
Article Type: Software Engineering Track

Multi-Dimensional Categorization of Research
Software with Examples
Wilhelm Hasselbring, Software Engineering, Kiel University, Kiel, 24098, Germany

Stephan Druskat, German Aerospace Center (DLR), Berlin, 12489, Germany

Jan Bernoth, University of Potsdam, Potsdam, 14476, Germany

Philine Betker, Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany

Michael Felderer, German Aerospace Center (DLR) & University of Cologne, Cologne, 51147 , Germany

Stephan Ferenz, Department of Computer Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg

Ben Hermann, Secure Software Engineering Group, TU Dortmund, 44227 Dortmund

Anna-Lena Lamprecht, University of Potsdam, Potsdam, 14476, Germany

Jan Linxweiler, TU Braunschweig, Braunschweig, 38106, Germany

Arnau Prat, German Aerospace Center (DLR), Braunschweig, 38108, Germany

Bernhard Rumpe, Software Engineering, RWTH Aachen University, Germany

Katrin Schoening-Stierand, Hub of Computing and Data Science, University of Hamburg, 22761 Hamburg

Shinhyung Yang, Software Engineering, Kiel University, Kiel, 24098, Germany

Abstract—Research software has been categorized in different contexts to serve
different goals. We start with a look at what research software is, before we
discuss the purpose of research software categories. We propose a
multi-dimensional categorization of research software. We present a template for
characterizing such categories. As selected dimensions, we present our proposed
role-based, readiness-based, developer-based, and dissemination-based
categories. Since our work has been inspired by various previous efforts to
categorize research software, we discuss them as related works. We characterize
all these categories via the previously introduced template, to enable a systematic
comparison. We report on the multi-dimensional categorization of selected
research software examples.
Keywords: Research Software, Software Categorization, Technology Readiness
Level, Open Source Software

R esearch software is software that is designed
and developed to support research activi-
ties. Research software is developed by re-

searchers themselves or by software engineers work-
ing closely with researchers. Research software is typ-
ically developed to meet specific research needs, and
often has unique requirements that are different from
standard commercial software [1]. However, research

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

software is gaining appreciation and endorsement for
research and as a research result itself [2], [3].

Research Software Engineering (RSE) is a special-
ized field that applies software engineering principles
to address the unique challenges posed by develop-
ing software for research, with the goal of enhancing
the efficiency, reproducibility, and impact of research
outcomes. Research software engineers specialize in
developing and maintaining software for research pur-
poses.

In this paper, we propose a multi-dimensional cat-

Published by the IEEE Computer Society Computing in Science & Engineering 1



Software Engineering Track

egorization of research software, along the dimen-
sions of roles, readiness, developer, and dissemina-
tion. We start with a look at what research software
is before we discuss the purpose of research soft-
ware categories. We present a template for charac-
terizing such categories. Subsequently, our proposed
role-based, readiness-based, developer-based, and
dissemination-based categories are presented. Our
work has been inspired by various previous efforts
to categorize research software, which we discuss as
related works. We characterize all these categories via
the previously introduced template, and conclude with
an outlook to future work.

Research Software
For the purposes of this paper, we follow the FAIR
for Research Software (FAIR4RS) Working Group in
their definition of research software, as software that
was created during the research process or for a
research purpose [4], [5]. This prescriptive definition
distinguishes “research software” and “software in re-
search,” which includes general purpose software. The
software components (e.g., operating systems, pro-
gramming languages, libraries, etc.) that are used for
research but were not created during research or with
a clear research intent should be considered “software
in research” and not “research software.” In the present
paper, we categorize research software.

A descriptive definition of research software could
instead include all the software used in research, as for
instance done in [6] for analyzing GitHub repositories.
While such a descriptive definition may be useful in
analyzing research processes, and therefore may be
useful for RSE research [7], [8], the prescriptive def-
inition defines a clearer focus for the work presented
here, and enables a better disambiguation of proper-
ties specific to research software. The Research Data
Alliance also adopted the prescriptive distinction be-
tween research software and software in research [5],
as we do. Figure 1 shows the resulting segmentation
of software.

Purpose of Research Software
Categories

We envision the following benefits from using cate-
gories for research software, which may serve

› as a basis of institutional guidelines and checklists
for research software development;

› to better understand the different types of research
software and their specific quality requirements;

› to recommend appropriate software engineering
methods for the individual categories;

› to design appropriate teaching / education pro-
grams for the individual categories;

› to give stakeholders (especially research software
engineers and their management) a better under-
standing of what kind of software they develop;

› for a better assessment of existing software when
deciding to reuse it;

› for research funding agencies, to define appropri-
ate funding schemes;

› to define appropriate metadata labels for FAIR
research software [9], [10];

› in RSE Research [7], [8] to provide a framework
for classifying research software artifacts.

This list is not exhaustive.

Characterization of Research
Software Categories

Categorizations can be described through their scope,
purpose, context, properties, consequences for cre-
ation and use, and their inter-categorial relations. Ta-
ble 1 provides a template for systematically describing
the characteristics of research software categoriza-
tions, which we will use later to characterize some
individual categorizations in the subsequent sections.

Role-Based Categorization of
Research Software

Research software can be used to collect, process, an-
alyze, and visualize data, as well as to model complex
phenomena and run sophisticated simulations. Re-
search software is also developed to control and mon-
itor lab experiments and environmental observations.
In engineering research, research software constitutes
a new paradigm of scientific inquiry next to theory
and experiment [11], and acts as a proof-of-concept

All Software

Research
Software

Software in 
Research

FIGURE 1. Segmentation of all software, research software,
and software in research. In the present paper, we further
categorize the orange box, i.e., research software.

2 Multi-Dimensional Categorization of Research Software with Examples 2024



Software Engineering Track

Criterion Explanation

Scope What is the scope of the categorization?
Purpose What is the purpose of the categorization?
Context In which contexts are specific categories developed and used?
Properties What are specific properties of the different categories?
Consequences for Creation How is and should software of a specific category be developed?
Consequences for Use How and why is software of a specific category used? What are the differences between the

categories in terms of use and reuse, including, e.g., in software publication & citation?
Inter-categorial relations What are the relations between different categories?

TABLE 1. Template for describing criteria of research software categorizations.

to invent and evaluate new technological artifacts, in-
cluding algorithms, methods, systems, tools, and other
computer-based technologies. Research software also
provides the infrastructure to manage, publish, and
archive research data and software.

Thus, research software may take various roles
in the research process [12], [13]. This is similar to
software engineering teams, which involve a range of
roles that contribute to the development, maintenance,
and improvement of software systems. Some common
roles in software engineering are software architect,
programmer, and tester. Each role may be taken by
several persons, and one person may take several
roles. These role assignments may also change during
a software project.

We propose a similar role-based categorization of
research software, with an emphasis on varying quality
requirements for the different roles that software may
take in research. Accordingly, a research software may
take several roles, which may also change during the
life cycle of the software.

Research software mainly falls into one of the fol-
lowing three top-level role categories (and sometimes
combinations):

1) Modeling, Simulation, and Data Analytics of, e.g.,
physical, chemical, social, linguistic, or biological
processes in spatio-temporal contexts.

2) Technology Research Software in science and
engineering research.

3) Research Infrastructure Software, such as re-
search data and software management systems.

The assignment of research software to categories
may evolve over time. For instance, software specifi-
cally developed for a research question (usually Cate-
gories 1 & 2) can later turn into infrastructure software
(Category 3) [14]. In different contexts, a software may
also be in multiple categories at the same time.

We further refine Category 1 research software for
modeling, simulation, and data analytics with several
subcategories:

1.1) Modeling and simulation (e.g., numerical mod-
eling, agent-based modeling)

1.2) Data analytics, on observation and simulation
data, with statistical analysis and machine learn-
ing as methods

1.3) Software analytics (static, dynamic, evolution,
repository mining)

1.4) Integrative analysis (data assimilation and deci-
sion analysis)

1.5) Scientific visualization

Category 2) for technology research software is used
in structural sciences (mathematics and computer sci-
ence) and in engineering sciences (software, elec-
trical, mechanical, and civil engineering). Technology
research software may be related to target contexts:

2.1) Hardware (usually as embedded software)
2.2) Software (e.g., as part of an operating system)
2.3) Human (with a user interface)
2.4) Process (e.g., as part of a business, develop-

ment or production processes)

Again, one research software may be in multiple cat-
egories. In the next section, we will additionally relate
this category to technology readiness levels as sec-
ondary sub roles.

We further refine Category 3 for research infras-
tructure software with several subcategories:

3.1) Control and monitoring software for complex
experiments and instruments. This includes em-
bedded control software, as well as native and
web-based monitoring software.

3.2) Data collection and generation (survey software,
sensor-based data collection, synthetic data gen-
eration, etc.).

3.3) Pipelines and tools.
3.4) Libraries, for instance for high performance

computing.
3.5) Laboratory notebooks.
3.6) Data management.
3.7) Software management.
3.8) Collaboration and publication.

These categories have varying requirements on their
software development. For instance, dedicated require-
ments engineering may be relevant for Category 3),

2024 Multi-Dimensional Categorization of Research Software with Examples 3



Software Engineering Track

but not for Category 1). As another example, safety
analysis may be relevant for Category 3.1), but not for
Categories 1) and 2).

Figure 2, left, shows our resulting role-based cate-
gorization.

Table 2 characterizes our multi-dimensional
categorization in terms of the template in Table 1.
The readiness-based, developer-based, and
dissemination-based categorizations are introduced in
the following three sections, before we discuss some
related categorizations.

Readiness-Based Categorization of
Research Software

Technology is the application of conceptual knowledge
for achieving practical goals, especially in a repro-
ducible way. The word technology can also mean the
products resulting from such efforts, including both tan-
gible tools such as utensils or machines, and intangible
ones such as software.

