ANALYSING LONG-DISTANCE TRANSPORT: SIMULATING POLICIES TO REDUCE DOMESTIC AIR TRAVEL IN AN INTERMODAL TRAVEL DEMAND MODEL FOR GERMANY

Marc Dziakowski, Nina Thomsen, Tudor Mocanu

German Aerospace Center (DLR) – Institute of Transport Research

Marc Dziakowski, Institute of Transport Research, 18.09.2024

Agenda

3

- Transport sector is responsible for a large share of greenhouse gas emissions
- Air traffic tax increased every year since 2020 (over 100% for short flights)
- Still every seventh short flight is a German domestic flight

Air traffic in Germany¹

DEMO – Germany Model

Short & long-distance traffic

- 4 step model
- Macroscopic travel demand model
- Spatial granularity:
 - Short-Distance ~7.000 traffic analysis zones (TAZ)
 - Long-Distance ~400 traffic analysis zones (TAZ)
- Multi-modal model where all modes are considered
- Temporal granularity: estimation of average working day
- Synthetic model, validated and calibrated¹
 - NHTS MiD 2017, value of time study²

 ¹ Winkler, Christian; Mocanu, Tudor (2017): Methodology and Application of a German National Passenger Transport Model for Future Transport Scenarios. In: Proceedings of the 45th European Transport Conference.
² Ehreke, Ilka; Hess, Stephane; Weis, Claude; Axhausen, Kay W. (2015): Reliability in the German Value of Time Study. In: Transportation Research Record 2495 (1), S. 14–22. DOI: 10.3141/2495-02.

• Things we can and things we would like to do

Can

5

- Mapping changes in structural and socio-economic characteristics of Germany and its regions
- Forecasting travel developments and evaluating the effects and impacts of policy measures and new services

Would also like

- Mapping of the intermodal route from origin to destination
- \rightarrow Better recognition of interactions with different policies

- Enable interchanges between modes
- Enable simulation of infrastructure changes and changes in transport services

Preparation of the transport network model

Marc Dziakowski, Institute of Transport Research, 18.09.2024

1. Connecting the TAZ with the hubs

- Each TAZ is connected to exactly one airport, longdistance bus station and long-distance railway station
- 2. Connect all hubs that are directly accessible in a mode with each other
 - to find the connections, routing is done on the gtfs data
- 3. Hubs of different modes that are close to each other are connected to each other to allow for transfers

Connecting all networks

- Each TAZ is connected to exactly one airport, longdistance bus station and long-distance railway station
- 2. Connect all hubs that are directly accessible in a mode with each other
 - to find the connections, routing is done on the gtfs data
- 3. Hubs of different modes that are close to each other are connected to each other to allow for transfers

Connecting all networks

1. Connecting the TAZ with the hubs

- Each TAZ is connected to exactly one airport, longdistance bus station and long-distance railway station
- 2. Connect all hubs that are directly accessible in a mode with each other
 - to find the connections, routing is done on the gtfs data
- 3. Hubs of different modes that are close to each other are connected to each other to allow for transfers

Bus station (no transfer)

Step 3:

Marc Dziakowski, Institute of Transport Research, 18.09.2024

10

Intermodal routing and demand distribution

- 1 Calculation of the k best routes from each TAZ to each other in the network
 - Several routes are calculated to deal with finding very similar routes
- 2. Choose the best route for every mode
 - The main mode is the mode with the longest distance travelled
- 3. Distribution to the best route from each mode if a route for that mode was found
 - Distribution is based on the generalised cost

> What the real world looks like

MID (Mobility in Germany)

 collect representative and reliable data on the socio-demographics of individuals and households as well as their everyday traffic over the course of a year

Share of intermodal trips

• MID: 6.34%

11

Model: 5.18%

ld	Train	Bus	Plane	Train+Bus	Plane+Train	Plane+Bus	Plane+Bus+Train
MID	73.1%	11.5%	9.2%	3.2%	2.5%	0.3%	0.1%
Model	74.1%	16.9%	3.8%	4.2%	0.9%	0.1%	0.0%

Marc Dziakowski, Institute of Transport Research, 18.09.2024

Some possible policies

12

Some possible policies

Increased Air Tax

- Intermodal 5.48%
- Average cost +2.6%

Sprinter

- Intermodal 5.23%
- Average cost -3.3%

Shuttle Service

- Intermodal 5.18%
- Average cost -2.7%

Imprint

Topic:	Analysing long-distance transport: Simulating policies to reduce domestic air travel in an intermodal travel demand model for Germany
Date:	2024-09-18, European Transport Conference
Author:	Marc Dziakowski (marc.dziakowski@dlr.de)
Institute:	Transport Research
Picture credits:	All pictures "DLR (CC BY-NC-ND 3.0)"