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Abstract—Research software has been categorized in different contexts to serve
different goals. We start with a look at what research software is, before we
discuss the purpose of research software categories. We propose a
multi-dimensional categorization of research software. We present a template for
characterizing such categories. As selected dimensions, we present our proposed
role-based, readiness-based, developer-based, and dissemination-based
categories. Since our work has been inspired by various previous efforts to
categorize research software, we discuss them as related works. We characterize
all these categories via the previously introduced template, to enable a systematic
comparison. We report on the multi-dimensional categorization of selected
research software examples.
Keywords: Research Software, Software Categorization, Technology Readiness
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R esearch software is software that is designed
and developed to support research activi-
ties. Research software is developed by re-

searchers themselves or by software engineers work-
ing closely with researchers. Research software is typ-
ically developed to meet specific research needs, and
often has unique requirements that are different from
standard commercial software [1]. However, research
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software is gaining appreciation and endorsement for
research and as a research result itself [2], [3].

Research Software Engineering (RSE) is a special-
ized field that applies software engineering principles
to address the unique challenges posed by develop-
ing software for research, with the goal of enhancing
the efficiency, reproducibility, and impact of research
outcomes. Research software engineers specialize in
developing and maintaining software for research pur-
poses.

In this paper, we propose a multi-dimensional cat-
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egorization of research software, along the dimen-
sions of roles, readiness, developer, and dissemina-
tion. We start with a look at what research software
is before we discuss the purpose of research soft-
ware categories. We present a template for charac-
terizing such categories. Subsequently, our proposed
role-based, readiness-based, developer-based, and
dissemination-based categories are presented. Our
work has been inspired by various previous efforts
to categorize research software, which we discuss as
related works. We characterize all these categories via
the previously introduced template, and conclude with
an outlook to future work.

Research Software
For the purposes of this paper, we follow the FAIR
for Research Software (FAIR4RS) Working Group in
their definition of research software, as software that
was created during the research process or for a
research purpose [4], [5]. This prescriptive definition
distinguishes “research software” and “software in re-
search,” which includes general purpose software. The
software components (e.g., operating systems, pro-
gramming languages, libraries, etc.) that are used for
research but were not created during research or with
a clear research intent should be considered “software
in research” and not “research software.” In the present
paper, we categorize research software.

A descriptive definition of research software could
instead include all the software used in research, as for
instance done in [6] for analyzing GitHub repositories.
While such a descriptive definition may be useful in
analyzing research processes, and therefore may be
useful for RSE research [7], [8], the prescriptive def-
inition defines a clearer focus for the work presented
here, and enables a better disambiguation of proper-
ties specific to research software. The Research Data
Alliance also adopted the prescriptive distinction be-
tween research software and software in research [5],
as we do. Figure 1 shows the resulting segmentation
of software.

Purpose of Research Software
Categories

We envision the following benefits from using cate-
gories for research software, which may serve

› as a basis of institutional guidelines and checklists
for research software development;

› to better understand the different types of research
software and their specific quality requirements;

› to recommend appropriate software engineering
methods for the individual categories;

› to design appropriate teaching / education pro-
grams for the individual categories;

› to give stakeholders (especially research software
engineers and their management) a better under-
standing of what kind of software they develop;

› for a better assessment of existing software when
deciding to reuse it;

› for research funding agencies, to define appropri-
ate funding schemes;

› to define appropriate metadata labels for FAIR
research software [9], [10];

› in RSE Research [7], [8] to provide a framework
for classifying research software artifacts.

This list is not exhaustive.

Characterization of Research
Software Categories

Categorizations can be described through their scope,
purpose, context, properties, consequences for cre-
ation and use, and their inter-categorial relations. Ta-
ble 1 provides a template for systematically describing
the characteristics of research software categoriza-
tions, which we will use later to characterize some
individual categorizations in the subsequent sections.

Role-Based Categorization of
Research Software

Research software can be used to collect, process, an-
alyze, and visualize data, as well as to model complex
phenomena and run sophisticated simulations. Re-
search software is also developed to control and mon-
itor lab experiments and environmental observations.
In engineering research, research software constitutes
a new paradigm of scientific inquiry next to theory
and experiment [11], and acts as a proof-of-concept

All Software

Research
Software

Software in 
Research

FIGURE 1. Segmentation of all software, research software,
and software in research. In the present paper, we further
categorize the orange box, i.e., research software.
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Criterion Explanation

Scope What is the scope of the categorization?
Purpose What is the purpose of the categorization?
Context In which contexts are specific categories developed and used?
Properties What are specific properties of the different categories?
Consequences for Creation How is and should software of a specific category be developed?
Consequences for Use How and why is software of a specific category used? What are the differences between the

categories in terms of use and reuse, including, e.g., in software publication & citation?
Inter-categorial relations What are the relations between different categories?