Technology readiness levels (TRLs) are a method
for estimating the maturity of technologies. TRLs en-
able consistent and uniform discussions of technical
maturity across different types of technology. Figure 2,
right, shows the resulting readiness-based categoriza-
tion with the titles of the European TRL 1 to TRL 9 [15].

These TRLs may be applied to all types of re-
search software, thus, the category dimensions are
orthogonal : every research software may be classified
independently in each dimension.

In addition, for technology research software, these
TRL titles can be read as secondary sub roles. Exam-
ples are:

TRL 3 : The technology research software takes the
role as an "Experimental Proof of Concept" within
some research project.

TRL 4 : The technology research software takes the
role as a "Technology Validated in Lab" within
some research project.

Thus, the TRLs constitute sub roles of technology
research software.

One specific technology research software may
take several such sub roles over its lifecyle, with in-
creasing "readiness". It may also take several roles
at the same time, within different contexts: In one
project, it may serve as experimental proof of concept
(TRL 3); in another project, it may already serve as a
technology validated in a lab (TRL 4). Eventually, a
technology research software may even become an
"Actual System Proven in Operational Environment"
(TRL 9).

Engineering research (a.k.a. Design Science) is
research that invents and evaluates technological ar-
tifacts.1 Thus, the refinement via TRLs should be ap-
propriate.

"Readiness" is top-level in the mindmap, thus it is
it own dimension. If we had put "Readiness" directly
below "Technology Research Software", it would not
be its own dimension, thus we added the cross-link
from "Technology Research Software" to illustrate the
additional, secondary sub-role relationship.

The difference between the categories "Modeling
and Simulation" and "Technology Research Software"
(without consideration of the TRL sub roles) may be
illustrated, for instance, with control engineering re-
search:

• As a control engineering researcher, you may build
a simulation of a control system.

• As a control engineering researcher, you may also
build an actual control system as a new software
system. In an automation lab, this researcher may
then experiment with this system (not with the
simulation of the system). If this system (which is
a technology research software) matures, it may
reach higher TRLs.

Here, both, the simulation and the actual control sys-
tem are research software.

Another difference between "Modeling and Simu-
lation" and "Technology Research Software" is that
for "Technology Research Software" the TRLs may
denote sub roles, as explained above. For "Modeling
and Simulation" and "Infrastructure" research software,
the TRLs may describe the maturity, but not sub roles.

Developer-Based Categorization of
Research Software

For the developer dimension, we see the following
stages for research software:

1) Individual Researcher, such as PhD student, Post-
Doc, or Research Software Engineer.

2) Local Research Group.
3) Project Group, in which several research groups

may collaborate.
4) Community on a specific research topic.
5) Contractor (professional software company devel-

oping the software on behalf of researchers).

1https://github.com/acmsigsoft/EmpiricalStandards/blob/
master/docs/standards/EngineeringResearch.md

4 Multi-Dimensional Categorization of Research Software with Examples 2024

https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/EngineeringResearch.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/EngineeringResearch.md


Software Engineering Track

secondary sub role

Research Software
Category

Role in Research

Modeling, Simulation and Data Analytics

1

Modeling and Simulation

1.1

Data Analytics

1.2

Software Analytics

1.3

Integrative Analysis

1.4

Scientific Visualization

1.5

Technology Research Software

2

Hardware Related

2.1

Software Related

2.2

Human Related

2.3

Process Related

2.4

Research Infrastructure Software

3

Control and Monitoring Software

3.1

Data Collection and Generation

3.2

Pipelines and Tools

3.3

Libraries

3.4

Laboratory Notebooks

3.5

Data Management

3.6

Software Management

3.7

Collaboration and Publication

3.8

Technology Readiness Level

TRL 1 – Basic Principles Observed

TRL 2 – Technology Concept Formulated

TRL 3 – Experimental Proof of Concept

TRL 4 – Technology Validated in Lab

TRL 5 – Technology Validated in Relevant Environment

TRL 6 – Technology Demonstrated in Relevant Environment

TRL 7 – System Prototype Demonstration in Operational Environment

TRL 8 – System Complete and Qualified

TRL 9 – Actual System Proven in Operational Environment

Developer

Individual Researcher

Local Research Group

Project Group

Community

Contractor

Dissemination

Open Source

Closed Source

Software as a Service

FIGURE 2. Our multi-dimensional categorization of research software, along the dimensions of roles, readiness, developers,
and dissemination.

2024 Multi-Dimensional Categorization of Research Software with Examples 5



Software Engineering Track

Criterion Explanation

Scope This categorization covers the dimensions of roles, readiness, developers, and dissemination.
Purpose The categorization aims to enable a better understanding of the different types of research

software and their specific quality requirements.
Context The categorization has been produced in the context of a task force of the special interest

group on Research Software Engineering, within the German Association of Computer
Science (GI e.V.) and the German Society for Research Software (de-RSE e.V.). It is meant
to serve different purposes, in particular RSE research [7], [8].

Properties The categories follow different relevant dimensions, and are defined collaboratively among
software engineering researchers and research software engineers.

Consequences for Creation Depending on its category, software is expected to meet different quality requirements and
follow different development processes.

Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles
and functions.

Inter-categorial relations Individual research software may change its category within one or more dimensions.
TABLE 2. Characteristics of our multi-dimensional categorization for research software.

Dissemination-Based Categorization
of Research Software

A community or contractor may develop the software
open-source, closed-source, or it may provide research
software as an online service.

Figure 2, bottom, shows our developer-based and
dissemination-based categorizations.

Related Research Software
Categories

Research software has been categorized in different
contexts to serve different aims. Some of them are
discussed here as related works, as they a) represent
a good starting point for a discussion on research
software categorization, b) provided significant input to
our work, and c) may be used to compare and assess
our categorization. We characterize these categories
via the previously introduced template in the appendix
(supplement).

Role-Based Categorization
Van Nieuwpoort and Katz [12] present a role-based
categorization. They categorize research software as
an integral component of instruments used in research,
as the instrument itself, for analyzing research data,
for presenting research results, for assembling or in-
tegrating existing components, as infrastructure or an
underlying tool, and for facilitating research-oriented
collaboration. This categorization inspired our work.
Based on discussions with the authors of the present
paper, van Nieuwpoort and Katz extended their cat-
egorization with our Technology Research Software
category [13]

Maturity-Based Categorization
In their National Agenda for Research Software [16],
the Australian Research Data Commons – an Aus-
tralian research data infrastructure facility – argue for
research software to be recognized as a first-class
output of research. They describe a three-level maturity
categorization of research software that is related to
our readiness dimension:

1) Research Data Processes captured as software.
The result is analysis code that captures research
processes and methodology: the steps taken for
tasks like data generation, preparation, analysis,
and visualization.

2) Novel Methods and Models captured as software.
The results are prototype tools that demonstrate
a new idea, method, or model for research.

3) Accepted Methods and Models captured as soft-
ware. The result can become research software
infrastructure that captures more broadly accepted
and used ideas, methods, and models for re-
search.

Each category faces specific challenges with regard to
recognition, from making research practice transpar-
ent, to creating impact through quality software and
safeguarding longer-term maintenance.

Application classes in institutional software
engineering guidelines
Institutional guidelines typically define so-called appli-
cation classes for research software, which require
appropriate quality properties, and, thus software en-
gineering methods [17], [18]:

› For software in Application Class 0, the focus is on
personal use in conjunction with a small scope.

› For software in Application Class 1, it should be
possible, for those not involved in the develop-

6 Multi-Dimensional Categorization of Research Software with Examples 2024



Software Engineering Track

ment, to use it to the extent specified and to
continue its development.

› For software in Application Class 2, it is intended
to ensure long-term development and maintain-
ability. It is the basis for a transition to product
status.

› For software in Application Class 3, it is essential
to avoid errors and to reduce risks. This applies in
particular to critical software.

The application classes relate to our readiness domain
and to some extent to our developer-based categoriza-
tion.

EOSC Research Software Lifecycle
The European Open Science Cloud (EOSC) aims to
create a virtual environment for sharing and accessing
research data across borders and scientific disciplines.
The SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for quality research
software” provides a categorization for software in the
research lifecycle [19]:

1) Individual creating research software for own use
(e.g. a PhD student).

2) A research team creating an application or work-
flow for use within the team.

3) A team / community developing (possibly broadly
applicable) open source research software.

4) A team or community creating a research service.
This categorization is covered by our developer-based
categorization.

Computational research in the earth system
sciences
Döll et al. [20] provide recommendations for sustain-
able research software for high-quality computational
research in the Earth System Sciences, and categorize
this research software as follows:

› Simulation of Earth system processes by Earth
system models.

› Design, processing and analysis of Earth obser-
vation and lab experiment data.

› Integrative analysis of simulation models, large
data bases, and stakeholder knowledge.

These categories correspond to our role-based cate-
gories 1.1), 1.2), and 1.4), respectively.

Categorizing the Software Stack
Another dimension is the research software stack,
from non-scientific infrastructure, scientific infrastruc-
ture, discipline-specific software, up to project-specific
software [21]. This dimension could be the basis for
another branch in our multi-dimensional categorization.

Qualitative Evaluation
As a pre-review study, we conducted a multi-
dimensional categorization of selected research soft-
ware examples, to check whether we can categorize
selected research software in multiple dimensions. The
selection is mainly based on in-depth knowledge of the
respective research software by the authors, such that
we are able to confidently categorize these research
software examples, in particular the readiness level.

We categorize the following research software, in
alphabetical order:

ARCHES: ARCHES is a framework for developing
digital twins based on the Robot Operating System
(ROS) [22], [23]. Research areas, where ARCHES
was successfully employed, are several digital
twins of ocean observation systems, including a
demo mission [24]. Table 3 presents the multi-
dimensional categorization of the ARCHES digital
twin framework.

