**EXAMPLE AND ALLOYS FOR HIGH-
TEMPERATURE APPLICATIONS**
07.05.2024
N. Kind, P. Beau, S. Reh
International Tribology Symposium 2024, Salerno WEAR BEHAVIOUR OF CO-
BASED ALLOYS FOR HIGH-WEAR BEHAVIOUR OF CO-
BASED ALLOYS FOR HIGH-
TEMPERATURE APPLICATIONS WEAR BEHAVIOUR OF CO-
BASED ALLOYS FOR HIGH-
TEMPERATURE APPLICATIONS
07.05.2024 07.05.2024

N. Kind, P. Beau, S. Reh

Neustrelitz

Berlin

Dresden

Braunschwe

DLR – Institute of Test and Simulation for Gas Turbines **Overview LR – Institute of Test and Simulation**
Verview
-R
German Federal Research Center for
Aeronautics and Space
R&D: aeronautics, space, energy, transport,
security and digitalisation

DLR

- German Federal Research Center for
- R&D: aeronautics, space, energy, transport,
-
- \sim 10.000 employees

DLR – Institute of Test and Simulation for Gas Turbines
Research Topics Research Topics

DLR – Institute of Test and Simulation for Gas Turbines **Tribology DLR – Institute of Test and Simulatio**
Tribology
Tribology under harsh conditions
• SRV5 by Optimol Instruments
• fretting and wear up to 1000 °C
• simultaneous application of synthetic DLR — Institute of Test and Simulation for Ga
Tribology
Tribology under harsh conditions
- SRV5 by Optimol Instruments
- fretting and wear up to 1000 °C
- simultaneous application of synthetic
combustion gas: O_2 , SO_2 DLR – Institute of Test and Simulation for Gas Tribology
Tribology
Tribology under harsh conditions
- SRV5 by Optimol Instruments
- fretting and wear up to 1000 °C
- simultaneous application of synthetic
combustion gas: LR — Institute of Test and Simulation
ribology
ibology under harsh conditions
SRV5 by Optimol Instruments
fretting and wear up to 1000 °C
simultaneous application of synthetic
combustion gas: O₂, SO₂, NO_x, H₂O-vap DLR — Institute of Test and Simulation for Q
Tribology
Tribology under harsh conditions
• SRV5 by Optimol Instruments
• fretting and wear up to 1000 °C

-
-
- , SO₂, NO_x, H₂O-vapour

Applications

- alloys, SiC/SiC)
- (coatings)

Content

Content
Wear behaviour of Co-based alloys for high-tem
1) Co-alloys
2) Experimental methods
3) Results Content

Wear behaviour of Co-based alloys for high-tempera

1) Co-alloys

2) Experimental methods

3) Results

- Temperature effect Content

Wear behaviour of Co-based alloys for high-tem

1) Co-alloys

2) Experimental methods

3) Results

- Temperature effect

- Influence of manufacturing process ntent

1997 - The Marian Corporator of Co-based alloys for high-temperature applica

2019 - The Marian Methods

2019 - The Marian Marian School

2019 - The Marian Marian Marian School

2019 - The Marian Marian Marian Maria ntent

International Co-based alloys for high-temperature applications

Co-alloys

Experimental methods

Results

Influence of manufacturing process

Composite wear law

Summary & Qutlook Wear behaviour of Co-based alloys for high-tempe

1) Co-alloys

2) Experimental methods

3) Results

• Temperature effect

• Influence of manufacturing process

• Composite wear law

4) Summary & Outlook

-
-
- -
	-
	- **Composite wear law**
-

Wear behaviour of Co-based alloys for high-temperature applications, Nora Kind, DLR Institute of Test and Simulation for Gas Turbines, 07.05.2024

Co-based alloys **Motivation** -based alloys
tivation
avior at high temperature
uperior resistance to wear above ~ 400 °C
ormation of compacted oxide (glaze) layer
(1) formation of Cr-oxide layer
(2) removal of oxide and compaction of debris
(3) diffusi Co-based alloys
Motivation
Behavior at high temperature
• superior resistance to wear above ~ 400 °C
• Formation of compacted oxide (glaze) layer

-
- -
	-
	-
- **Example 18 and Monometers (3)**

(3) diffusion and formation of Compacted oxide (glaze) layer

(3) diffusion of Co and Mo to surface

(4) breakdown and formation of oxide films and

further diffusion \rightarrow uniform distribu Fraction

Let us the state of the previous contract to wear above \sim 400 °C

ormation of compacted oxide (glaze) layer

(1) formation of Cr-oxide layer

(2) removal of oxide and compaction of debris

(3) diffusion of Co Formation of compacted oxide (glaze) layer

(1) formation of Cr-oxide layer

(2) removal of oxide and compaction of debris

(3) diffusion of Co and Mo to surface

(4) breakdown and formation of oxide films and

further di

T-800 [Wood et al.]

