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Abstract. During the preliminary design phase of wind turbine blades, the evaluation of many design candidates
in a short period of time plays an important role. Computationally efficient methods for the structural analysis
that correctly predict stiffness matrix entries for beam models including the (bend–twist) coupling terms are
thus needed. The present paper provides an extended overview of available approaches and shows their abilities
to fulfill the requirements for the composite design of rotor blades with respect to accuracy and computational
efficiency. Three cross-sectional theories are selected and implemented to compare the prediction quality of
the cross-sectional coupling stiffness terms and the stress distribution based on different multi-cell test cross-
sections. The cross-sectional results are compared with the 2D finite element code BECAS and are discussed
in the context of accuracy and computational efficiency. The analytical solution performing best shows very
small deviations in the stiffness matrix entries compared to BECAS (below 1 % in the majority of test cases).
It achieved a better resolution of the stress distribution and a computation time that is more than an order of
magnitude smaller using the same spatial discretization. The deviations of the stress distributions are below
10 % for most test cases. The analytical solution can thus be rated as a feasible approach for a beam-based
pre-design of wind turbine rotor blades.

1 Introduction

Beam-based approaches are commonly used in the concep-
tual and preliminary structural design of wind turbine blades.
They are often embedded in a multi-disciplinary optimiza-
tion (MDO) process (Scott et al., 2019; Serafeim et al., 2022)
due to a superior computational performance compared to
high-fidelity finite element (FE) models using shell and/or
solid elements. A typical application of MDO is the design
of rotor blades with tailored bend–twist coupling (Scott et al.,
2020; Bottasso et al., 2012). The blade flexibility affects the
angle of attack along the blade and thereby changes the lift
and drag force distribution, reducing the flapwise bending
moments. For the structural optimization in general, a com-

mon objective function is the reduction of mass or costs (Lee
and Shin, 2022).

For larger blades, mass and costs increase to the power
of around 2.4 with the blade radius (Rosemeier and Krim-
mer, 2022), whereas the annual energy production (AEP)
increases proportionally to the square of the blade radius
(Gasch and Twele, 2012). Hence, the blade mass and costs
scale over-proportionally compared with the AEP. It is thus
required to investigate new technologies, materials, or de-
signs to withstand the increased mass-related loads and to
limit the blade costs, which are a significant part of the over-
all turbine costs.
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1.1 Beam models within the design process of wind
turbine blades

The usage of beam models becomes necessary within the
structural optimization in the preliminary design phase due
to the evaluation of many design candidates. The number of
design candidates results from the investigation of different
designs for the structural topology (e.g., number and/or posi-
tions of spars) and concepts for materials used and how they
are combined in laminate layups, which in turn have to be
linked to a manufacturing concept. Consequently, a basic re-
quirement is a significant reduction of the computation time
for model creation and the calculation of stresses compared
to a high-fidelity FE model. The computation time for the
stress calculation scales with the number of iterations of the
optimization process. For the shell or solid FE model case,
variations of the internal structure of the blade, e.g., the spar
position, often require a 3D CAD (computer aided design)
model update and the subsequent translation into a new FE
mesh. The higher modeling effort and the longer computa-
tion times with 3D models are not acceptable in the prelimi-
nary design phase.

FE beam models require the input of accurate cross-
sectional properties, i.e., stiffness and mass matrices. In
many design processes (e.g., Scott et al., 2019; Wanke et al.,
2021), the cross-sectional properties are determined using
2D FE models that serve to calculate the mass and stiffness
properties and the stress distribution within the cross-section.
These 2D FE approaches suffer from the need of expen-
sive model updating, with re-meshing if the internal structure
or layup changes during the optimization process, and from
higher computation costs for solving the governing equations
compared to analytical approaches.

1.2 Requirements for an analytical cross-sectional
approach

Requirements for an analytical cross-sectional calculation
module are derived in the following and serve to evaluate dif-
ferent calculation methods at a later stage. Composite blades
are modeled as beams with closed, different single- or multi-
cell cross-sections that vary along the beam axis. The parts
of the blade, e.g., shell panels and spars, consist of different
materials. Moreover, different materials within one part can
occur. The structure of the blade is mostly thin-walled, except
near the blade root, and undergoes in-plane and out-of-plane
cross-sectional deformations. Beside the classical loading of
thin-walled beams such as bending or extension, shear forces
play an important role and can be design drivers. The cou-
plings of the beam’s degrees of freedom that result from the
structural topology or the material layup have to be consid-
ered for an accurate representation of the blade. The com-
putational efficiency, i.e., fast output with high accuracy, is
of high importance as well to allow the assessment of a large
number of design candidates in the preliminary design phase.

The historical development of cross-sectional approaches
for general beam structures is described by Hodges (2006).
Chen et al. (2010) compare several existing tools for cross-
sectional calculations, e.g., PreComp (Bir, 2006) or VABS
(Yu, 2007).

1.3 Target setting

The present paper provides a comprehensive review of avail-
able cross-sectional approaches (Sect. 2.4) based on the
aforementioned requirements for the design of compos-
ite wind turbine rotor blades. Three cross-sectional theo-
ries are selected (Sect. 2.5) and implemented. The results
of the different methods, i.e., the cross-sectional coupling
stiffness terms (e.g., extension–torsion, bending–torsion,
Sect. 3.2) and the stress distributions in different cross-
sections (Sect. 3.3), are compared. A rectangular and a multi-
cell airfoil-based cross-section serve as test cases. The focus
is on the shear stress distribution caused by transverse shear
forces, as these are more complex to calculate compared to,
e.g., bending-related normal stresses. The cross-sectional re-
sults are verified using the 2D FE code BECAS (Blasques,
2012), which is a well-established industry standard in ro-
tor blade design and serves as a reference solution in this
paper. A verification of BECAS itself using VABS, which is
also a 2D FE code for the calculation of beam cross-sectional
properties (Yu, 2007), is given in Blasques (2012). The three
selected analytical approaches are evaluated with respect to
accuracy of the cross-sectional results and the computation
time. The best compromise serves as basis for the cross-
sectional calculation module of the beam-based design tool
PreDoCS (Preliminary Design of Composite Structures).