ExplorViz: ExplorViz supports research on software
visualization, software comprehension tasks and
software collaboration [27], [28], [29], [30]. To
achieve this, ExplorViz uses dynamic analysis
techniques to provide live trace visualization of
the communication in large software landscapes. It
targets software system and program comprehen-
sion in those landscapes while still providing de-
tails on the communication within an application.
The ExplorViz development started in 2012 [27].
Table 4 presents the multi-dimensional categoriza-
tion of ExplorViz.

Hexatomic: Hexatomic is an extensible, OS-
independent platform for deep multi-layer linguistic
annotation of corpora [39], [40]. It constitutes
a technology research software demonstrator
for interoperability within a software ecosystem
for multi-layer linguistic corpus workflows,
corpus-tools.org [41]. Hexatomic is applied in
corpus linguistics for manual and semi-automated
annotation. Table 5 presents the multi-dimensional
categorization of Hexatomic.

2024 Multi-Dimensional Categorization of Research Software with Examples 7



Software Engineering Track

Role Readiness Developer Dissemination

2.1 Hardware Related TRL 4 [25]
TRL 5 [26]
TRL 7 [24]

Project Group Open Source

TABLE 3. Multi-dimensional categorization of the ARCHES digital twin framework [22].

Role Readiness Developer Dissemination

1.3 Software Analytics
1.5 Scientific Visualization
2.2 Software Related

TRL 4 [31], [32], [33], [34],
[35], [36]
TRL 5 [37]

Local Research Group Open Source
Software as a Service
[38]

TABLE 4. Multi-dimensional categorization of the ExplorViz software visualization tool [27], [28], [29], [30].

Role Readiness Developer Dissemination

1.2 Data Analytics
1.4 Integrative Analysis
2.2 Software Related
3.2 Data Collection and Generation
3.3 Pipelines and Tools

TRL 4 Local Research Group Open Source

TABLE 5. Multi-dimensional categorization of Hexatomic for deep multi-layer linguistic annotation [39], [40].

Role Readiness Developer Dissemination

1.3 Software Analytics
2.2 Software Related

TRL 4 [42], [43], [44], [45],
[46], [47], [48], [49], [50],
[51], [52], [53]
TRL 5 [54]
TRL 6 [55]

Community Open Source

TABLE 6. Multi-dimensional categorization of the Kieker observability and monitoring framework [56], [57].

Role Readiness Developer Dissemination

1.1 Modeling and Simulation
2.2 Software Related

TRL 9 [58], [59] Contractor Closed Source

TABLE 7. Multi-dimensional categorization of the MATLAB programming language [60].

Role Readiness Developer Dissemination

1.1 Modeling and simulation
2.2 Software Related
3.3 Pipelines and Tools

TRL 4-8 [61], [62], [63], [64] Community Open Source
Software as a Service

TABLE 8. Multi-dimensional categorization of the MontiCore framework for the development of software languages [65].

Role Readiness Developer Dissemination

2.2 Software Related
3.3 Pipelines and Tools

TRL 6 Local Research Group Open Source

TABLE 9. Multi-dimensional categorization of the mosaik for co-simulating energy systems [66].

Role Readiness Developer Dissemination

1.2 Data Analytics
1.5 Scientific Visualization

TRL 4 [67] Local Research Group Open Source
Software as a Service

TABLE 10. Multi-dimensional categorization of the OceanTEA ocean observation data analytics tool [68].

8 Multi-Dimensional Categorization of Research Software with Examples 2024



Software Engineering Track

Kieker: The Kieker observability and monitoring
framework has been employed in various soft-
ware engineering research projects [56], [57]. The
Kieker development started in 2006 as a tool for
monitoring response times of Java software opera-
tions [69]. Research areas where Kieker was suc-
cessfully employed for software engineering re-
search include performance analysis and software
architecture reconstruction. As reported in [57],
Kieker was also employed in several industrial
collaborations and technology transfer projects.
Table 6 presents the multi-dimensional categoriza-
tion of Kieker.

MATLAB: MATLAB is a programming language to
design mathematical models to solve problems in
science and industry [60]. It is a commercial soft-
ware developed by MathWorks. The software fits
to a case where a technology research software is
closed-source and has a strong user base not only
in academia, but also in industry. Table 7 presents
the multi-dimensional categorization of MATLAB.

MontiCore: The MontiCore [70], [71], [72], [73] frame-
work for the development of domain specific lan-
guages started in 2004 as proof-of-concept for re-
searching design methods for software languages
with large complexity, such as the UML-P [74],
[75] or SysML [76]. Currently, MontiCore is used
for developing code and test generators, domain
specific languages, and model analysis tools [61],
[62], [77], [78], [79]. Thus it turned into a re-
search infrastructure. Still, original research on
developing domain specific languages is done in
the MontiCore context and many possible and
useful extensions are asked for. Table 8 presents
the multi-dimensional categorization of MontiCore.

mosaik: mosaik is a co-simulation framework for sim-
ulations in the energy domain [66]. The software
is used as technology research software for the
developers (computer scientists) while it is an
infrastructure software for the main users (energy
researchers). The multi-dimensional categoriza-
tion of mosaik can be found in Table 9.

OceanTEA: OceanTEA supports research on ocean
observation data analytics [68]. To achieve this,
OceanTEA provides an online service for data
analytics and exploration. OceanTEA was suc-
cessfully employed for studying polyp activity in
cold-water corals using machine learning tech-
niques to analyze high-resolution time series data
and photographs obtained from an autonomous
lander cluster [67]. Table 10 presents the multi-
dimensional categorization of OceanTEA.

PIA: An example for a contractor-developed research
software is PIA, the Prospective Monitoring and
Management App, which has been developed by
professional software companies as open-source
software, on behalf of the Helmholtz Centre for
Infection Research to conduct observational epi-
demiological studies by facilitating longitudinal
data collection and cohort management [81]. Ta-
ble 11 presents the multi-dimensional categoriza-
tion of PIA.

Quantum Optics Control Software: This closed-
source software is used to control ultracold
atom experiments in microgravity environments
such as sounding rockets or the International
Space Station (ISS) [82], [83]. It also provides
several Domain-Specific Languages (DSLs) for
driver code and experiment sequence generation.
Research areas where it has been successfully
used are the MAIUS-1 mission [92], the first
to create a Bose-Einstein Condensate (BEC)
in space, and the MAIUS-2 mission. Future
missions that will use the software include
BECCAL [93] and CARIOQA-PMP [94] among
others. Table 12 shows the multidimensional
categorization of this software.

SPRAT: SPRAT provides a spatially-explicit marine
ecosystem model based on population balance
equations [85]. OceanTEA was empirically evalu-
ated with ocean modelers and research software
engineers researching marine ecosystem simula-
tions [84]. Table 13 presents the multi-dimensional
categorization of SPRAT.

Theodolite: Theodolite is a framework for bench-
marking the horizontal and vertical scalability of
cloud-native applications [89], [90]. Research ar-
eas where Theodolite was successfully employed
for software engineering research include bench-
marking stream processing engines deployed in
the cloud [87], [88]. Table 14 presents the multi-
dimensional categorization of Theodolite.

VirtualFluids: VirtualFluids is a Computational Fluid
Dynamics (CFD) framework based on the Lattice
Boltzmann method [95], [96], [97], [98]. The soft-
ware demonstrated its use in operational environ-
ments in projects with industrial partners. Table 15
presents the multi-dimensional categorization of
VirtualFluids.

2024 Multi-Dimensional Categorization of Research Software with Examples 9



Software Engineering Track

Role Readiness Developer Dissemination

3.2 Data Collection and Generation TRL 9 [80] Contractor Open Source

TABLE 11. Multi-dimensional categorization of the PIA prospective monitoring and management app [81].

Role Readiness Developer Dissemination

2.2 Software Related
3.1 Control and Monitoring Software
3.2 Data Collection and Generation

TRL 9 Project Group Closed Source

TABLE 12. Multi-dimensional categorization of a Quantum Optics Control Software [82], [83].

Role Readiness Developer Dissemination

1.1 Modeling and Simulation
1.5 Scientific Visualization

TRL 5 [84] Individual Researcher Open Source

TABLE 13. Multi-dimensional categorization of the SPRAT ocean observation data analytics tool [85].

Role Readiness Developer Dissemination

2.2 Software Related
3.3 Pipelines and Tools

TRL 4 [86]
TRL 5 [87], [88]

Project Group Open Source

TABLE 14. Multi-dimensional categorization of the Theodolite framework for benchmarking the scalability of cloud-native
applications [89], [90].

Our qualitative evaluation shows that it is possible
to categorize different research software along multiple
categories. In particular, it shows that our categoriza-
tion is applicable to research software independently of
a single dimension: we successfully categorized soft-
ware at different maturity levels, developed by different
actors, and disseminated through different means. We
expect that our categorization can significantly con-
tribute to categorizing research software. It increases
coverage over existing approaches to categorization by
adding the dissemination category and integrating:

• role-based categorization [13], [20] in our role
categories;

• maturity-based categorization [16], [17] in our
readiness categories;

• lifecycle-based categorization [19] in our devel-
oper categories;

In our evaluation, example research software has been
categorized with 1–5 roles. This shows a high precision
to cover different roles research software can take
in different contexts, while manifesting that research
software roles are not exclusive. While PIA, for exam-
ple, serves a single purpose within a single context,
Hexatomic can be used for different subtasks in differ-
ent data-centric application contexts. As infrastructure
software that can be used to integrate tools into a
pipeline, Hexatomic combines research-related tasks
such as data generation and integration with research
tasks such as data editing and analysis. Simultane-
ously, it is technology research software whose target

system is an existing ecosystem of software tools for
linguistic research. The Hexatomic example reveals a
property of research software that is central to our
argument, i.e., that different contexts and perspectives
put software into different roles, which makes a multi-
dimensional categorization necessary.