TABLE 1. Template for describing criteria of research software categorizations.

to invent and evaluate new technological artifacts, in-
cluding algorithms, methods, systems, tools, and other
computer-based technologies. Research software also
provides the infrastructure to manage, publish, and
archive research data and software.

Thus, research software may take various roles
in the research process [12], [13]. This is similar to
software engineering teams, which involve a range of
roles that contribute to the development, maintenance,
and improvement of software systems. Some common
roles in software engineering are software architect,
programmer, and tester. Each role may be taken by
several persons, and one person may take several
roles. These role assignments may also change during
a software project.

We propose a similar role-based categorization of
research software, with an emphasis on varying quality
requirements for the different roles that software may
take in research. Accordingly, a research software may
take several roles, which may also change during the
life cycle of the software.

Research software mainly falls into one of the fol-
lowing three top-level role categories (and sometimes
combinations):

1) Modeling, Simulation, and Data Analytics of, e.g.,
physical, chemical, social, linguistic, or biological
processes in spatio-temporal contexts.

2) Technology Research Software in science and
engineering research.

3) Research Infrastructure Software, such as re-
search data and software management systems.

The assignment of research software to categories
may evolve over time. For instance, software specifi-
cally developed for a research question (usually Cate-
gories 1 & 2) can later turn into infrastructure software
(Category 3) [14]. In different contexts, a software may
also be in multiple categories at the same time.

We further refine Category 1 research software for
modeling, simulation, and data analytics with several
subcategories:

1.1) Modeling and simulation (e.g., numerical mod-
eling, agent-based modeling)

1.2) Data analytics, on observation and simulation
data, with statistical analysis and machine learn-
ing as methods

1.3) Software analytics (static, dynamic, evolution,
repository mining)

1.4) Integrative analysis (data assimilation and deci-
sion analysis)

1.5) Scientific visualization

Category 2) for technology research software is used
in structural sciences (mathematics and computer sci-
ence) and in engineering sciences (software, elec-
trical, mechanical, and civil engineering). Technology
research software may be related to target contexts:

2.1) Hardware (usually as embedded software)
2.2) Software (e.g., as part of an operating system)
2.3) Human (with a user interface)
2.4) Process (e.g., as part of a business, develop-

ment or production processes)

Again, one research software may be in multiple cat-
egories. In the next section, we will additionally relate
this category to technology readiness levels as sec-
ondary sub roles.

We further refine Category 3 for research infras-
tructure software with several subcategories:

3.1) Control and monitoring software for complex
experiments and instruments. This includes em-
bedded control software, as well as native and
web-based monitoring software.

3.2) Data collection and generation (survey software,
sensor-based data collection, synthetic data gen-
eration, etc.).

3.3) Pipelines and tools.
3.4) Libraries, for instance for high performance

computing.
3.5) Laboratory notebooks.
3.6) Data management.
3.7) Software management.
3.8) Collaboration and publication.

These categories have varying requirements on their
software development. For instance, dedicated require-
ments engineering may be relevant for Category 3),
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but not for Category 1). As another example, safety
analysis may be relevant for Category 3.1), but not for
Categories 1) and 2).

Figure 2, left, shows our resulting role-based cate-
gorization.

Table 2 characterizes our multi-dimensional
categorization in terms of the template in Table 1.
The readiness-based, developer-based, and
dissemination-based categorizations are introduced in
the following three sections, before we discuss some
related categorizations.

Readiness-Based Categorization of
Research Software

Technology is the application of conceptual knowledge
for achieving practical goals, especially in a repro-
ducible way. The word technology can also mean the
products resulting from such efforts, including both tan-
gible tools such as utensils or machines, and intangible
ones such as software.

Technology readiness levels (TRLs) are a method
for estimating the maturity of technologies. TRLs en-
able consistent and uniform discussions of technical
maturity across different types of technology. Figure 2,
right, shows the resulting readiness-based categoriza-
tion with the titles of the European TRL 1 to TRL 9 [15].

These TRLs may be applied to all types of re-
search software, thus, the category dimensions are
orthogonal : every research software may be classified
independently in each dimension.

In addition, for technology research software, these
TRL titles can be read as secondary sub roles. Exam-
ples are:

TRL 3 : The technology research software takes the
role as an "Experimental Proof of Concept" within
some research project.

TRL 4 : The technology research software takes the
role as a "Technology Validated in Lab" within
some research project.