2 Beam theories

A beam is a mechanical model of a structure that is charac-
terized by a configuration where one geometric dimension
is at least 1 order of magnitude larger than the other two.
This allows the beam to be represented by two-dimensional
cross-sections (formed by the shorter geometric dimensions)
threaded along the beam axis (the longer geometric dimen-
sion). The calculation of the beam is thus subdivided into the
2D calculation of cross-sectional properties and a line-like
calculation of the beam (often referred to as 1D analysis),
with its axis being potentially curvilinear in space. This pro-
cedure is also called dimensional reduction (Hodges, 2006)
and is described in the following subsections.

2.1 Recovery relations between beam and
cross-section

The first step is to set up the kinematic relations that link the
displacements in each point of a cross-section to the displace-
ments and rotations, or curvatures, of the beam at the respec-
tive axial position. These relations are also called “recovery
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relations”. The formulation of the cross-sectional displace-
ments is the core of the cross-sectional theory. From these,
the cross-sectional strains are calculated as the derivatives of
the displacements. In a second step, the constitutive relations
of the material (material stiffness) are used to calculate the
stress distribution in the cross-section from the strains. The
cross-sectional stiffness matrix is derived using the principle
of virtual work. The spatial integration of the stress and strain
distributions across the cross-section yields the internal loads
(cutting forces and moments) acting on the respective cross-
section. Substituting the stresses and strains by the kinematic
and the constitutive equations of the material results in the re-
lation between the displacements and the internal loads of the
cross-section which forms the cross-sectional stiffness ma-
trix.

2.2 Finite beam element model

In the case of simple load cases (defined by loads and bound-
ary conditions) and beams with a constant cross-section, the
displacements along the beam can be calculated analytically.
For more complex load cases and geometries, a finite beam
element model using the cross-sectional stiffness matrices
from above needs to be employed. Solving the finite ele-
ment problem yields the displacements and rotations along
the beam. The recovery relations from the previous subsec-
tion can then be used to calculate the cross-sectional dis-
placements at each point along the beam. The strain and
stress distributions are subsequently calculated according to
the cross-sectional theory as described in the previous sub-
section (Hodges, 2006).

2.3 Degrees of freedom of a cross-section

In general, the cross-sectional stiffness relations of a beam
are given by the expression

F =Kq, (1)

where K is the cross-sectional stiffness matrix, q is the vec-
tor of cross-sectional displacements, and F is the vector of
the cross-sectional internal loads according to the notation
of Jung and Nagaraj (2002). For simplicity, a notation of
partial derivatives with subscripts is used, i.e., ∂f

∂x
= f,x . As

described by Hodges (2006), the cross-sectional degrees of
freedom (DOFs) depend on the theory. Thus, the dimensions
of q, F , and K also depend on the theory used. The local
coordinate system and the DOFs are shown in Fig. 1. The
longitudinal direction of the beam is denoted by the z axis,
and the cross-sectional plane is spanned by the x and y axes,
respectively.

If only DOFs for bending and extension are considered,
the Euler–Bernoulli beam theory is employed. It has three
cross-sectional DOFs, which are namely the longitudinal
strain w0,z and the derivative of the rotation about the two
axes parallel to the cross-sectional plane, βx,z and βy,z.

Figure 1. Global and contour coordinate system of the beam and
cross-section displacements.

Hence, q has three entries, and K is of order 3× 3. In order
to consider shear deformation, the Timoshenko beam theory
can be used, which is also referred to as the first-order shear
deformation theory (FSDT). The cross-section has two ad-
ditional DOFs in this case, which are the shear deformation
angle in the x–z plane γxz and the shear deformation angle
in the y–z plane γyz. The vector of cross-sectional displace-
ments q is then extended to five entries, and K is of order
5×5. In addition, the extension, bending, and shear parts can
be supplemented by a contribution from torsion by including
the respective DOFs. The St. Venant theory adds one addi-
tional DOF, which is the derivative of the elastic twist angle
around the beam axis denoted by φ,z. The Vlasov theory ad-
ditionally adds one DOF, namely the restrained warping of
the cross-section, which is a function of the second deriva-
tive of the elastic twist angle denoted by φ,zz.

As described above, different cross-section theories em-
ploy different numbers of DOFs, which is also shown in Ta-
ble 1. For example, the approach of Jung (line 5 in Table 1)
uses a combination of the Timoshenko and Vlasov theories,
which results in a stiffness matrix K of order 7×7, as further
described in Sect. 2.6.

2.4 Cross-sectional calculation approaches and their
properties

An extensive comparison of cross-sectional theories based
on rotor-blade-specific requirements has been carried out. An
excerpt is shown in Table 1. Since different assumptions are
made, the approaches show different abilities and limitations.
Based on the requirements described in Sect. 1, the following
criteria were chosen for comparing the approaches listed in
Table 1:

– types of considered cross-sectional geometries – open
cross-sections, closed single-cell cross-sections, closed
multi-cell cross-sections, solid cross-sections, thin-
walled contour, and thick-walled contour
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– general calculation approach – analytical approach, 1D
FE approach, and 2D FE approach

– considered effects

– cross-sectional stiffness – number of cross-
sectional DOFs (i.e., dimension of the stiffness
matrix), elastic coupling of the individual cross-
sectional DOFs, and displacements due to shear
forces (i.e., shear-deformable theory)

– effects due to restrained warping (e.g., occurrence
of warping normal stresses)

– in-plane cross-sectional deformations (e.g., due to
transverse contraction)

– out-of-plane cross-sectional deformations (e.g.,
warping due to torsion)

– material behavior

– modeling as a disk – constant stresses over the con-
tour thickness

– modeling as a plate – non-constant stresses over the
contour thickness

– consideration of transverse shear (shear in the con-
tour thickness direction)

– zero force flux in the contour direction (circumferen-
tial stresses, common assumptions, not usable for struc-
tures under internal pressure, restrained deformation in
circumferential direction not considered)

– linear longitudinal strain distribution over the cross-
section (corresponds to the assumptions of the beam
models according to Euler–Bernoulli and Timoshenko).