Experimental methods

Materials

T800 & T400

-
-

BEAU ENGINEERING

Experimental methods Experimental methods

Wear tests - SRV4

• normal load: 20 - 100 N

• test frequency: 5 Hz

• sliding distance: 2 mm

• test duration: 1 - 18 h Experimental methods

Wear tests - SRV4

• normal load: 20 - 100 N

• test frequency: 5 Hz

• sliding distance: 2 mm

• test duration: 1 - 18 h

• temperature: 25 - 800 °C Experimental methods
Wear tests - SRV4
• normal load: 20 - 100 N
• test frequency: 5 Hz

-
-
-
-
-

Characterisation

-
- SEM, EDX

Results

Results Manufacturing process

Wear volume of T-400: HVOF vs. cast

Results Composite wear law Results
Composite wear law
Friction coefficient
• modified Archard approach
• assumption: upon formation of compacted

-
- **Results**

Composite wear law

Friction coefficient

endified Archard approach

assumption: upon formation of compacted

oxide, dissipated energy no longer **Results**

Composite wear law

Friction coefficient

assumption: upon formation of compacted

assumption: upon formation of compacted
 $\begin{array}{cccc}\n\frac{1}{2} & \frac{0.5}{0.7} & \frac{0.7}{0.7} \\
\frac{0.5}{0.7} & \frac{0.7}{0.7} & \frac{0.7}{0.7} \\
\frac{0.7}{0.$ **Examples Secure 15 Accord Secure 2014**
Extion coefficient
modified Archard approach
assumption: upon formation of compacted
oxide, dissipated energy no longer
contributes to wear process
wear volume predicted for both hig
- and transition domain

Summary & Outlook

Summary

- $\begin{array}{lcl} \bf Summary & & & & \bf Outlook \\\ \bf summary & & \bf symmetry \end{array}$
• significant influence of manufacturing process
on wear behaviour of Co-based alloys
 \rightarrow tailored solutions for industrial applications **ummary & Outlook**
 ummary

significant influence of manufacturing process

on wear behaviour of Co-based alloys
 \rightarrow tailored solutions for industrial applications

description of wear over entire temperature → **ummary & Outlook**

→ tailored solutions for industrial applications

→ tailored solutions for industrial applications

→ tailored solutions for industrial applications

description of wear over entire temperature

poss Summary & Outlook

summary

■ significant influence of manufacturing process

on wear behaviour of Co-based alloys

→ tailored solutions for industrial applications

■ description of wear over entire temperature

possibl **ummary & Outlook**

significant influence of manufacturing process

on wear behaviour of Co-based alloys

→ tailored solutions for industrial applications

description of wear over entire temperature

possible using an en Summary

■ significant influence of manufacturing process

on wear behaviour of Co-based alloys

→ tailored solutions for industrial applications

■ description of wear over entire temperature

possible using an energetic **Example 12**

significant influence of manufacturing process

on wear behaviour of Co-based alloys

→ tailored solutions for industrial applications

description of wear over entire temperature

possible using an energet ■ significant influence of manufacturing process

on wear behaviour of Co-based alloys
 \rightarrow tailored solutions for industrial applications

■ description of wear over entire temperature

possible using an energetic appr
	-
- description of wear over entire temperature

possible using an energetic approach

 Correlation to micro/macro hardness and

elastic properties

 influence of corrosive medium

Wear behaviour of Co-based alloys for hi

Outlook

-
-

DLR-SG Nora Kind Am Technologiezentrum 5 86159 Augsburg (GER) nora.kind@dlr.de

Beau Engineering Services Patrick Beau info@go-getting.de +49 91113057540

ENGINEERING
SERVICES

Beau Engineering Services

Info@go-getting.de

+49 91113057540

THANK YOU FOR YOUR ATTENTION THANK YOU FOR YOUR ATTENTION
Wear behaviour of Co-based alloys for high-temperature applications, Nora Kind, Desemination for Gas Turbines, 07.05.2024

Impressum

Impressum
Thema: Wear behaviour of Co-based alloys for high –temperature
applications applications

Datum: 2024-05-07

Autor: Nora Kind, Patrick Beau, Stefan Reh

Institut: DLR-SG

Bildquellen: Alle Bilder "DLR (CC BY-NC-ND 3.0)", sofern nicht anders angegeben Datum: Z0Z4-05-07
Autor: Nora Kind, Patrick Beau, Stefan Reh
Institut: DLR-SG
Bildquellen: Alle Bilder "DLR (CC BY-NC-ND 3.0)",
sofern nicht anders angegeben
Wear behaviour of Co-based alloys for high-temperature applicati