Thus, the TRLs constitute sub roles of technology
research software.

One specific technology research software may
take several such sub roles over its lifecyle, with in-
creasing "readiness". It may also take several roles
at the same time, within different contexts: In one
project, it may serve as experimental proof of concept
(TRL 3); in another project, it may already serve as a
technology validated in a lab (TRL 4). Eventually, a
technology research software may even become an
"Actual System Proven in Operational Environment"
(TRL 9).

Engineering research (a.k.a. Design Science) is
research that invents and evaluates technological ar-
tifacts.1 Thus, the refinement via TRLs should be ap-
propriate.

"Readiness" is top-level in the mindmap, thus it is
it own dimension. If we had put "Readiness" directly
below "Technology Research Software", it would not
be its own dimension, thus we added the cross-link
from "Technology Research Software" to illustrate the
additional, secondary sub-role relationship.

The difference between the categories "Modeling
and Simulation" and "Technology Research Software"
(without consideration of the TRL sub roles) may be
illustrated, for instance, with control engineering re-
search:

• As a control engineering researcher, you may build
a simulation of a control system.

• As a control engineering researcher, you may also
build an actual control system as a new software
system. In an automation lab, this researcher may
then experiment with this system (not with the
simulation of the system). If this system (which is
a technology research software) matures, it may
reach higher TRLs.

Here, both, the simulation and the actual control sys-
tem are research software.

Another difference between "Modeling and Simu-
lation" and "Technology Research Software" is that
for "Technology Research Software" the TRLs may
denote sub roles, as explained above. For "Modeling
and Simulation" and "Infrastructure" research software,
the TRLs may describe the maturity, but not sub roles.

Developer-Based Categorization of
Research Software

For the developer dimension, we see the following
stages for research software:

1) Individual Researcher, such as PhD student, Post-
Doc, or Research Software Engineer.

2) Local Research Group.
3) Project Group, in which several research groups

may collaborate.
4) Community on a specific research topic.
5) Contractor (professional software company devel-

oping the software on behalf of researchers).

1https://github.com/acmsigsoft/EmpiricalStandards/blob/
master/docs/standards/EngineeringResearch.md
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secondary sub role

Research Software
Category

Role in Research

Modeling, Simulation and Data Analytics

1

Modeling and Simulation

1.1

Data Analytics

1.2

Software Analytics

1.3

Integrative Analysis

1.4

Scientific Visualization

1.5

Technology Research Software

2

Hardware Related

2.1

Software Related

2.2

Human Related

2.3

Process Related

2.4

Research Infrastructure Software

3

Control and Monitoring Software

3.1

Data Collection and Generation

3.2

Pipelines and Tools

3.3

Libraries

3.4

Laboratory Notebooks

3.5

Data Management

3.6

Software Management

3.7

Collaboration and Publication

3.8

Technology Readiness Level

TRL 1 – Basic Principles Observed

TRL 2 – Technology Concept Formulated

TRL 3 – Experimental Proof of Concept

TRL 4 – Technology Validated in Lab

TRL 5 – Technology Validated in Relevant Environment

TRL 6 – Technology Demonstrated in Relevant Environment

TRL 7 – System Prototype Demonstration in Operational Environment

TRL 8 – System Complete and Qualified

TRL 9 – Actual System Proven in Operational Environment

Developer

Individual Researcher

Local Research Group

Project Group

Community

Contractor

Dissemination

Open Source

Closed Source

Software as a Service

FIGURE 2. Our multi-dimensional categorization of research software, along the dimensions of roles, readiness, developers,
and dissemination.
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Criterion Explanation

Scope This categorization covers the dimensions of roles, readiness, developers, and dissemination.
Purpose The categorization aims to enable a better understanding of the different types of research

software and their specific quality requirements.
Context The categorization has been produced in the context of a task force of the special interest

group on Research Software Engineering, within the German Association of Computer
Science (GI e.V.) and the German Society for Research Software (de-RSE e.V.). It is meant
to serve different purposes, in particular RSE research [7], [8].

Properties The categories follow different relevant dimensions, and are defined collaboratively among
software engineering researchers and research software engineers.

Consequences for Creation Depending on its category, software is expected to meet different quality requirements and
follow different development processes.

Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles
and functions.

Inter-categorial relations Individual research software may change its category within one or more dimensions.
TABLE 2. Characteristics of our multi-dimensional categorization for research software.

Dissemination-Based Categorization
of Research Software

A community or contractor may develop the software
open-source, closed-source, or it may provide research
software as an online service.

Figure 2, bottom, shows our developer-based and
dissemination-based categorizations.