The cross-sectional approaches in Table 1 can be catego-
rized in different ways. One possibility is the method for the
calculation of the cross-sectional stiffness.

There are approaches that calculate the cross-sectional
stiffness from two-dimensional finite element models
(Blasques, 2012; Hodges, 2006; Yu, 2007) or approaches that
combine analytical procedures and FE models. For the mixed
case, an analytical approach is derived to calculate the cross-
sectional stiffness, assuming given cross-sectional warping.
The warping is subsequently determined with a 1D FE model
over the thin-walled contour (cf. Saravia et al., 2015).

The analytical approaches (see Table 1, column “calcu-
lation approach”) can be divided into two categories, the
displacement-based formulation and the force-based formu-
lation (Jung et al., 2002). They differ in the calculation of the
shear stresses. The displacement-based formulation, which
is also called stiffness method, has been used, e.g., by Re-
hfield et al. (1990), Song (1990), and Chandra and Chopra
(1992). A displacement field of the cross-section is assumed,
from which the shear stresses can be calculated directly us-
ing the constitutive relations. The force-based formulation

also assumes cross-sectional displacements, and a normal
stress distribution is calculated using constitutive relations.
Based on the normal stress distribution, the shear stresses
are calculated by integration of the equilibrium condition
on a contour element (cf. Jung et al., 2002). The force-
based formulation thus leads to better shear stress distribu-
tions (Johnson et al., 2001). This approach was used, e.g., by
Mansfield and Sobey (1979), Libove (1988), Johnson et al.
(2001), and Wiedemann (2007); see Table 1. A combination
of the displacement- and force-based formulation was intro-
duced by Jung and Nagaraj (2002) and is further explained
in Sect. 2.6.

2.5 Selected approaches based on requirements for
wind turbine blades

Based on the requirements described in Sect. 1 and the avail-
able approaches listed in Table 1, three different approaches
were selected. An FE-based approach was already excluded
due to the high computational cost, which is also shown in
Sect. 3.4. Six analytical approaches fulfilling the multi-cell
criterion are available (see Table 1). The approach of Li-
bove (1988) does not provide a cross-sectional stiffness ma-
trix. Chandra and Chopra (1992) take into account additional
DOFs for the derivation of the shear forces which correspond
to line loads. These additional DOFs make the approach
more complex but are not required for the intended appli-
cation. The first approach selected for implementation is that
of Wiedemann (2007), which includes a shear-stiff formula-
tion based on a 3×3 stiffness matrix. It comprises a torsional
stiffness but neglects bend–twist coupling and shear stiffness
terms. Therefore, it does not fulfill all requirements given in
Sect. 1 but is nevertheless chosen due to its simplicity and the
resulting short computation times. The second approach se-
lected for implementation is the displacement-based formu-
lation of Song (1990), which fulfills the requirements with re-
spect to elastic coupling and shear stiffness terms and further
includes transverse shear and restrained warping, resulting in
a 7× 7 stiffness matrix. Two approaches remain: the mixed
formulation (displacement- and force-based) of Jung and Na-
garaj (2002) and the force-based formulation of Kollár and
Springer (2003). Both approaches are expected to lead to bet-
ter shear stress distributions in comparison to Song’s model.
However, Jung and Nagaraj’s approach was already extended
to cover pre-twisted beams (Jung et al., 2009), such as wind
turbine blades. Since a respective reference for the applica-
tion of Kollár and Springer’s model to pre-twisted beams
could not be found, Jung’s approach was chosen. The three
selected methods are implemented as the Wiedemann, Song,
and Jung approaches in the in-house code PreDoCS to cre-
ate and compare cross-section stiffness matrices and stress
distributions. In the following section, the theory of the Jung
approach is discussed in more detail, as it is representative of
the other two approaches as well. The derivation of the other
analytical approaches can be found in the original literature.

https://doi.org/10.5194/wes-9-1465-2024 Wind Energ. Sci., 9, 1465–1481, 2024
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2.6 Theoretical treatment of the Jung approach

The cross-sectional theory named the Jung approach as de-
scribed by Jung and Nagaraj (2002) is reviewed in the follow-
ing. The derived cross-sectional stiffness matrix is required
for the comparison with the other cross-sectional approaches
conducted in Sect. 3.

The Jung approach is a so-called mixed approach or semi-
inverse approach. Therein, all element stresses except the
shear stress and the hoop moment can be directly calcu-
lated with the given cross-sectional displacements. The shear
stress and the hoop moment are treated as unknowns and are
determined by using continuity conditions around each cell
of the cross-section.

2.6.1 Kinematics

In contrast to Jung and Nagaraj (2002), the z axis is used as
the beam axis; see also Fig. 1. This leads to different kine-
matic equations that are adopted from Librescu (2006). Ad-
ditionally, the moment around the y axis (which is the z axis
in the Jung coordinate system) is defined as positive in the
opposite direction. Fig. 1 shows the coordinate systems used.
These are an orthogonal Cartesian coordinate system (x, y,
z) and a curvilinear coordinate system (n, s, z) at the point P ,
where s is measured along the mid-surface of the shell wall
and n is normal to s. The pole is the pole of rotation of the
cross-section around the z axis and is assumed given for the
derivation of the kinematics.

