doi.org/10.1088/0067-0049/186/2/457.

[17] H.C Yee, N.D Sandham, and M.J Djomehri. “Low-Dissipative High-Order Shock-Capturing Meth-

ods Using Characteristic-Based Filters”. In: Journal of Computational Physics 150.1 (1999), pp. 199–

238. issn: 0021-9991. doi: https://doi.org/10.1006/jcph.1998.6177. url: https://www.

sciencedirect.com/science/article/pii/S0021999198961770.

[18] Ui-Han Zhang, Hsi-Yu Schive, and Tzihong Chiueh. “Magnetohydrodynamics with GAMER”. In: The

Astrophysical Journal Supplement Series 236.2 (June 2018), p. 50. issn: 1538-4365. doi: 10.3847/

1538-4365/aac49e. url: http://dx.doi.org/10.3847/1538-4365/aac49e.

[19] Weiqun Zhang et al. “AMReX: a framework for block-structured adaptive mesh refinement”. In: Jour-

nal of Open Source Software 4.37 (May 2019), p. 1370. doi: 10.21105/joss.01370. url: https:

//doi.org/10.21105/joss.01370.

31

https://doi.org/10.5281/zenodo.10996663
https://doi.org/10.5281/zenodo.10996663
https://doi.org/10.5281/zenodo.10996663
https://github.com/DLR-AMR/t8gpu
https://github.com/DLR-AMR/t8gpu
https://doi.org/10.1088/1742-6596/1640/1/012017
https://dx.doi.org/10.1088/1742-6596/1640/1/012017
https://arxiv.org/abs/1609.04491
https://arxiv.org/abs/1609.04491
https://doi.org/10.1093/mnras/stv1859
http://dx.doi.org/10.1093/mnras/stv1859
http://dx.doi.org/10.1093/mnras/stv1859
https://doi.org/10.1088/0067-0049/186/2/457
https://doi.org/10.1088/0067-0049/186/2/457
http://dx.doi.org/10.1088/0067-0049/186/2/457
https://doi.org/https://doi.org/10.1006/jcph.1998.6177
https://www.sciencedirect.com/science/article/pii/S0021999198961770
https://www.sciencedirect.com/science/article/pii/S0021999198961770
https://doi.org/10.3847/1538-4365/aac49e
https://doi.org/10.3847/1538-4365/aac49e
http://dx.doi.org/10.3847/1538-4365/aac49e
https://doi.org/10.21105/joss.01370
https://doi.org/10.21105/joss.01370
https://doi.org/10.21105/joss.01370

	Introduction
	Context
	Objectives

	GPGPU programming concepts
	CPU architecture strenghs and weaknesses
	GPU architecture basics
	GPU execution model
	GPU memory model

	GPU programming paradigms
	GPU best practices
	Kernel level
	Application level

	Adaptive mesh refinement
	A quick survey of dynamic mesh adaptation techniques
	T8code

	T8gpu
	Challenges associated to AMR and the CPU/GPU model
	Design considerations
	GPU memory handling
	Mesh management
	Subgrid elements
	User workflow

	Test cases
	Finite volume formulation
	The HLL and KEPES fluxes

	Validation
	Sod shock tube
	Isentropic Euler vortex problem

	Results and performance analysis
	Example showcase
	Motivating example of AMR with subgrid elements
	Performance analysis
	First approach
	Second approach: AMR with subgrid elements

	Conclusion and perspectives
	Appendix
	Glossary