Related Research Software
Categories

Research software has been categorized in different
contexts to serve different aims. Some of them are
discussed here as related works, as they a) represent
a good starting point for a discussion on research
software categorization, b) provided significant input to
our work, and c) may be used to compare and assess
our categorization. We characterize these categories
via the previously introduced template in the appendix
(supplement).

Role-Based Categorization
Van Nieuwpoort and Katz [12] present a role-based
categorization. They categorize research software as
an integral component of instruments used in research,
as the instrument itself, for analyzing research data,
for presenting research results, for assembling or in-
tegrating existing components, as infrastructure or an
underlying tool, and for facilitating research-oriented
collaboration. This categorization inspired our work.
Based on discussions with the authors of the present
paper, van Nieuwpoort and Katz extended their cat-
egorization with our Technology Research Software
category [13]

Maturity-Based Categorization
In their National Agenda for Research Software [16],
the Australian Research Data Commons – an Aus-
tralian research data infrastructure facility – argue for
research software to be recognized as a first-class
output of research. They describe a three-level maturity
categorization of research software that is related to
our readiness dimension:

1) Research Data Processes captured as software.
The result is analysis code that captures research
processes and methodology: the steps taken for
tasks like data generation, preparation, analysis,
and visualization.

2) Novel Methods and Models captured as software.
The results are prototype tools that demonstrate
a new idea, method, or model for research.

3) Accepted Methods and Models captured as soft-
ware. The result can become research software
infrastructure that captures more broadly accepted
and used ideas, methods, and models for re-
search.

Each category faces specific challenges with regard to
recognition, from making research practice transpar-
ent, to creating impact through quality software and
safeguarding longer-term maintenance.

Application classes in institutional software
engineering guidelines
Institutional guidelines typically define so-called appli-
cation classes for research software, which require
appropriate quality properties, and, thus software en-
gineering methods [17], [18]:

› For software in Application Class 0, the focus is on
personal use in conjunction with a small scope.

› For software in Application Class 1, it should be
possible, for those not involved in the develop-
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ment, to use it to the extent specified and to
continue its development.

› For software in Application Class 2, it is intended
to ensure long-term development and maintain-
ability. It is the basis for a transition to product
status.

› For software in Application Class 3, it is essential
to avoid errors and to reduce risks. This applies in
particular to critical software.

The application classes relate to our readiness domain
and to some extent to our developer-based categoriza-
tion.

EOSC Research Software Lifecycle
The European Open Science Cloud (EOSC) aims to
create a virtual environment for sharing and accessing
research data across borders and scientific disciplines.
The SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for quality research
software” provides a categorization for software in the
research lifecycle [19]:

1) Individual creating research software for own use
(e.g. a PhD student).

2) A research team creating an application or work-
flow for use within the team.

3) A team / community developing (possibly broadly
applicable) open source research software.

4) A team or community creating a research service.
This categorization is covered by our developer-based
categorization.

Computational research in the earth system
sciences
Döll et al. [20] provide recommendations for sustain-
able research software for high-quality computational
research in the Earth System Sciences, and categorize
this research software as follows:

› Simulation of Earth system processes by Earth
system models.

› Design, processing and analysis of Earth obser-
vation and lab experiment data.

› Integrative analysis of simulation models, large
data bases, and stakeholder knowledge.

These categories correspond to our role-based cate-
gories 1.1), 1.2), and 1.4), respectively.

Categorizing the Software Stack
Another dimension is the research software stack,
from non-scientific infrastructure, scientific infrastruc-
ture, discipline-specific software, up to project-specific
software [21]. This dimension could be the basis for
another branch in our multi-dimensional categorization.

Qualitative Evaluation
As a pre-review study, we conducted a multi-
dimensional categorization of selected research soft-
ware examples, to check whether we can categorize
selected research software in multiple dimensions. The
selection is mainly based on in-depth knowledge of the
respective research software by the authors, such that
we are able to confidently categorize these research
software examples, in particular the readiness level.

We categorize the following research software, in
alphabetical order:

ARCHES: ARCHES is a framework for developing
digital twins based on the Robot Operating System
(ROS) [22], [23]. Research areas, where ARCHES
was successfully employed, are several digital
twins of ocean observation systems, including a
demo mission [24]. Table 3 presents the multi-
dimensional categorization of the ARCHES digital
twin framework.

ExplorViz: ExplorViz supports research on software
visualization, software comprehension tasks and
software collaboration [27], [28], [29], [30]. To
achieve this, ExplorViz uses dynamic analysis
techniques to provide live trace visualization of
the communication in large software landscapes. It
targets software system and program comprehen-
sion in those landscapes while still providing de-
tails on the communication within an application.
The ExplorViz development started in 2012 [27].
Table 4 presents the multi-dimensional categoriza-
tion of ExplorViz.