The strains of the contour (εzz, κzz, κzs) can be formulated
as functions of the cross-sectional displacements (wp,z, βx,z,
βy,z, φ,z, φ,zz, γxz, γyz), which are given by the relationships

εzz =wp,z (z)− x (s) ·βy,z (z)+ y (s) ·βx,z (z)−ω (s) ·φ,zz (z) ,
κzz =−βx,z (z) · x,s (s)−βy,z (z) · y,s (s)+ rt (s) ·φ,zz (z) ,
κzs =2 ·φ,z (z) .

(2)

2.6.2 Constitutive relations

To describe the material behavior, the classical laminate the-
ory (CLT) is used with the complete and coupled 6× 6 disk
and plate stiffness matrix of the shell (also referred to as ABD
matrix). The transverse shear stiffness of the plate is also
considered. The force and moment fluxes on an infinitesimal
piece of the shell are shown in Fig. 2.

The constitutive relations are semi-inverted to obtain the
missing force and moment fluxes (Nzz,Mzz,Mzs) and strains
(γzs , κss) from the strains and fluxes for which assumptions
are made (displacement-based part: εzz, κzz, κzs ; force-based
part: Nzs , Mss). For the constitutive relations, it follows that

Figure 2. Shell forces and moments based on Jung and Nagaraj
(2002).


Nzz
Mzz

Mzs

γzs
κss

= C ·

εzz
κzz
κzs
Nzs
Mss

 . (3)

2.6.3 Determination of Nzs and Mss

Assumption for Nzs and Mss are made in (Jung and Park,
2005, Eq. 13, force-based approach). They are given by the
expressions

Nzs =N
0
zs −

s∫
0

Nzz,z ds, (4)

Mss =M
0
ss + xM

x
ss + yM

y
ss −

s∫
0

Mzs,z ds, (5)

where N0
zs , M

0
ss , M

x
ss , and My

ss represent the unknown cir-
cuit shear fluxes and hoop moments for each cell of a closed
multi-cell section. To obtain the continuity condition for each
cell of the multi-cell cross-section, four conditions for each
cell (Ci) are used and are given by
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∮
Ci

γzs ds = 2Ai ·φ,z, (6)

∮
Ci

κss ds = 0, (7)

∮
Ci

x · κss ds = 0, (8)

∮
Ci

y · κss ds = 0. (9)

Herein, Ai is the enclosed area of the respective cell i.
After solving this linear system of equations for the given
cross-sectional geometry, the variables N0

zs , M
0
ss , M

x
ss , and

M
y
ss are obtained, yielding an expression for Nzs and Mss

given by(
Nzs
Mss

)
= ξ = ξ a

+ ξ r
= f · qb+F · qb,z, (10)

where qb =
(
wp,z βx,z βy,z φ,z φ,zz

)T and ξ a and ξ r

are the active and reactive parts of the shear flux and hoop
moment as defined by Gjelsvik and Hodges (1982).

2.6.4 Cross-sectional stiffness relations

The cross-sectional stiffness relations are subdivided into an
active part (denoted by Kbb) and a reactive part (denoted by
Kvv and Kbv), which are derived in the following. The active
part of the strain energy is considered first. Using the prin-
ciple of virtual work, the active strain energy related to the
virtual strains becomes

Wa =

∫
C

(Nzz · δεzz+Mzz · δκzz+Mzs · δκzs

+Nzs · δγzs +Mss · δκss)ds. (11)

Herein, the virtual strains are derived from the virtual
cross-sectional displacements δqb. With the help of equa-
tion Eq. (11), it is possible to establish a relation between
the cross-sectional displacements qb and the corresponding
cross-sectional loads given by

F b =
(
N Mx My T Mω

)T
=Kbb · qb, (12)

where N is the normal force; Mx and My are the bending
moments around the x and the y axis, respectively; T is the
torsion moment; and Mω is the warping bi-moment.

In order to obtain the shear stiffness terms, a cantilevered
beam that is loaded at the tip by shear forces in the x direc-
tion, Vx , and the y direction, Vy , is considered following the
first-order shear deformation theory. It has to be noted that

this case does not represent the wind turbine blade use case.
Once the stiffness and mass properties of all cross-sections
are calculated, a beam model consisting of several differ-
ent cross-sections representing the blade certainly needs to
be constructed and can subsequently be used to carry out
load simulations, obtaining the real load distribution along
the blade. Differentiating the cross-sectional load vector F b
with respect to z yields the expression

F b,z =
(
0 −Vy Vx 0 0

)T
=Kbb · qb,z. (13)

With qb,z =K−1
bb ·F b,z denoting the cross-sectional dis-

placements for extension, bending, and torsion, the reactive
part of the shear flux ξ r can be determined using

ξ r
= F ·K−1

bb ·

(
Vx
Vy

)
= fr
·

(
Vx
Vy

)
. (14)

The shear forces are calculated with the matrix p, which is
defined by(
Vx
Vy

)
= p · q. (15)

Herein, q =
(
wp,z βx,z βy,z φ,z φ,zz γxz γyz

)T
is the complete vector of the cross-sectional displacements.
The matrix p is split in a 2× 5 left part called p1 and a 2× 2
right part called p2. Introducing

Kvv = frT
·3 · frT (16)

and

Kbv = fT ·3 · frT , (17)

with 3=
[
C44 C45
C45 C55

]
, the resulting 7× 7 cross-sectional

stiffness matrix K is obtained, which is given by the expres-
sion
K=[[

Kbb + 2Kbvp1+pT1 Kvvp1
] [

Kbvp2+pT1 Kvvp2
][

Kbvp2+pT1 Kvvp2
] [

pT2 Kvvp2
] ]

. (18)

Substitution into Eq. (1) yields the relationship between
the cross-sectional displacements q and the internal loads F .
The rows and columns of the matrix K are then rearranged to
form the order given in Table 2. This indexing of F , K, and
q is used in the following.