As future work, we intend to ask more members
of the RSE community to categorize their research
software. In particular, the (self-) assessment of the
readiness levels requires a profound knowledge of the
software and its use.

As future work, we also intend to conduct more
in-depth quantitative research into our categorization
to assess and improve its granularity and precision.
Based on this, we intend to analyze relations and
correlations between categorical dimensions. We also
plan to widen the corpus of categorized research soft-
ware by asking more members of the RSE community
to categorize their own research software. In particu-
lar, the assessment of the readiness levels requires
a profound knowledge of the software and its use.
To quantitatively evaluate our categorization scheme,
we intend to apply more systematic and replicable
research via a systematic literature review of published
research software [99].

10 Multi-Dimensional Categorization of Research Software with Examples 2024



Software Engineering Track

Role Readiness Developer Dissemination

1.1 Modeling and Simulation TRL 7 Local Research Group Open Source [91]

TABLE 15. Multi-dimensional categorization of VirtualFluids for simulating fluid flow systems.

Conclusion
We categorize research software along various dimen-
sions, contributing to fostering effective development,
recognition, and utilization of research software within
the research community. One essential use case of
this categorization is its incorporation into forthcom-
ing guidelines for research software development. As
we classify research software, we enable tailoring
guidelines to specific classes, offering developers a
structured framework that aligns with each category’s
unique requirements and challenges. The evaluation
via a systematic mapping study for our role-based cat-
egorization, and the multi-dimensional categorization
of selected research software examples stimulated the
refinement and strengthening of our categorization.

Moreover, the categorization is intended to be a
valuable tool for stakeholders, especially research soft-
ware engineers and their group, chair, department,
or institute leaders. The categorization may provide
these individuals with a better understanding of the
software they are developing, offering insights into its
nature, purpose, and potential impact. This knowledge
is essential for informed decision-making, adequate
resource allocation, and strategic planning within re-
search institutions.

Recognition for research software engineers is an-
other outcome we anticipate from categorizing re-
search software. By delineating different types of soft-
ware and acknowledging the diverse skill sets required
for their development and maintenance, our catego-
rization aims to contribute to elevating the status of
research software engineers. We hope this recognition
motivates individuals and fosters a culture that values
and appreciates the crucial role played by software in
advancing research efforts.

Categorizations may also help assess external soft-
ware when considering its use. We envision that it
contributes to a standardized framework for evaluating
software’s relevance, applicability, and quality, facilitat-
ing informed decisions in adopting tools from different
sources.

The categorization may become particularly valu-
able in allocating project-based or permanent funding.
It can help researchers and developers clearly articu-
late their software’s significance in a funding proposal.
We envision this classification providing a framework
that helps researchers and funding agencies.

Additionally, the categorization may help to empha-
size which software is critical, highlighting the impor-
tance of its maintenance and continued development
for its continued functionality. By highlighting this im-
portance, we seek to contribute to an enhanced aware-
ness of the ongoing support and resources required
to ensure the longevity and sustainability of research
software.

In the realm of Research Software Engineering
(RSE) research [7], [8], we hope that the categorization
provides a framework for classifying research objects,
supporting software corpus analyses, and enhancing
our understanding of the different types of research
software and their properties. This structured approach
may aid in organizing and interpreting the vast land-
scape of research software, contributing to advance-
ments in RSE methodologies and practices.

We propose a multi-dimensional categorization of
research software, along the dimensions of roles,
readiness, developers, and dissemination. The vari-
ous dimensions of the categorization are not com-
pletely independent of each other. Looking at the
dependency between the dimension and identifying
constraints on combinations of the dimensions is the
subject of future work. Additional dimensions could
be the reuse scenarios (such as single-use/single-
purpose, extensibility, reusability), the users (such as
scientists, humans as research subjects, and citizens),
the research software stack [21], and the criticality (for
instance, mission-critical software). Such extensions
and refinements are subject to future work.

To evaluate the breath of our categorization
scheme, we conducted a multi-dimensional catego-
rization of selected research software examples. As
future work, we plan to conduct a systematic literature
study [99] to evaluate the depth of our categorization.

2024 Multi-Dimensional Categorization of Research Software with Examples 11



Software Engineering Track

REFERENCES

1. A. Johanson and W. Hasselbring, “Software engi-
neering for computational science: Past, present,
future,” Computing in Science & Engineering,
vol. 20, no. 2, pp. 90–109, Mar. 2018. doi:
10.1109/MCSE.2018.021651343

2. C. Jay, R. Haines, and D. S. Katz, “Software
Must be Recognised as an Important Output of
Scholarly Research,” International Journal of Digi-
tal Curation, vol. 16, no. 1, p. 6, Apr. 2021. doi:
10.2218/ijdc.v16i1.745

3. H. Anzt, F. Bach, S. Druskat, F. Löffler, A. Loewe,
B. Y. Renard et al., “An environment for sustain-
able research software in Germany and beyond:
Current state, open challenges, and call for ac-
tion,” F1000Research, vol. 9, p. 295, Jan. 2021. doi:
10.12688/f1000research.23224.2

4. M. Gruenpeter, D. S. Katz, A.-L. Lamprecht, T. Hon-
eyman, D. Garijo, A. Struck et al., “Defining Research
Software: A controversial discussion,” Zenodo, Sep.
2021. doi: 10.5281/zenodo.5504016

5. N. P. Chue Hong, D. S. Katz, M. Barker, A.-L.
Lamprecht, C. Martinez, F. E. Psomopoulos et al.,
“FAIR Principles for Research Software (FAIR4RS
Principles),” Research Data Alliance, May 2022. doi:
10.15497/RDA00068

6. W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and
T. Tiropanis, “Open source research software,” Com-
puter, vol. 53, no. 8, pp. 84–88, Aug. 2020. doi:
10.1109/mc.2020.2998235

7. M. Felderer, M. Goedicke, L. Grunske, W. Has-
selbring, A.-L. Lamprecht, and B. Rumpe, “Toward
research software engineering research,” Zenodo,
2023. doi: 10.5281/zenodo.8020525

8. ——, “Investigating research software engineering:
Toward RSE Research,” Communications of
the ACM, vol. 68, no. 2, Feb. 2025. doi:
https://doi.org/10.1145/3685265

9. A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez,
R. Arcila, E. M. D. Pico et al., “Towards FAIR prin-
ciples for research software,” Data Science, vol. 3,
no. 1, pp. 37–59, Jun. 2020. doi: 10.3233/ds-190026

10. W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and
T. Tiropanis, “From FAIR research data toward FAIR
and open research software,” it - Information Tech-
nology, vol. 62, no. 1, pp. 39–47, Feb. 2020. doi:
10.1515/itit-2019-0040

11. T. Hey, S. Tansley, K. Tolle, and J. Gray,
The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Oct. 2009. ISBN
978-0-9825442-0-4. [Online]. Available: https:

//www.microsoft.com/en-us/research/publication/
fourth-paradigm-data-intensive-scientific-discovery/

12. R. van Nieuwpoort and D. S. Katz, “Defining the
roles of research software,” Upstream, Jun. 2023. doi:
10.54900/9akm9y5-5ject5y

13. ——, “Defining the roles of research software (Ver-
sion 2),” Upstream, Jul. 2024. doi: 10.54900/xdh2x-
kj281

14. D. S. Katz, “Incentives and frictions in commu-
nity software projects,” Zenodo, Jun. 2022. doi:
10.5281/zenodo.6677821

15. A. D. Rose, M. Buna, C. Strazza, N. Olivieri,
T. Stevens, L. Peeters, and D. Tawil-Jamault, “Tech-
nology readiness level: guidance principles for re-
newable energy technologies,” European Commis-
sion, Directorate General for Research and Innova-
tion, 2017. doi: 10.2777/577767

16. Australian Research Data Commons, “A National
Agenda for Research Software,” Zenodo, Mar. 2022.
doi: 10.5281/zenodo.6378082

17. T. Schlauch, M. Meinel, and C. Haupt, “DLR Software
Engineering Guidelines,” Zenodo, Aug. 2018. doi:
10.5281/zenodo.1344612

18. O. Bertuch, D. Oliveira, U. Schelhaas, and
A. Storm, “Guidelines for the development and
distribution of software at Forschungszentrum
Jülich,” Forschungszentrum Jülich, Tech. Rep., 2022.
[Online]. Available: http://hdl.handle.net/2128/33259

19. G. Courbebaisse, B. Flemisch, K. Graf, U. Kon-
rad, J. Maassen, and R. Ritz, “Research software
lifecycle,” Zenodo, Sep. 2023. doi: 10.5281/zen-
odo.8324828

20. P. Döll, M. Sester, U. Feuerhake, H. Frahm,
B. Fritzsch, D. C. Hezel et al., “Sustainable re-
search software for high-quality computational re-
search in the Earth system sciences: Recommen-
dations for universities, funders and the scientific
community in Germany,” FID GEO, Feb. 2023. doi:
10.23689/fidgeo-5805

21. K. Hinsen, “Dealing With Software Collapse,”
Computing in Science Engineering, vol. 21,
no. 3, pp. 104–108, May 2019. doi:
10.1109/MCSE.2019.2900945

22. A. Barbie and W. Hasselbring, “ARCHES PiCar-X:
Software for Digital Twin Research,” Journal of Open
Source Software, vol. 9, no. 102, Oct. 2024. doi:
10.21105/joss.07179

23. ——, “From digital twins to digital twin proto-
types: Concepts, formalization, and applications,”
IEEE Access, vol. 12, pp. 75 337–75 365, 2024. doi:
10.1109/access.2024.3406510