Hexatomic: Hexatomic is an extensible, OS-
independent platform for deep multi-layer linguistic
annotation of corpora [39], [40]. It constitutes
a technology research software demonstrator
for interoperability within a software ecosystem
for multi-layer linguistic corpus workflows,
corpus-tools.org [41]. Hexatomic is applied in
corpus linguistics for manual and semi-automated
annotation. Table 5 presents the multi-dimensional
categorization of Hexatomic.
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Role Readiness Developer Dissemination

2.1 Hardware Related TRL 4 [25]
TRL 5 [26]
TRL 7 [24]

Project Group Open Source

TABLE 3. Multi-dimensional categorization of the ARCHES digital twin framework [22].

Role Readiness Developer Dissemination

1.3 Software Analytics
1.5 Scientific Visualization
2.2 Software Related

TRL 4 [31], [32], [33], [34],
[35], [36]
TRL 5 [37]

Local Research Group Open Source
Software as a Service
[38]

TABLE 4. Multi-dimensional categorization of the ExplorViz software visualization tool [27], [28], [29], [30].

Role Readiness Developer Dissemination

1.2 Data Analytics
1.4 Integrative Analysis
2.2 Software Related
3.2 Data Collection and Generation
3.3 Pipelines and Tools

TRL 4 Local Research Group Open Source

TABLE 5. Multi-dimensional categorization of Hexatomic for deep multi-layer linguistic annotation [39], [40].

Role Readiness Developer Dissemination

1.3 Software Analytics
2.2 Software Related

TRL 4 [42], [43], [44], [45],
[46], [47], [48], [49], [50],
[51], [52], [53]
TRL 5 [54]
TRL 6 [55]

Community Open Source

TABLE 6. Multi-dimensional categorization of the Kieker observability and monitoring framework [56], [57].

Role Readiness Developer Dissemination

1.1 Modeling and Simulation
2.2 Software Related

TRL 9 [58], [59] Contractor Closed Source

TABLE 7. Multi-dimensional categorization of the MATLAB programming language [60].

Role Readiness Developer Dissemination

1.1 Modeling and simulation
2.2 Software Related
3.3 Pipelines and Tools

TRL 4-8 [61], [62], [63], [64] Community Open Source
Software as a Service

TABLE 8. Multi-dimensional categorization of the MontiCore framework for the development of software languages [65].

Role Readiness Developer Dissemination

2.2 Software Related
3.3 Pipelines and Tools

TRL 6 Local Research Group Open Source

TABLE 9. Multi-dimensional categorization of the mosaik for co-simulating energy systems [66].

Role Readiness Developer Dissemination

1.2 Data Analytics
1.5 Scientific Visualization

TRL 4 [67] Local Research Group Open Source
Software as a Service

TABLE 10. Multi-dimensional categorization of the OceanTEA ocean observation data analytics tool [68].
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Software Engineering Track

Kieker: The Kieker observability and monitoring
framework has been employed in various soft-
ware engineering research projects [56], [57]. The
Kieker development started in 2006 as a tool for
monitoring response times of Java software opera-
tions [69]. Research areas where Kieker was suc-
cessfully employed for software engineering re-
search include performance analysis and software
architecture reconstruction. As reported in [57],
Kieker was also employed in several industrial
collaborations and technology transfer projects.
Table 6 presents the multi-dimensional categoriza-
tion of Kieker.

MATLAB: MATLAB is a programming language to
design mathematical models to solve problems in
science and industry [60]. It is a commercial soft-
ware developed by MathWorks. The software fits
to a case where a technology research software is
closed-source and has a strong user base not only
in academia, but also in industry. Table 7 presents
the multi-dimensional categorization of MATLAB.

MontiCore: The MontiCore [70], [71], [72], [73] frame-
work for the development of domain specific lan-
guages started in 2004 as proof-of-concept for re-
searching design methods for software languages
with large complexity, such as the UML-P [74],
[75] or SysML [76]. Currently, MontiCore is used
for developing code and test generators, domain
specific languages, and model analysis tools [61],
[62], [77], [78], [79]. Thus it turned into a re-
search infrastructure. Still, original research on
developing domain specific languages is done in
the MontiCore context and many possible and
useful extensions are asked for. Table 8 presents
the multi-dimensional categorization of MontiCore.

mosaik: mosaik is a co-simulation framework for sim-
ulations in the energy domain [66]. The software
is used as technology research software for the
developers (computer scientists) while it is an
infrastructure software for the main users (energy
researchers). The multi-dimensional categoriza-
tion of mosaik can be found in Table 9.