It should be mentioned that the formulation of the kine-
matics results in a point of attack for extension and bending
loads that is located in the origin of the cross-section coor-
dinate system. The point of attack for transversal and torsion
loads is the pole (also referred to as shear center); see Fig. 3.

3 Comparison of cross-sectional approaches

In this section, the mechanical properties for six different test
cases (with two different cross-section geometries) are deter-
mined utilizing the three cross-sectional approaches selected
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Table 2. Explanation of the indices of the cross-section stiffness
matrix K, the cross-section displacements q, and the internal loads
F .

Index Internal load type

1 Transversal force in the x direction
2 Transversal force in the y direction
3 Extension
4 Bending around the x axis
5 Bending around the y axis
6 Torsion
7 Warping

Figure 3. Points of attack for the internal loads.

in Sect. 2.5. Thereby, the stiffness matrix, the positions of
the elastic and the shear center, and the stress distributions
across the cross-section are compared with the results of the
2D FE solver BECAS (Blasques, 2012), which serves as a
reference. The elastic center is the point where an axial force
does not induce bending. The shear center is the point where
applied transverse forces do not induce torsional twist. The
presented analytical approaches use the origin of the cross-
section as the application point for axial forces and bending
moments. The transverse forces and torsional moments are
applied at the shear center. Both analytical approaches, Song
and Jung, require the pole (center of rotation of the cross-
section) as input for the kinematic formulations. With the as-
sumption that the center of rotation equals the shear center,
the Wiedemann (2007) approach is the only approach that
can be used to determine the shear center in advance. In con-
trast to the analytical approaches, the application point for
all the force and moment load of the cross-section for BE-
CAS is the origin. To be able to compare the analytical ap-
proaches with BECAS, the origin of the cross-section must
coincide with the shear center. This is achieved by translating
the cross-section geometry accordingly prior to the analysis.
In the case of Song and Jung the shear center can be obtained
from the shear stress distribution, as the shear center can also

Table 3. Number of elements of the cross-sections for the different
approaches.

Test case Wiedemann, BECAS
ID Song, Jung

0 300 300
1 300 300 · 24= 7200
2 300 300 · 24= 7200
3 300 300 · 24= 7200
10 225 225
11 225 225 · 24= 5400

be referred to as the point of attack of the resultant shear
force.

3.1 Test cases

The comparison is carried out using two different cross-
sections with different material distributions. One cross-
section is a thin-walled rectangle (Fig. 4a), allowing a vi-
sual verification of expected stress distributions for simple
load cases. The second cross-section is a NACA 2412 airfoil
with two shear webs at 30 % and 50 % of the chord length,
measured from the leading edge, as shown in Fig. 4b. This
cross-section is representative of a wind turbine rotor blade.
For the distinction between effects caused by the geometry
and the material, two material concepts are used: aluminum
as an isotropic material (E = 71× 103 MPa, ν = 0.32) and a
composite layup consisting of carbon fiber UD prepreg based
on Hexcel T800/M21 (E1 = 134.7× 103 MPa, E1 = 7.7×
103 MPa, ν12 = 0.369, ν22 = 0.5, G21 = 4.2× 103 MPa, t =
0.184 mm). The stacking sequence of the webs of the NACA
2412 airfoil is (0/452/− 452/902/452/− 452/0)s, and all
other stacking sequences are (02/45/02/− 45/02/45/90/−
45/90)s. Based on the two cross-sections and the aforemen-
tioned materials, the following test cases are created and as-
signed a unique ID:

– 0 – rectangular CS made of 4.416 mm aluminum (same
thickness as the composite layup);

– 1 – rectangular CS made of the composite layup de-
scribed above;

– 2 – rectangular CS made of the composite layup de-
scribed above rotated by 30° in all walls to get a cir-
cumferentially uniform stiffness configuration (CUS,
Librescu, 2006, p. 88);

– 3 – rectangular CS made of the composite layup de-
scribed above rotated by 30°, with walls opposite to
each other with a different sign to get a circumfer-
entially asymmetric stiffness configuration (CAS, Li-
brescu, 2006, p. 91);

– 10 – NACA 2412 CS made of 4.416 mm aluminum;
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Figure 4. Cross-section geometries in PreDoCS for test cases 0–3 (a) and 10–11 (b). BECAS mesh of the left upper corner for test cases
1–3 (c) and front lower web–shell intersection (d).

Table 4. Test case 1 – rectangular cross-section with composite layup.

BECAS PreDoCS, Jung PreDoCS, Song PreDoCS, Wiedemann

value diff. [%] value diff. [%] value diff. [%]

K11 1.152× 108 1.150× 108
−0.16 1.396× 108 21.19 – –

K22 4.19× 107 4.169× 107
−0.49 9.023× 107 115.37 – –

K33 1.038× 109 1.042× 109 0.32 1.042× 109 0.32 1.042× 109 0.32
K44 4.964× 107 4.984× 107 0.41 4.984× 107 0.41 4.984× 107 0.41
K55 1.428× 108 1.436× 108 0.57 1.436× 108 0.57 1.436× 108 0.57
K66 2.063× 107 2.053× 107

−0.49 2.053× 107
−0.50 2.053× 107

−0.50
K77 – 5.908× 105 – 5.908× 105 – - –

– 11 – NACA 2412 CS made of the composite layups de-
scribed above.