24. A. Barbie, N. Pech, W. Hasselbring, S. Flögel,
F. Wenzhöfer, M. Walter, E. Shchekinova, M. Busse,

12 Multi-Dimensional Categorization of Research Software with Examples 2024

https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.2218/ijdc.v16i1.745
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.15497/RDA00068
https://doi.org/10.1109/mc.2020.2998235
https://doi.org/10.5281/zenodo.8020525
https://doi.org/https://doi.org/10.1145/3685265
https://doi.org/10.3233/ds-190026
https://doi.org/10.1515/itit-2019-0040
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://doi.org/10.54900/9akm9y5-5ject5y
https://doi.org/10.54900/xdh2x-kj281
https://doi.org/10.54900/xdh2x-kj281
https://doi.org/10.5281/zenodo.6677821
https://doi.org/10.2777/577767
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/zenodo.1344612
http://hdl.handle.net/2128/33259
https://doi.org/10.5281/zenodo.8324828
https://doi.org/10.5281/zenodo.8324828
https://doi.org/10.23689/fidgeo-5805
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.21105/joss.07179
https://doi.org/10.1109/access.2024.3406510


Software Engineering Track

M. Türk, M. Hofbauer, and S. Sommer, “Devel-
oping an Underwater Network of Ocean Obser-
vation Systems with Digital Twin Prototypes – A
Field Report from the Baltic Sea,” IEEE Internet
Computing, vol. 26, no. 3, pp. 33–42, 2022. doi:
10.1109/mic.2021.3065245

25. A. Barbie and W. Hasselbring, “Toward reproducibility
of digital twin research: Exemplified with the PiCar-
X,” arXiv, 2024. doi: 10.48550/ARXIV.2408.13866

26. A. Barbie, W. Hasselbring, and M. Hansen, “Dig-
ital twin prototypes for supporting automated inte-
gration testing of smart farming applications,” Sym-
metry, vol. 16, no. 2, p. 221, Feb. 2024. doi:
10.3390/sym16020221

27. F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring,
“Live trace visualization for comprehending large
software landscapes: The ExplorViz approach,” in
Proc. IEEE Int. Working Conference on Software
Visualization (VISSOFT 2013), 2013, pp. 1–4. doi:
10.1109/VISSOFT.2013.6650536

28. F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz:
Visual runtime behavior analysis of enterprise appli-
cation landscapes,” in Proc. European Conference
on Information Systems (ECIS 2015 Completed Re-
search Papers). AIS Electronic Library, 2015, pp.
1–13. doi: 10.18151/7217313

29. F. Fittkau, A. Krause, and W. Hasselbring, “Soft-
ware Landscape and Application Visualization for
System Comprehension with ExplorViz,” Information
and Software Technology, vol. 87, pp. 259–277, Jul.
2017. doi: 10.1016/j.infsof.2016.07.004

30. W. Hasselbring, A. Krause, and C. Zirkelbach, “Ex-
plorViz: Research on software visualization, compre-
hension and collaboration,” Software Impacts, vol. 6,
Nov. 2020. doi: 10.1016/j.simpa.2020.100034

31. F. Fittkau, A. Krause, and W. Hasselbring, “Exploring
software cities in virtual reality,” in Proc. 3rd IEEE
Int. Working Conference on Software Visualization
(VISSOFT 2015). IEEE, 2015, pp. 130–134. doi:
10.1109/VISSOFT.2015.7332423

32. F. Fittkau, S. Finke, W. Hasselbring, and J. Waller,
“Comparing trace visualizations for program com-
prehension through controlled experiments,” in Proc.
IEEE Int. Conference on Program Comprehension
(ICPC 2015). IEEE, 2015, pp. 266–276. doi:
10.1109/ICPC.2015.37

33. F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchi-
cal software landscape visualization for system com-
prehension: A controlled experiment,” in Proc. 3rd
IEEE Working Conference on Software Visualization
(VISSOFT 2015). IEEE, Sep. 2015, pp. 36–45. doi:
10.1109/VISSOFT.2015.7332413

34. A. Krause-Glau, M. Hansen, and W. Hasselbring,

“Collaborative program comprehension via software
visualization in extended reality,” Information and
Software Technology, vol. 151, p. 107007, Nov. 2022.
doi: 10.1016/j.infsof.2022.107007

35. A. Krause, M. Hansen, and W. Hasselbring, “Live
visualization of dynamic software cities with heat map
overlays,” in 2021 Working Conference on Software
Visualization (VISSOFT). IEEE, Sep. 2021, pp. 125–
129. doi: 10.1109/vissoft52517.2021.00024

36. A. Krause-Glau and W. Hasselbring, “Collaborative,
code-proximal dynamic software visualization within
code editors,” in 2023 IEEE Working Conference on
Software Visualization (VISSOFT), Oct. 2023, pp.
50–61. doi: 10.1109/vissoft60811.2023.00016

37. A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga,
and D. Kröger, “Microservice Decomposition via
Static and Dynamic Analysis of the Monolith,” in
Proceedings of the IEEE International Conference on
Software Architecture Companion (ICSA-C), 2020,
pp. 9–16. doi: 10.1109/ICSA-C50368.2020.00011

38. A. Krause-Glau and W. Hasselbring, “Scalable col-
laborative software visualization as a service: Short
industry and experience paper,” in 10th IEEE In-
ternational Conference on Cloud Engineering (IC2E
2022), Pacific Grove, California, USA, Sep. 2022, pp.
182–187. doi: 10.1109/ic2e55432.2022.00026

39. S. Druskat, T. Krause, C. Lachenmaier, and B. Bun-
zeck, “Hexatomic: An extensible, OS-independent
platform fordeep multi-layer linguistic annotation of
corpora,” Journal of Open Source Software, vol. 8,
no. 86, p. 4825, Jun. 2023. doi: 10.21105/joss.04825

40. ——, “Hexatomic (v1.4.5),” Zenodo, Oct. 2024. doi:
10.5281/zenodo.13959844

41. S. Druskat, V. Gast, T. Krause, and F. Zipser,
“Corpus-tools.org: An Interoperable Generic Soft-
ware Tool Set for Multi-layer Linguistic Corpora,” in
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16).
Portorož, Slovenia: European Language Resources
Association (ELRA), May 2016, pp. 4492–4499.
[Online]. Available: https://aclanthology.org/L16-1711

42. J. Cito, P. Leitner, C. Bosshard, M. Knecht,
G. Mazlami, and H. Gall, “PerformanceHat: aug-
menting source code with runtime performance
traces in the IDE,” in Proc. 40th Int. Conference
on Software Engineering, 2018, pp. 41–44. doi:
10.1145/3183440.3183481

43. W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and
Q. Zheng, “Service candidate identification from
monolithic systems based on execution traces,”
IEEE Transactions on Software Engineering,
vol. 47, no. 5, pp. 987–1007, May 2021. doi:
10.1109/tse.2019.2910531

2024 Multi-Dimensional Categorization of Research Software with Examples 13

https://doi.org/10.1109/mic.2021.3065245
https://doi.org/10.48550/ARXIV.2408.13866
https://doi.org/10.3390/sym16020221
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.18151/7217313
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1109/ICPC.2015.37
https://doi.org/10.1109/VISSOFT.2015.7332413
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1109/vissoft52517.2021.00024
https://doi.org/10.1109/vissoft60811.2023.00016
https://doi.org/10.1109/ICSA-C50368.2020.00011
https://doi.org/10.1109/ic2e55432.2022.00026
https://doi.org/10.21105/joss.04825
https://doi.org/10.5281/zenodo.13959844
https://aclanthology.org/L16-1711
https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1109/tse.2019.2910531


Software Engineering Track

44. Q. Zheng, Z. Ou, L. Liu, and T. Liu, “A novel method
on software structure evaluation,” in Proc. 2nd IEEE
Int. Conference on Software Engineering and Ser-
vice (ICSESS ’11). IEEE, 2011, pp. 251–254. doi:
10.1109/ICSESS.2011.5982301

45. R. Dabrowski, “On architecture warehouses and
software intelligence,” in Proc. 4th Int. Mega-
Conference on Future Generation Information Tech-
nology (FGIT 2012), ser. LNCS, vol. 7709. Springer,
2012, pp. 251–262. doi: 10.1007/978-3-642-35585-
1_35

46. Y. Qu, Q. Zheng, T. Liu, J. Li, and X. Guan, “In-depth
measurement and analysis on densification power
law of software execution,” in Proc. 5th Int. Workshop
on Emerging Trends in Software Metrics. ACM,
2014, pp. 55–58. doi: 10.1145/2593868.2593878

47. Y. Qu, X. Guan, Q. Zheng, T. Liu, J. Zhou, and
J. Li, “Calling network: A new method for model-
ing software runtime behaviors,” SIGSOFT Softw.
Eng. Notes, vol. 40, no. 1, pp. 1–8, Jan. 2015. doi:
10.1145/2693208.2693223

48. Y. Qu, X. Guan, Q. Zheng, T. Liu, L. Wang,
Y. Hou, and Z. Yang, “Exploring community struc-
ture of software call graph and its applications in
class cohesion measurement,” Journal of Systems
and Software, vol. 108, pp. 193–210, 2015. doi:
10.1016/j.jss.2015.06.015

49. W. Jin, T. Liu, Y. Qu, J. Chi, D. Cui, and Q. Zheng,
“Dynamic cohesion measurement for distributed sys-
tem,” in Proc. 1st Int. Workshop on Specification,
Comprehension, Testing, and Debugging of Con-
current Programs. ACM, 2016, pp. 20–26. doi:
10.1145/2975954.2975956

50. W. Jin, T. Liu, Y. Qu, Q. Zheng, D. Cui, and J. Chi,
“Dynamic structure measurement for distributed soft-
ware,” Software Quality Journal, vol. 26, no. 3, 2018.
doi: 10.1007/s11219-017-9369r3

51. S. J. J. Leemans, D. Fahland, and W. M. P. van der
Aalst, “Scalable process discovery and conformance
checking,” Software & Systems Modeling, vol. 17,
no. 2, pp. 599–631, 2018. doi: 10.1007/s10270-016-
0545-x