OceanTEA: OceanTEA supports research on ocean
observation data analytics [68]. To achieve this,
OceanTEA provides an online service for data
analytics and exploration. OceanTEA was suc-
cessfully employed for studying polyp activity in
cold-water corals using machine learning tech-
niques to analyze high-resolution time series data
and photographs obtained from an autonomous
lander cluster [67]. Table 10 presents the multi-
dimensional categorization of OceanTEA.

PIA: An example for a contractor-developed research
software is PIA, the Prospective Monitoring and
Management App, which has been developed by
professional software companies as open-source
software, on behalf of the Helmholtz Centre for
Infection Research to conduct observational epi-
demiological studies by facilitating longitudinal
data collection and cohort management [81]. Ta-
ble 11 presents the multi-dimensional categoriza-
tion of PIA.

Quantum Optics Control Software: This closed-
source software is used to control ultracold
atom experiments in microgravity environments
such as sounding rockets or the International
Space Station (ISS) [82], [83]. It also provides
several Domain-Specific Languages (DSLs) for
driver code and experiment sequence generation.
Research areas where it has been successfully
used are the MAIUS-1 mission [92], the first
to create a Bose-Einstein Condensate (BEC)
in space, and the MAIUS-2 mission. Future
missions that will use the software include
BECCAL [93] and CARIOQA-PMP [94] among
others. Table 12 shows the multidimensional
categorization of this software.

SPRAT: SPRAT provides a spatially-explicit marine
ecosystem model based on population balance
equations [85]. OceanTEA was empirically evalu-
ated with ocean modelers and research software
engineers researching marine ecosystem simula-
tions [84]. Table 13 presents the multi-dimensional
categorization of SPRAT.

Theodolite: Theodolite is a framework for bench-
marking the horizontal and vertical scalability of
cloud-native applications [89], [90]. Research ar-
eas where Theodolite was successfully employed
for software engineering research include bench-
marking stream processing engines deployed in
the cloud [87], [88]. Table 14 presents the multi-
dimensional categorization of Theodolite.

VirtualFluids: VirtualFluids is a Computational Fluid
Dynamics (CFD) framework based on the Lattice
Boltzmann method [95], [96], [97], [98]. The soft-
ware demonstrated its use in operational environ-
ments in projects with industrial partners. Table 15
presents the multi-dimensional categorization of
VirtualFluids.
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Role Readiness Developer Dissemination

3.2 Data Collection and Generation TRL 9 [80] Contractor Open Source

TABLE 11. Multi-dimensional categorization of the PIA prospective monitoring and management app [81].

Role Readiness Developer Dissemination

2.2 Software Related
3.1 Control and Monitoring Software
3.2 Data Collection and Generation

TRL 9 Project Group Closed Source

TABLE 12. Multi-dimensional categorization of a Quantum Optics Control Software [82], [83].

Role Readiness Developer Dissemination

1.1 Modeling and Simulation
1.5 Scientific Visualization

TRL 5 [84] Individual Researcher Open Source

TABLE 13. Multi-dimensional categorization of the SPRAT ocean observation data analytics tool [85].

Role Readiness Developer Dissemination

2.2 Software Related
3.3 Pipelines and Tools

TRL 4 [86]
TRL 5 [87], [88]

Project Group Open Source

TABLE 14. Multi-dimensional categorization of the Theodolite framework for benchmarking the scalability of cloud-native
applications [89], [90].

Our qualitative evaluation shows that it is possible
to categorize different research software along multiple
categories. In particular, it shows that our categoriza-
tion is applicable to research software independently of
a single dimension: we successfully categorized soft-
ware at different maturity levels, developed by different
actors, and disseminated through different means. We
expect that our categorization can significantly con-
tribute to categorizing research software. It increases
coverage over existing approaches to categorization by
adding the dissemination category and integrating:

• role-based categorization [13], [20] in our role
categories;

• maturity-based categorization [16], [17] in our
readiness categories;

• lifecycle-based categorization [19] in our devel-
oper categories;

In our evaluation, example research software has been
categorized with 1–5 roles. This shows a high precision
to cover different roles research software can take
in different contexts, while manifesting that research
software roles are not exclusive. While PIA, for exam-
ple, serves a single purpose within a single context,
Hexatomic can be used for different subtasks in differ-
ent data-centric application contexts. As infrastructure
software that can be used to integrate tools into a
pipeline, Hexatomic combines research-related tasks
such as data generation and integration with research
tasks such as data editing and analysis. Simultane-
ously, it is technology research software whose target

system is an existing ecosystem of software tools for
linguistic research. The Hexatomic example reveals a
property of research software that is central to our
argument, i.e., that different contexts and perspectives
put software into different roles, which makes a multi-
dimensional categorization necessary.