To obtain accurate results for BECAS, a fine mesh and an
accurate geometric representation of the cross-section is re-
quired (Maes et al., 2024). The contour is discretized in the
contour direction similarly for all cross-section calculations
based on a mesh convergence study. The rectangular cross-
section (0–3) is discretized in the contour direction with 300
equidistant elements of 10 mm length. It should be men-
tioned that for the rectangular cross-section the analytical
approaches are independent of the discretization and already

obtain accurate results with a discretization of four elements
in the contour direction. A further discretization refinement
does not affect the calculation results. Nevertheless, in order
to be able to compare element-wise stresses, the same dis-
cretization in the contour direction was chosen for the analyt-
ical approaches and for BECAS. The airfoil with webs (test
cases 10 and 11) is discretized in the contour direction with
225 elements of 10 mm length. The analytical approaches do
not need a discretization in the contour thickness direction;
BECAS requires a discretization for each layer of the lami-
nate in the contour thickness direction. As the laminates con-

https://doi.org/10.5194/wes-9-1465-2024 Wind Energ. Sci., 9, 1465–1481, 2024



1474 E. Werthen et al.: Comparison of different cross-sectional approaches

Table 5. Test case 2 – rectangular cross-section with CUS layup.

BECAS PreDoCS, Jung PreDoCS, Song PreDoCS, Wiedemann

value diff. [%] value diff. [%] value diff. [%]

K11 1.706× 108 1.715× 108 0.49 2.020× 108 18.39 – –
K22 6.235× 107 6.217× 107

−0.28 1.223× 108 96.13 – –
K33 7.256× 108 7.280× 108 0.32 7.280× 108 0.32 7.280× 108 0.32
K44 3.448× 107 3.464× 107 0.46 3.483× 107 1.02 3.483× 107 1.02
K55 9.968× 107 1.003× 108 0.58 1.004× 108 0.67 1.004× 108 0.67
K66 3.074× 107 3.062× 107

−0.41 3.062× 107
−0.41 3.062× 107

−0.41
K77 – 3.679× 105 - 4.128× 105 – – –
K14 2.464× 107 2.484× 107 0.82 2.463× 107

−0.03 – –
K25 2.587× 107 2.595× 107 0.33 2.463× 107

−4.78 – –
K36 −4.924× 107

−4.926× 107 0.04 −4.926× 107 0.04 – –

Table 6. Test case 3 – rectangular cross-section with CAS layup.

BECAS PreDoCS, Jung PreDoCS, Song PreDoCS, Wiedemann

value diff. [%] value diff. [%] value diff. [%]

K11 1.692× 108 1.715× 108 1.33 2.020× 108 19.38 – –
K22 6.139× 107 6.217× 107 1.27 1.223× 108 99.19 – –
K33 7.111× 108 7.148× 108 0.52 7.280× 108 2.38 7.280× 108 2.38
K44 3.307× 107 3.320× 107 0.41 3.483× 107 5.32 3.483× 107 5.32
K55 9.106× 107 9.160× 107 0.59 1.004× 108 10.20 1.004× 108 10.20
K66 3.075× 107 3.062× 107

−0.42 3.062× 107
−0.42 3.062× 107

−0.42
K77 – 3.784× 105 – 4.128× 105 – – –
K13 8.940× 107 9.112× 107 1.93 9.961× 107 11.43 – –
K23 −3.218× 107

−3.313× 107 2.96 −4.970× 107 54.44 – –
K45 −2.177× 106

−2.171× 106
−0.25 0.000 −100.00 0.000 −100.00

K46 −8.150× 106
−8.144× 106

−0.07 −8.144× 106
−0.08 – –

K56 8.140× 106 8.163× 106 0.29 8.163× 106 0.28 – –

sist of 24 layers, 24 elements are used in thickness direction.
The resulting number of elements for the different test cases
and the different models are listed in Table 3.

3.2 Stiffness terms

The Tables 4–7 show the non-zero values of the stiffness ma-
trix and, for the test case 11 (NACA 2412 profile), the posi-
tions of the elastic (EC) and shear (SC) centers. The indices
are according to the description given in Table 2.

The shear stiffness terms of Song show high deviations
compared to BECAS. In all test cases, deviations around
20 % for K11 and between approximately 100 % and 260 %
for K22 can be observed, due to the FSDT used by this
approach. The Jung approach shows deviations below 5 %,
which indicates a significant improvement. The Wiedemann
approach does not cover the shear stiffness terms due to its
shear-stiff formulation. The deviations of the main stiffness
terms for extension (K33), bending (K44 and K55), and tor-
sion (K66) are below 1 % for the Jung approach. The same

applies to the Song and Wiedemann approaches except for
test case 3 (CUS layup), where deviations up to 10 % occur,
which have to be further investigated. The coupling stiffness
terms of the Jung and Song approach show a good accor-
dance with the BECAS results. The stiffness term K36 for
extension–torsion coupling of test case 2 (CUS) is calculated
almost exactly. The same applies to the stiffness terms K46
and K56 for bend–twist coupling of test case 3 (CAS). Sim-
ilar to the shear stiffness, the coupling terms are not present
in the Wiedemann approach.

The deviations for the elastic and shear center given in Ta-
ble 7 are well below 1 %. It should be noted that the stiff-
ness terms for restrained warping (terms with index 7) are
included in the Song and Jung approach but not available
in BECAS. Numerical values for warping stiffness terms of
closed cross-sections are not provided in the literature, nei-
ther for beam formulations nor for 2D FE approaches where
warping is considered as described for the VABS code in Yu
et al. (2005). Therefore, a study on the effect of warping at
the level of a beam structure needs to be carried out in the
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Table 7. Test case 11 – NACA 2412 cross-section with composite layup.