52. H. Schnoor and W. Hasselbring, “Comparing Static
and Dynamic Weighted Software Coupling Metrics,”
Computers, vol. 9, no. 2, pp. 1–21, Mar. 2020. doi:
10.3390/computers9020024

53. B. Andrade, S. Santos, and A. R. Silva, “A com-
parison of static and dynamic analysis to iden-
tify microservices in monolith systems,” in Software
Architecture. Springer, 2023, pp. 354–361. doi:
10.1007/978-3-031-42592-9_25

54. S. Yang, Y. Jeong, C. Hong, H. Jun, and
B. Burgstaller, Scalability and State: A Critical As-

sessment of Throughput Obtainable on Big Data
Streaming Frameworks for Applications With and
Without State Information. Springer, 2018, pp. 141–
152. doi: 10.1007/978-3-319-75178-8_12

55. A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring,
H. Knoche, S. Köster, H. Krause, M. Porembski,
T. Stahl, M. Steinkamp, and N. Wittmüss, “Dynamod
project: Dynamic analysis for model-driven software
modernization,” in Proc. Int. Workshop on Model-
Driven Software Migration (MDSM) 2011, vol.
708. CEUR, 2011, pp. 12–13. [Online]. Available:
https://ceur-ws.org/Vol-708/

56. A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A framework for application performance monitoring
and dynamic software analysis,” in Proceedings of
the 3rd ACM/SPEC International Conference on Per-
formance Engineering (ICPE 2012), Apr. 2012, pp.
247–248. doi: 10.1145/2188286.2188326

57. W. Hasselbring and A. van Hoorn, “Kieker: A moni-
toring framework for software engineering research,”
Software Impacts, vol. 5, p. 100019, Aug. 2020. doi:
10.1016/j.simpa.2020.100019

58. S. S. P. Kode, Y. Shtessel, A. Levant, J. Rakoczy,
M. Hannan, and J. Orr, “Development of relative
degree-based aerospace sliding mode control mat-
lab toolbox with case studies,” IEEE Aerospace and
Electronic Systems Magazine, vol. 39, no. 9, pp. 72–
96, 2024. doi: 10.1109/MAES.2022.3177576

59. L. R. Ribeiro and N. M. F. Oliveira, “Uav autopilot
controllers test platform using matlab/simulink and x-
plane,” in 2010 IEEE Frontiers in Education Confer-
ence (FIE), 2010. doi: 10.1109/FIE.2010.5673378

60. The MathWorks Inc., “Matlab,” Natick, Mas-
sachusetts, United States, 2024. [Online]. Available:
https://www.mathworks.com/products/matlab.html

61. A. Butting, K. Hölldobler, B. Rumpe, and A. Wort-
mann, “Compositional Modelling Languages with An-
alytics and Construction Infrastructures Based on
Object-Oriented Techniques - The MontiCore Ap-
proach,” in Composing Model-Based Analysis Tools.
Springer, July 2021, pp. 217–234. doi: 10.1007/978-
3-030-81915-6_10

62. I. Blundell, J. M. Eppler, A. Morrison, K. Perun,
D. Plotnikov, B. Rumpe, and G. Trensch, “Reengi-
neering NestML with Python and MontiCore,” Zen-
odo, July 2018. doi: 10.5281/zenodo.1319653

63. J. C. Kirchhof, B. Rumpe, D. Schmalzing, and
A. Wortmann, “MontiThings: Model-driven Develop-
ment and Deployment of Reliable IoT Applications,”
Journal of Systems and Software, vol. 183, pp. 1–21,
Jan. 2022. doi: 10.1016/j.jss.2021.111087

64. A. Gerasimov, P. Letmathe, J. Michael, L. Netz,
and B. Rumpe, “Modeling Financial, Project and

14 Multi-Dimensional Categorization of Research Software with Examples 2024

https://doi.org/10.1109/ICSESS.2011.5982301
https://doi.org/10.1007/978-3-642-35585-1_35
https://doi.org/10.1007/978-3-642-35585-1_35
https://doi.org/10.1145/2593868.2593878
https://doi.org/10.1145/2693208.2693223
https://doi.org/10.1016/j.jss.2015.06.015
https://doi.org/10.1145/2975954.2975956
https://doi.org/10.1007/s11219-017-9369r3
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.3390/computers9020024
https://doi.org/10.1007/978-3-031-42592-9_25
https://doi.org/10.1007/978-3-319-75178-8_12
https://ceur-ws.org/Vol-708/
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1109/MAES.2022.3177576
https://doi.org/10.1109/FIE.2010.5673378
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1007/978-3-030-81915-6_10
https://doi.org/10.1007/978-3-030-81915-6_10
https://doi.org/10.5281/zenodo.1319653
https://doi.org/10.1016/j.jss.2021.111087


Software Engineering Track

Staff Management: A Case Report from the Ma-
CoCo Project,” Enterprise Modelling and Informa-
tion Systems Architectures - International Journal
of Conceptual Modeling, vol. 19, Feb. 2024. doi:
10.18417/emisa.19.3

65. H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a
framework for compositional development of domain
specific languages,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 12, no. 5,
2010. doi: 10.1007/s10009-010-0142-1

66. C. Steinbrink, M. Blank-Babazadeh, A. El-Ama,
S. Holly, B. Lüers, M. Nebel-Wenner, R. P.
Ramírez Acosta, T. Raub, J. S. Schwarz, S. Stark,
A. Nieße, and S. Lehnhoff, “CPES testing with mo-
saik: Co-simulation planning, execution and anal-
ysis,” Applied Sciences, vol. 9, no. 5, 2019. doi:
10.3390/app9050923

67. A. Johanson, S. Flögel, C. Dullo, P. Linke, and
W. Hasselbring, “Modeling polyp activity of Paragor-
gia arborea using supervised learning,” Ecological
Informatics, vol. 39, pp. 109–118, May 2017. doi:
10.1016/j.ecoinf.2017.02.007

68. A. Johanson, S. Flögel, C. Dullo, and W. Hassel-
bring, “OceanTEA: Exploring ocean-derived climate
data using microservices,” in Proceedings of the
Sixth International Workshop on Climate Informatics
(CI 2016), Sep. 2016, pp. 25–28, Technical Note
NCAR/TN-529+PROC. doi: 10.5065/D6K072N6

69. M. Rohr, A. van Hoorn, J. Matevska, N. Sommer,
L. Stoever, S. Giesecke, and W. Hasselbring, “Kieker:
Continuous monitoring and on demand visualization
of Java software behavior,” in Proceedings of the
IASTED International Conference on Software En-
gineering 2008 (SE’08), Feb. 2008, pp. 80–85. doi:
10.5555/1722603.1722619

70. K. Hölldobler, O. Kautz, and B. Rumpe, MontiCore
Language Workbench and Library Handbook: Edition
2021, ser. Aachener Informatik-Berichte, Software
Engineering, Band 48. Shaker Verlag, May 2021.
ISBN 978-3-8440-8010-0

71. K. Hölldobler and B. Rumpe, MontiCore 5 Language
Workbench Edition 2017, ser. Aachener Informatik-
Berichte, Software Engineering, Band 32. Shaker
Verlag, December 2017. ISBN 978-3-8440-5713-3

72. N. Jansen and B. Rumpe, “Compositional Modeling
Languages in Action: Engineering and Application
of Heterogeneous Languages with MontiCore,” in
2023 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Tuto-
rials, I. Malavolta and J. Michael, Eds., Västerås,
Sweden, October 2023.

73. A. Butting, R. Gupta, N. Jansen, N. Regnat,
and B. Rumpe, “Towards Modular Development

of Reusable Language Components for Domain-
Specific Modeling Languages in the MagicDraw and
MontiCore Ecosystems,” Journal of Object Technol-
ogy (JOT), vol. 22, no. 1, pp. 1:1–21, September
2023. doi: 10.5381/jot.2023.22.1.a4

74. B. Rumpe, Modeling with UML: Language, Concepts,
Methods. Springer International, July 2016. [Online].
Available: https://mbse.se-rwth.de/

75. ——, Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International, May
2017. [Online]. Available: https://mbse.se-rwth.de/

76. H. Kausch, M. Pfeiffer, D. Raco, B. Rumpe, and
A. Schweiger, “Model-driven Development for Func-
tional Correctness of Avionics Systems: A Verification
Framework for SysML Specifications,” CEAS Aero-
nautical Journal, vol. 15, no. 4, October 2024. doi:
10.1007/s13272-024-00762-6

77. A. Haber, K. Hölldobler, C. Kolassa, M. Look,
K. Müller, B. Rumpe, and I. Schaefer, “Engineering
Delta Modeling Languages,” in Software Product Line
Conference (SPLC’13). ACM, 2013, pp. 22–31. doi:
10.1145/2491627.2491632

78. B. Rumpe, M. Schoenmakers, A. Radermacher,
and A. Schürr, “UML + ROOM as a Standard
ADL?” in Engineering of Complex Computer Sys-
tems, ICECCS’99 Proceedings, ser. IEEE Computer
Society, 1999. doi: 10.1109/ICECCS.1999.802849

79. T. Clark, M. v. d. Brand, B. Combemale, and
B. Rumpe, “Conceptual Model of the Globalization for
Domain-Specific Languages,” in Globalizing Domain-
Specific Languages, ser. LNCS 9400. Springer,
2015, pp. 7–20. doi: 10.1007/978-3-319-26172-0_2

80. J.-K. Heise, R. Dey, M. Emmerich, Y. Kemmling,
S. Sistig, G. Krause, and S. Castell, “Putting digital
epidemiology into practice: PIA – prospective mon-
itoring and management application,” Informatics in
Medicine Unlocked, vol. 30, p. 100931, 2022. doi:
10.1016/j.imu.2022.100931