As future work, we intend to ask more members
of the RSE community to categorize their research
software. In particular, the (self-) assessment of the
readiness levels requires a profound knowledge of the
software and its use.

As future work, we also intend to conduct more
in-depth quantitative research into our categorization
to assess and improve its granularity and precision.
Based on this, we intend to analyze relations and
correlations between categorical dimensions. We also
plan to widen the corpus of categorized research soft-
ware by asking more members of the RSE community
to categorize their own research software. In particu-
lar, the assessment of the readiness levels requires
a profound knowledge of the software and its use.
To quantitatively evaluate our categorization scheme,
we intend to apply more systematic and replicable
research via a systematic literature review of published
research software [99].

10 Multi-Dimensional Categorization of Research Software with Examples 2024
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Role Readiness Developer Dissemination

1.1 Modeling and Simulation TRL 7 Local Research Group Open Source [91]

TABLE 15. Multi-dimensional categorization of VirtualFluids for simulating fluid flow systems.

Conclusion
We categorize research software along various dimen-
sions, contributing to fostering effective development,
recognition, and utilization of research software within
the research community. One essential use case of
this categorization is its incorporation into forthcom-
ing guidelines for research software development. As
we classify research software, we enable tailoring
guidelines to specific classes, offering developers a
structured framework that aligns with each category’s
unique requirements and challenges. The evaluation
via a systematic mapping study for our role-based cat-
egorization, and the multi-dimensional categorization
of selected research software examples stimulated the
refinement and strengthening of our categorization.

Moreover, the categorization is intended to be a
valuable tool for stakeholders, especially research soft-
ware engineers and their group, chair, department,
or institute leaders. The categorization may provide
these individuals with a better understanding of the
software they are developing, offering insights into its
nature, purpose, and potential impact. This knowledge
is essential for informed decision-making, adequate
resource allocation, and strategic planning within re-
search institutions.

Recognition for research software engineers is an-
other outcome we anticipate from categorizing re-
search software. By delineating different types of soft-
ware and acknowledging the diverse skill sets required
for their development and maintenance, our catego-
rization aims to contribute to elevating the status of
research software engineers. We hope this recognition
motivates individuals and fosters a culture that values
and appreciates the crucial role played by software in
advancing research efforts.

Categorizations may also help assess external soft-
ware when considering its use. We envision that it
contributes to a standardized framework for evaluating
software’s relevance, applicability, and quality, facilitat-
ing informed decisions in adopting tools from different
sources.

The categorization may become particularly valu-
able in allocating project-based or permanent funding.
It can help researchers and developers clearly articu-
late their software’s significance in a funding proposal.
We envision this classification providing a framework
that helps researchers and funding agencies.

Additionally, the categorization may help to empha-
size which software is critical, highlighting the impor-
tance of its maintenance and continued development
for its continued functionality. By highlighting this im-
portance, we seek to contribute to an enhanced aware-
ness of the ongoing support and resources required
to ensure the longevity and sustainability of research
software.

In the realm of Research Software Engineering
(RSE) research [7], [8], we hope that the categorization
provides a framework for classifying research objects,
supporting software corpus analyses, and enhancing
our understanding of the different types of research
software and their properties. This structured approach
may aid in organizing and interpreting the vast land-
scape of research software, contributing to advance-
ments in RSE methodologies and practices.

We propose a multi-dimensional categorization of
research software, along the dimensions of roles,
readiness, developers, and dissemination. The vari-
ous dimensions of the categorization are not com-
pletely independent of each other. Looking at the
dependency between the dimension and identifying
constraints on combinations of the dimensions is the
subject of future work. Additional dimensions could
be the reuse scenarios (such as single-use/single-
purpose, extensibility, reusability), the users (such as
scientists, humans as research subjects, and citizens),
the research software stack [21], and the criticality (for
instance, mission-critical software). Such extensions
and refinements are subject to future work.

To evaluate the breath of our categorization
scheme, we conducted a multi-dimensional catego-
rization of selected research software examples. As
future work, we plan to conduct a systematic literature
study [99] to evaluate the depth of our categorization.
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Appendix
Characterization of Related Research Software Categories

The related research software categories are characterized in terms of the template in Table 1.
Table 16 characterizes the role-based categorization by van Nieuwpoort and Katz.
Table 17 characterizes the ARDC categorization.
Table 18 characterizes the institutional guideline application class categorization.
Table 19 characterizes the EOSC research software lifecycle categorization.
Table 20 characterizes the categories in computational research in the Earth system sciences.
Table 21 characterizes the software stack categorization.