BECAS PreDoCS, Jung PreDoCS, Song PreDoCS, Wiedemann

value diff. [%] value diff. [%] value diff. [%]

xEC [m] 0.108 0.109 0.06 0.109 0.06 0.109 0.06
yEC [m] −0.009 −0.009 −0.00 −0.009 −0.00 −0.009 −0.00
xSC [m] 0.001 0.000 −0.11 0.000 −0.11 0.000 −0.11
ySC [m] 0.000 0.000 0.00 0.000 0.00 0.000 0.00
K11 1.018× 108 1.018× 108

−0.03 1.240× 108 21.78 – –
K22 1.526× 107 1.461× 107

−4.22 5.446× 107 256.93 – –
K33 7.241× 108 7.270× 108 0.39 7.270× 108 0.39 7.270× 108 0.39
K44 1.389× 106 1.393× 106 0.33 1.393× 106 0.33 1.392× 106 0.22
K55 6.369× 107 6.425× 107 0.88 6.425× 107 0.88 6.425× 107 0.88
K66 8.173× 105 8.173× 105 0.01 8.249× 105 0.94 8.145× 105

−0.33
K77 – 1.534× 104 – 1.534× 104 – – –
K34 −6.675× 106

−6.715× 106 0.60 −6.715× 106 0.60 −6.715× 106 0.60
K35 −7.842× 107

−7.915× 107 0.92 −7.915× 107 0.92 −7.915× 107 0.92
K45 8.391× 105 8.547× 105 1.86 8.547× 105 1.86 8.547× 105 1.86

Figure 5. Shear stress σzs distribution for test case 0 under a unit transverse force in the y direction for BECAS (a) and PreDoCS approaches
of Jung (b), Song (c), and Wiedemann (d).

https://doi.org/10.5194/wes-9-1465-2024 Wind Energ. Sci., 9, 1465–1481, 2024



1476 E. Werthen et al.: Comparison of different cross-sectional approaches

Figure 6. Shear stress σzs distribution for test case 10 under a unit transverse force in the y direction for BECAS (a) and PreDoCS approaches
of Jung (b), Song (c), and Wiedemann (d).

Figure 7. Transverse shear stress σzn for test case 0 under a unit
transverse force in the y direction (Song approach).

future. A comparison of warping displacements and cross-
sectional stiffness terms between BECAS and VABS can be
found in Blasques (2012).

3.3 Stress distributions

Figures 5 and 6 show a qualitative comparison of the shear
stress distributions caused by a transverse force in the y di-
rection. A comparison between the three selected approaches
for the test cases 0 (rectangular cross-section) and 10 (NACA
2412 airfoil) is shown. Furthermore, the centers of gravity
(CoGs), the elastic centers (ECs), and the shear centers (SCs)
are displayed.

The differences between the different approaches in the
shear stress distributions can be seen very clearly. The ex-
traordinarily high deviations of the Song approach result
from the use of the FSDT, which assumes a constant shear
strain over the entire cross-section. The shear stress mag-
nitude using Song’s approach is only a third of that using
the other approaches. This is caused by Song’s assumption
that the shear stresses occur in the direction of the contour as
well as perpendicular to the contour. Combined with the as-
sumption of the FSDT (constant shear strain over the cross-
section) and the isotropic material of test case 0, the hori-
zontal parts of the contour take two-thirds of the transverse
force due to their two-thirds share of the total contour length.
Hence, the vertical parts carry only one-third due to the same
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Figure 8. Comparison of the stress distribution along the contour thickness between BECAS (top) and Jung (bottom). Normal stress σzz
under a unit bending moment around the x axis, evaluated at the center of the upper edge of test case 1 (a). Shear stress σzs under a unit
transverse force in the y direction, evaluated at the center of the left web of test case 1 (b).

reason. To illustrate the described effect, the transverse shear
stress of the Song approach is shown in Fig. 7. The qualita-
tive stress distributions of Jung and Wiedemann show a good
agreement with the results from BECAS. Differences in the
absolute values can be observed for test case 10 and are dis-
cussed later in the qualitative comparison.

Figure 8 shows the comparison of stress distribution along
the contour thickness between BECAS (top) and Jung (bot-
tom) of test case 1 (rectangular cross-section with the layup
of (02/45/02/− 45/02/45/90/− 45/90)s). Figure 8a shows
the maximum normal stress σzz under a unit bending around
the x axis, evaluated at the center of the upper edge of the
rectangular cross-section. It can be observed that the 0° plies
carry the major portion of the longitudinal load, which is
what the 0° plies are included for. Figure 8b shows the max-
imum shear stress σzs under a unit transverse force in the
y direction, evaluated at the center of the left web of the rect-
angular cross-section. In this case the ±45° plies carry the
major portion of the shear loads, which is the purpose of the
±45° plies. Both figures show very good agreement between
the BECAS and Jung solutions.

A quantitative comparison was carried out and is shown
in Fig. 9. The distributions of σzz and σzs using the ana-
lytical approaches are compared with those using BECAS
for all test cases and all load cases (transverse force in the
x direction and y direction, extension, bending around the
x axis and the y axis, torsion). Only the active stresses are
considered (σzz for extension and bending; σzs for transverse
force and torsion), since the reaction stresses become neg-
ligibly small and therefore small absolute differences result
in very high relative differences. The goal is to represent the
deviation of the stress distribution along the complete con-
tour of the cross-section for one load case and one test case
in one single value. Hence, the absolute value of the rela-

tive difference was calculated for each element midpoint of
the cross-section, so that negative and positive differences do
not cancel each other out. From this difference distribution,
the median is taken as a comparative value, because it is not
strongly influenced by local outliers. The medians of rela-
tive differences for all test case–load case combinations are
shown in Fig. 9 as boxplots1 grouped by test case, load case,
and calculation method.

Figure 9c shows the already mentioned wrongly calcu-
lated shear stress distribution under a transverse force with
the Song approach (due to the FSDT used therein). The me-
dian of the deviations for Jung and Wiedemann are below
1 %. Outliers up to 25 % of the median can be observed for
the test cases 10 and 11 displayed in the upper right corner of
Fig. 9a. The corresponding load case for the Jung approach is
the transverse load in the y direction, shown in Fig. 9b. The
shear stress of the analytical approaches is concentrated in
the webs rather than in the leading and trailing edge contour
compared to BECAS. This effect has to be further investi-
gated.