81. S. Castell, J.-K. Heise, L. Weber, L. Dietsch, and
T. Wangler, “eResearch System: Prospective Moni-
toring and Management – App (PIA),” Zenodo, Feb.
2024. doi: 10.5281/zenodo.10635668

82. B. Weps, D. Lüdtke, T. Franz, O. Maibaum,
T. Wendrich, H. Müntinga, and A. Gerndt, “A
model-driven software architecture for ultra-cold
gas experiments in space,” in Proceedings of the
International Astronautical Congress, IAC, Oct. 2018.
[Online]. Available: https://elib.dlr.de/126145/

83. A. Prat, J. Sommer, A. M. Nepal, T. Franz,
H. Müntinga, A. Gerndt, and D. Lüdtke,
“The BECCAL Experiment Design and
Control Software,” in 2021 IEEE Aerospace

2024 Multi-Dimensional Categorization of Research Software with Examples 15

https://doi.org/10.18417/emisa.19.3
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.3390/app9050923
https://doi.org/10.1016/j.ecoinf.2017.02.007
https://doi.org/10.5065/D6K072N6
https://doi.org/10.5555/1722603.1722619
https://doi.org/10.5381/jot.2023.22.1.a4
https://mbse.se-rwth.de/
https://mbse.se-rwth.de/
https://doi.org/10.1007/s13272-024-00762-6
https://doi.org/10.1145/2491627.2491632
https://doi.org/10.1109/ICECCS.1999.802849
https://doi.org/10.1007/978-3-319-26172-0_2
https://doi.org/10.1016/j.imu.2022.100931
https://doi.org/10.5281/zenodo.10635668
https://elib.dlr.de/126145/


Software Engineering Track

Conference (50100), Mar. 2021, pp. 1–9. doi:
10.1109/AERO50100.2021.9438129

84. A. Johanson and W. Hasselbring, “Effectiveness and
efficiency of a domain-specific language for high-
performance marine ecosystem simulation: a con-
trolled experiment,” Empirical Software Engineering,
vol. 22, no. 4, pp. 2206–2236, Aug. 2017. doi:
10.1007/s10664-016-9483-z

85. A. N. Johanson, A. Oschlies, W. Hasselbring, and
B. Worm, “SPRAT: a spatially-explicit marine ecosys-
tem model based on population balance equations,”
Ecological Modelling, vol. 349, pp. 11–25, 2017. doi:
10.1016/j.ecolmodel.2017.01.020

86. G. Kp, G. Pierre, and R. Rouvoy, “Studying the
energy consumption of stream processing engines
in the cloud,” in 2023 IEEE International Conference
on Cloud Engineering (IC2E), Sep. 2023, pp. 99–106.
doi: 10.1109/ic2e59103.2023.00019

87. S. Henning, A. Vogel, M. Leichtfried, O. Ertl,
and R. Rabiser, “Shufflebench: A benchmark for
large-scale data shuffling operations with dis-
tributed stream processing frameworks,” in Proceed-
ings of the 15th ACM/SPEC International Confer-
ence on Performance Engineering, May 2024. doi:
10.1145/3629526.3645036

88. S. Henning and W. Hasselbring, “Benchmarking scal-
ability of stream processing frameworks deployed
as microservices in the cloud,” Journal of Systems
and Software, vol. 208, p. 111879, Feb. 2024. doi:
10.1016/j.jss.2023.111879

89. ——, “Theodolite: Scalability benchmarking
of distributed stream processing engines in
microservice architectures,” Big Data Research,
vol. 25, no. 100209, pp. 1–17, Jul. 2021. doi:
10.1016/j.bdr.2021.100209

90. ——, “A configurable method for benchmarking scal-
ability of cloud-native applications,” Empirical Soft-
ware Engineering, vol. 27, no. 143, pp. 1–42, 2022.
doi: 10.1007/s10664-022-10162-1

91. S. Peters, K. Kutscher, M. Schönherr, M. Geier, H. Al-
ihussein, A. Wellmann, and H. Korb, “Virtualfluids,”
Zenodo, 2024. doi: 10.5281/zenodo.10283048

92. D. Becker et al., “Space-borne Bose–Einstein con-
densation for precision interferometry,” Nature, vol.
562, no. 7727, pp. 391–395, Oct. 2018. doi:
10.1038/s41586-018-0605-1

93. K. Frye et al., “The Bose-Einstein Condensate
and Cold Atom Laboratory,” EPJ Quantum Tech-
nology, vol. 8, no. 1, pp. 1–38, Dec. 2021. doi:
10.1140/epjqt/s40507-020-00090-8

94. M. Schilling et al., “Scientific assessment of the
CARIOQA-PMP quantum accelerometer pathfinder,”
in XXVIII General Assembly of the International

Union of Geodesy and Geophysics (IUGG). GFZ
German Research Centre for Geosciences, Jul.
2023. doi: 10.57757/IUGG23-4073

95. H. Alihussein, A. Prasannakumar, M. Geier, and
M. Krafczyk, “Direct cumulant lattice boltzmann sim-
ulations of transitional flow in gyroidal structures in-
cluding experimental validation,” Computers & Math-
ematics with Applications, vol. 157, p. 159–172, Mar.
2024. doi: 10.1016/j.camwa.2023.12.029

96. D. Adekanye, A. Khan, A. Burns, W. McCaffrey,
M. Geier, M. Schönherr, and R. Dorrell, “Graphics
processing unit accelerated lattice boltzmann method
simulations of dilute gravity currents,” Physics of Flu-
ids, vol. 34, no. 4, Apr. 2022. doi: 10.1063/5.0082959

97. K. Kutscher, M. Geier, and M. Krafczyk, “Multiscale
simulation of turbulent flow interacting with porous
media based on a massively parallel implementation
of the cumulant lattice boltzmann method,” Comput-
ers & Fluids, vol. 193, p. 103733, Oct. 2019. doi:
10.1016/j.compfluid.2018.02.009

98. J. Linxweiler, M. Krafczyk, and J. Tölke, “Highly
interactive computational steering for coupled 3d
flow problems utilizing multiple gpus,” Computing
and Visualization in Science, pp. 1–16, 2011. doi:
10.1007/s00791-010-0151-3

99. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, “Systematic literature
studies,” in Experimentation in Software Engineer-
ing, 2nd ed. Springer, 2024, pp. 51–63. doi:
10.1007/978-3-662-69306-3_4

16 Multi-Dimensional Categorization of Research Software with Examples 2024

https://doi.org/10.1109/AERO50100.2021.9438129
https://doi.org/10.1007/s10664-016-9483-z
https://doi.org/10.1016/j.ecolmodel.2017.01.020
https://doi.org/10.1109/ic2e59103.2023.00019
https://doi.org/10.1145/3629526.3645036
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.5281/zenodo.10283048
https://doi.org/10.1038/s41586-018-0605-1
https://doi.org/10.1140/epjqt/s40507-020-00090-8
https://doi.org/10.57757/IUGG23-4073
https://doi.org/10.1016/j.camwa.2023.12.029
https://doi.org/10.1063/5.0082959
https://doi.org/10.1016/j.compfluid.2018.02.009
https://doi.org/10.1007/s00791-010-0151-3
https://doi.org/10.1007/978-3-662-69306-3_4


Software Engineering Track

Wilhelm Hasselbring is a professor of software en-
gineering at Kiel University, Germany. His research
interests include software engineering, distributed sys-
tems, and open science. Hasselbring received a PhD
in computer science from the University of Dortmund.
He is a member of the ACM, IEEE Computer Soci-
ety, and the German Association for Computer Sci-
ence, at which he is vice chair of the special interest
group on research software engineering. Contact him
at hasselbring@email.uni-kiel.de.

Stephan Druskat is a computer science researcher
at the German Aerospace Center (DLR), and a Fellow
of the Software Sustainability Institute (UK). He co-
founded, and served on the inaugural board of, de-
RSE – Society for Research Software. His research
interests include research software sustainability, soft-
ware citation and publication, and empirical research
software engineering. He is a member of the Society for
Research Software Engineering, the German Society
for Research Software, and the German Association for
Computer Science, where he co-founded the special in-
terest group on research software engineering. Contact
him at stephan.druskat@dlr.de.

Jan Bernoth is a researcher at the University of Pots-
dam, affiliated with the Chair of Complex Multimedia
Application Architectures. His main research focus is on
designing an architecture of the infrastructure to sup-
port Research Data and Software Management within
a National Research Data Infrastructure Germany con-
sortium NFDIxCS. Additionally, he investigates in his
PhD thesis the creation of a research environment
aimed at investigating analytical dashboards for sci-
ence communication. Contact him at jan.bernoth@uni-
potsdam.de.

Philine Betker is a researcher at the Helmholtz Cen-
tre for Infection Research, Brunswick, Germany. She
is funded as part of a subproject of NAKO by the
Federal Ministry of Education and Research (BMBF,
project funding reference number 01ER2301/12), and
the Helmholtz Association, with additional financial
support by the participating universities and the in-
stitutes of the Leibniz Association. Contact her at
philine.betker@helmholtz-hzi.de.

Michael Felderer is the director of the Institute
for Software Technology at German Aerospace Cen-
ter (DLR) and a full professor in the Department of
Computer Science at the University of Cologne. His
research interests include software quality and se-
curity, software engineering for AI, quantum comput-

ing and digital twin technologies as well as empirical
and research software engineering. Contact him at
michael.felderer@dlr.de.

Stephan Ferenz is a senior researcher at the Carl
von Ossietzky Universität Oldenburg, Germany. His
research interests are research data management, re-
search software engineering, research software meta-
data. He holds a Master’s degree in Electrical Engi-
neering from the Leibniz Universität Hannover, Ger-
many. Stephan Ferenz is a member of the German
Association for Computer Science. Contact him at
stephan.ferenz@uol.de.