Criterion Explanation

Scope Role-based categorization.
Purpose Funding organizations joined forces to explore how they could effectively contribute to making

research software sustainable.
Context International workshop in 2022 on the future of research software, organized by the Research

Software Alliance (ReSA) and the Netherlands eScience Center.
Properties The roles for research software are defined from the point of view of a researcher, with the

goal of making this understandable for funders and policymakers.
Consequences for Creation Depending on its role category, software is expected to meet different quality requirements

and follow different development processes.
Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles

and functions.
Inter-categorial relations Individual research software may change its role or take multiple roles.

TABLE 16. Characteristics of the role-based categorization by van Nieuwpoort and Katz [12], [13].

Criterion Explanation

Scope The categorization in [16] supports a discussion about recognition of software in research,
with the aim to increase this recognition.

Purpose The categorization aims to describe the purpose of the software it categorizes as capturing
applied or widely accepted research ideas, methodology, and models, or demonstrating new
ones.

Context The categorization has been produced in the context of ARDC’s research software policy.
Properties The properties of the categories represent different challenges faced by software that fall in

the respective category.
Consequences for Creation Depending on its category, software is expected to meet different requirements. While analysis

code should be FAIR [5], prototype tools should exhibit a “high quality”, and research software
infrastructure must be created for sustainability, which is realized through safeguarding its long-
term maintenance.

Consequences for Use Software use is featured only implicitly in the categorization. We expect that software under
the different categories are expected to be used differently: Analysis tools are used for specific
research tasks, and are more likely to have a small scope, e.g., are applied only to answer
a specific research question. Prototype tools are used to test the methodological hypotheses
they implement, but may also be used experimentally to answer specific research questions.

Inter-categorial relations The categories are related through evolution and transitive value. One category evolves from
another, e.g., analysis code may evolve into a prototype tool, that in turn evolves into research
software infrastructure.

TABLE 17. Characteristics of ARDC’s research software categorization [16].
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Criterion Explanation

Scope Guidelines for software engineering at an academic institution.
Purpose Identify suitable quality requirements.
Context Institutional policy and practice.
Properties Criticality, institutional risk, projected use, development timeline, distribution, commercial

exploitation.
Consequences for Creation Increasingly employ established software engineering methods.
Consequences for Use Increased (critical) use by increasingly large community.
Inter-categorial relations Transitive requirements, legal requirements.

TABLE 18. Characteristics of institutional guideline application classes [17], [18].

Criterion Explanation

Scope Developer- and stakeholder-based categorization.
Purpose Achieve a common understanding of the current processes in research software engineering,

particularly the research software lifecycle.
Context SubGroup 1 “On the Software Lifecycle” of the EOSC Task Force “Infrastructure for quality

research software”.
Properties Different levels of adopting software engineering practice, different publication requirements

and usage scenarios, different stakeholders
Consequences for Creation Depending on its developer category, software is expected to meet different quality require-

ments and follow different development processes.
Consequences for Use Increasing maturity and support for reproducibility
Inter-categorial relations Not specified

TABLE 19. Characteristics of the EOSC research software lifecycle categorization [19].

Criterion Explanation

Scope Recommendations for universities, funders, and the scientific community.
Purpose Safeguard the quality and efficiency of computational research in Earth System Sciences and

make research results that have been generated by research software reproducible.
Context Ideas of a DFG round table meeting on sustainable research software for high-quality

computational research in the Earth System Sciences.
Properties Research software developed in the Earth System Sciences is characterized by the complexity

of the underlying models, multifaceted dependencies, the multi-modality of the data, and the
size of the data, which can impose specific hardware and software requirements.

Consequences for Creation Depending on its role category, software is expected to meet different quality requirements
and follow different development processes.

Consequences for Use Dependency on the research cycle
Inter-categorial relations Combination, integration

TABLE 20. Characteristics of categories in computational research in the Earth system sciences [20].

Criterion Explanation

Scope Describing principles of software collapse.
Purpose Identify dependent layers of different (academic) specificity to model threat.
Context Research software sustainability.
Properties Domain specificity.
Consequences for Creation Build on stable lower layers, quickly react to threats, accept agility.
Consequences for Use Decreasing specificity of application domain from top to bottom.
Inter-categorial relations Dependency, transitive threats.

TABLE 21. Characteristics of categorizing the software stack [21].
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