Ben Hermann is a professor for secure software
engineering at TU Dortmund University. His research
is focused on static program analysis and metascience.
Especially, his work on research artifact evaluation (i.e.
peer review) have caught much attention. He received
his PhD in computer science from TU Darmstadt. Con-
tact him at ben.hermann@cs.tu-dortmund.de.

Anna-Lena Lamprecht is professor of software en-
gineering at the University of Potsdam, Germany. She
focuses on research software engineering (RSE) and is
particularly known for her work on the FAIR Principles
for Research Software (FAIR4RS) and on the auto-
mated composition of scientific workflows. Lamprecht is
chair of the new special interest group on RSE that has
recently been installed as a joint endeavour of the Ger-
man Association for Computer Science and the Ger-
man Association for Research Software Engineering.
Contact her at anna-lena.lamprecht@uni-potsdam.de.

Jan Linxweiler is the general manager of the Center
for Mechanics, Uncertainty and Simulation in Engineer-
ing (MUSEN) at TU Braunschweig and head of IT and
research-related services at the University library. His
research interests include Research Software Engi-
neering, High Performance Computing, Research Data
Management, and Open Science. Linxweiler holds a
PhD in Engineering and is a founding member of the
German RSE association of which he recently became
chairman of the board. Contact him at j.linxweiler@tu-
braunschweig.de.

Arnau Prat is a researcher at the German Aerospace
Center (DLR). He leads the Payload Software research
group. His current research interests include model-
driven software engineering for space systems and
the use of novel programming languages for safety-
critical systems. He is currently involved in several
space missions, ranging from payloads on board the

2024 Multi-Dimensional Categorization of Research Software with Examples 17

mailto:hasselbring@email.uni-kiel.de
mailto:stephan.druskat@dlr.de
mailto:jan.bernoth@uni-potsdam.de
mailto:jan.bernoth@uni-potsdam.de
mailto:philine.betker@helmholtz-hzi.de
mailto:Michael.Felderer@dlr.de
mailto:stephan.ferenz@uol.de
mailto:ben.hermann@cs.tu-dortmund.de
mailto:anna-lena.lamprecht@uni-potsdam.de
mailto:j.linxweiler@tu-braunschweig.de
mailto:j.linxweiler@tu-braunschweig.de


Software Engineering Track

ISS to sounding rockets or satellites. Contact him at
arnau.pratisala@dlr.de.

Bernhard Rumpe is the Software Engineering chair
at RWTH Aachen University and Editor-In-Chief of the
SoSyM Journal. His main interests are rigorous and
practical software and system development methods
based on adequate modeling techniques. This includes
agile development methods and model-engineering
based on UML/SysML-like notations and domain spe-
cific languages. He also helps to apply modeling, e.g.,
to human brain simulation, contract digitalization, pro-
duction automation, or cloud. He is author books of sev-
eral like "Agile Modeling with the UML" and "Engineer-
ing Modeling Languages: Turning Domain Knowledge
into Tools". Contact him at rumpe@se-rwth.de.

Katrin Schoening-Stierand is a senior digital con-
sultant at the Hub for Computing and Data Science
(HCDS) at the University of Hamburg. Her focus is on
fostering interdisciplinary collaboration between differ-
ent fields of science. Her research interests are infor-
matics in the natural sciences and Research Software
Engineering. She is involved in teaching and offers a
course on Research Software Engineering. Contact her
at katrin.schoening-stierand@uni-hamburg.de.

Shinhyung Yang is a postdoctoral researcher in the
Software Engineering group at Kiel University with the
SustainKieker project, focusing on the sustainability
of research software. His research interests include
performance engineering of cloud-native applications
with a special focus on Java virtual machines and na-
tive applications in distributed and parallel architecture.
He received a PhD degree from Yonsei University in
South Korea, and his research is supported by the
Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation), grant no. 528713834. Contact
him at shinhyung.yang@email.uni-kiel.de.

18 Multi-Dimensional Categorization of Research Software with Examples 2024

mailto:arnau.pratisala@dlr.de
mailto:rumpe@se-rwth.de
mailto:katrin.schoening-stierand@uni-hamburg.de
mailto:shinhyung.yang@email.uni-kiel.de


Software Engineering Track

Appendix
Characterization of Related Research Software Categories

The related research software categories are characterized in terms of the template in Table 1.
Table 16 characterizes the role-based categorization by van Nieuwpoort and Katz.
Table 17 characterizes the ARDC categorization.
Table 18 characterizes the institutional guideline application class categorization.
Table 19 characterizes the EOSC research software lifecycle categorization.
Table 20 characterizes the categories in computational research in the Earth system sciences.
Table 21 characterizes the software stack categorization.

Criterion Explanation

Scope Role-based categorization.
Purpose Funding organizations joined forces to explore how they could effectively contribute to making

research software sustainable.
Context International workshop in 2022 on the future of research software, organized by the Research

Software Alliance (ReSA) and the Netherlands eScience Center.
Properties The roles for research software are defined from the point of view of a researcher, with the

goal of making this understandable for funders and policymakers.
Consequences for Creation Depending on its role category, software is expected to meet different quality requirements

and follow different development processes.
Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles

and functions.
Inter-categorial relations Individual research software may change its role or take multiple roles.

TABLE 16. Characteristics of the role-based categorization by van Nieuwpoort and Katz [12], [13].

Criterion Explanation

Scope The categorization in [16] supports a discussion about recognition of software in research,
with the aim to increase this recognition.

Purpose The categorization aims to describe the purpose of the software it categorizes as capturing
applied or widely accepted research ideas, methodology, and models, or demonstrating new
ones.

Context The categorization has been produced in the context of ARDC’s research software policy.
Properties The properties of the categories represent different challenges faced by software that fall in

the respective category.
Consequences for Creation Depending on its category, software is expected to meet different requirements. While analysis

code should be FAIR [5], prototype tools should exhibit a “high quality”, and research software
infrastructure must be created for sustainability, which is realized through safeguarding its long-
term maintenance.

Consequences for Use Software use is featured only implicitly in the categorization. We expect that software under
the different categories are expected to be used differently: Analysis tools are used for specific
research tasks, and are more likely to have a small scope, e.g., are applied only to answer
a specific research question. Prototype tools are used to test the methodological hypotheses
they implement, but may also be used experimentally to answer specific research questions.

Inter-categorial relations The categories are related through evolution and transitive value. One category evolves from
another, e.g., analysis code may evolve into a prototype tool, that in turn evolves into research
software infrastructure.

TABLE 17. Characteristics of ARDC’s research software categorization [16].

2024 Multi-Dimensional Categorization of Research Software with Examples 19



Software Engineering Track

Criterion Explanation

Scope Guidelines for software engineering at an academic institution.
Purpose Identify suitable quality requirements.
Context Institutional policy and practice.
Properties Criticality, institutional risk, projected use, development timeline, distribution, commercial

exploitation.
Consequences for Creation Increasingly employ established software engineering methods.
Consequences for Use Increased (critical) use by increasingly large community.
Inter-categorial relations Transitive requirements, legal requirements.

TABLE 18. Characteristics of institutional guideline application classes [17], [18].

Criterion Explanation

Scope Developer- and stakeholder-based categorization.
Purpose Achieve a common understanding of the current processes in research software engineering,

particularly the research software lifecycle.
Context SubGroup 1 “On the Software Lifecycle” of the EOSC Task Force “Infrastructure for quality

research software”.
Properties Different levels of adopting software engineering practice, different publication requirements

and usage scenarios, different stakeholders
Consequences for Creation Depending on its developer category, software is expected to meet different quality require-

ments and follow different development processes.
Consequences for Use Increasing maturity and support for reproducibility
Inter-categorial relations Not specified

TABLE 19. Characteristics of the EOSC research software lifecycle categorization [19].

Criterion Explanation

Scope Recommendations for universities, funders, and the scientific community.
Purpose Safeguard the quality and efficiency of computational research in Earth System Sciences and

make research results that have been generated by research software reproducible.
Context Ideas of a DFG round table meeting on sustainable research software for high-quality

computational research in the Earth System Sciences.
Properties Research software developed in the Earth System Sciences is characterized by the complexity

of the underlying models, multifaceted dependencies, the multi-modality of the data, and the
size of the data, which can impose specific hardware and software requirements.

Consequences for Creation Depending on its role category, software is expected to meet different quality requirements
and follow different development processes.

Consequences for Use Dependency on the research cycle
Inter-categorial relations Combination, integration

TABLE 20. Characteristics of categories in computational research in the Earth system sciences [20].

Criterion Explanation

Scope Describing principles of software collapse.
Purpose Identify dependent layers of different (academic) specificity to model threat.
Context Research software sustainability.
Properties Domain specificity.
Consequences for Creation Build on stable lower layers, quickly react to threats, accept agility.
Consequences for Use Decreasing specificity of application domain from top to bottom.
Inter-categorial relations Dependency, transitive threats.

TABLE 21. Characteristics of categorizing the software stack [21].

20 Multi-Dimensional Categorization of Research Software with Examples 2024


	Research Software
	Purpose of Research Software Categories
	Characterization of Research Software Categories
	Role-Based Categorization of Research Software
	Readiness-Based Categorization of Research Software
	Developer-Based Categorization of Research Software
	Dissemination-Based Categorization of Research Software
	Related Research Software Categories
	Role-Based Categorization
	Maturity-Based Categorization
	Application classes in institutional software engineering guidelines
	EOSC Research Software Lifecycle
	Computational research in the earth system sciences
	Categorizing the Software Stack

	Qualitative Evaluation
	Conclusion
	REFERENCES
	REFERENCES
	Biographies
	Wilhelm Hasselbring
	Stephan Druskat
	Jan Bernoth
	Philine Betker
	Michael Felderer
	Stephan Ferenz
	Ben Hermann
	Anna-Lena Lamprecht
	Jan Linxweiler
	Arnau Prat
	Bernhard Rumpe
	Katrin Schoening-Stierand
	Shinhyung Yang

	Appendix