As already mentioned, for an accurate stress distribution of
a rectangular cross-section (as shown in Fig. 5), the analyti-
cal approaches require only four elements (one element per
edge) and can return the exact stress function along the ele-
ment or the minimum and maximum values of the element.
Due to the FE approach of BECAS, more finite elements are
necessary to get a correct stress distribution (see Fig. 5). For
cross-sections with segments that are not straight, the analyt-

1A boxplot is a graphical representation of data that gives a good
overview of the location and scatter of that data. The boxplots used
in this paper contain the following statistical data: median, orange
line in the box; interquartile range, box; 1.5 times the interquartile
range, “antennae”; and outliers, circles.

https://doi.org/10.5194/wes-9-1465-2024 Wind Energ. Sci., 9, 1465–1481, 2024



1478 E. Werthen et al.: Comparison of different cross-sectional approaches

Figure 9. Boxplots of the median of the relative difference for
the active normal and shear stress distributions related to BECAS,
grouped by test case (a), grouped by load case (b), and grouped by
cross-section theory (c).

ical approaches also need an accurate geometric representa-
tion of the cross-section using several elements, but the stress
distribution is exact within one element.

Figure 10. Rotor blade with multiple cross-sections.

3.4 Performance

Table 8 shows the computation time for the calculation of
the cross-sectional properties for BECAS and the three im-
plemented cross-section processors in PreDoCS according
to the approaches of Jung, Song, and Wiedemann. Further-
more the computational time for one load case is displayed.
All computations include the time for meshing of the cross-
sections. For all approaches the same mesh discretization in
the contour direction is used (according to Table 3) to be able
to compare the stress distributions given in Figs. 5 and 6.
The calculations are executed on the same PC (Windows 11,
64-bit, AMD Ryzen 7 5800H, 8× 3.2–4 GHz, 16 GB RAM).
The analytical approaches achieve the same accuracy already
with four elements in the contour direction. Further mesh re-
finement does not affect the stiffness terms and stress dis-
tribution. In contrast to that, a fine FE mesh is required in
BECAS in order to obtain a converged solution. The result-
ing benefit by means of computation time savings is shown
in the last row of Table 8.

It can be observed that for the cross-sectional calculation
the analytical approaches are an order of magnitude (partly
even more) faster than BECAS. For a single load case the dif-
ference is around 2 orders of magnitude. BECAS uses MAT-
LAB, which has highly optimized functions for matrix calcu-
lations, where a further improvement of the performance is
difficult. For PreDoCS, code optimization has not been done
yet. Using packages such as Cython (Behnel et al., 2011)
will further improve the computation performance. Cython
provides the option to compile parts of the Python code as
native C-like code which can improve the performance sig-
nificantly.

The time savings need to be further analyzed in the con-
text of a design optimization problem for a complete rotor
blade modeled as a beam. Thereby the PreDoCS module has
to provide the stiffness and stress distributions for multiple
cross-sections along the span as shown in Fig. 10 and mul-
tiple load cases. The performance improvement per cross-
section and load case will therefore add up.
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Table 8. Comparison of the computation time for the calculation of the cross-sectional properties and one load case, compared to BECAS.
The last row compares the calculation of the rectangular cross-section with a four-element mesh for PreDoCS. SD stands for standard
deviation.

Approach Cross-section Load case

Mean [ms] SD [ms] Diff. [%] Mean [ms] SD [ms] Diff. [%]

BECAS 6338.2 847.5 428.4 282.1
Jung 807.1 30.3 −87.3 5.06 0.95 −98.8
Song 592.4 37.4 −90.7 4.76 0.74 −98.9
Wiedemann 321.2 13.5 −94.9 3.62 0.64 −99.2

Jung (four-element mesh) 8.48 0.38 −99.87 0.11 0.32 −99.97

4 Conclusions

The present paper provides an evaluation of different analyt-
ical cross-sectional approaches on the basis of requirements
derived for the preliminary design of wind turbine blades.
The approaches of Wiedemann, Song, and Jung were used to
calculate cross-sectional stiffness matrices and stress distri-
butions across the cross-section. The results were compared
to each other and to the 2D FE-based approach of BECAS,
which served as a reference.

Since transverse forces play an important role within the
design of rotor blades, the Song approach turned out not to
be suitable due to the wrongly determined shear stress dis-
tribution caused by the use of the FSDT. The shear stiff-
ness terms and the related coupling terms were also not cal-
culated correctly. The Wiedemann approach did not cover
the coupling and shear stiffness terms at all. It is a simple
and fast approach usable only for determining stress distri-
butions, which show good agreement with the results from
BECAS and Jung.

In terms of the accuracy of stiffness terms (also for cou-
pling and shear) and stress distributions, the approach of Jung
shows the best results, with deviations to BECAS below 5 %
(below in most cases), and is therefore taken as the cross-
section processor in PreDoCS. For the stress analyses of test
cases 10 and 11, deviations up to 25 % can be observed in
Jung’s model for transversal load in the y direction, which
have to be further investigated. However, it should be noted
that the other analytical models do not predict the transverse
shear response better.

The comparison of the approaches on the level of a beam
structure with respect to overall beam deformations is a work
in progress. The effect of warping also needs to be further in-
vestigated. In general, the beam model itself must include
geometrical non-linearity in the sense of large deflections, as
blades undergo very large deflections in operation. Large de-
flections in turn result in additional coupling effects. For ex-
ample, when considering equilibrium in the deformed state
(which is the definition of geometrical non-linearity), large
flap-wise deflections trigger edge-wise bend–twist coupling.
If geometric non-linearity were to be involved in the beam

theory applied for the calculation of the cross-sectional prop-
erties, the structural parameters of the cross-sections would
need to be updated in each iteration step of the non-linear
beam solution, i.e., in each iteration of each time step in the
turbine simulation. This could potentially affect the turbine
dynamics, which would be interesting to look at. However,
this goes far beyond the scope of this paper and may be the
subject of future work. In any case, such an extension would
make the turbine simulation very costly, as the number of
iterations would increase dramatically.

The presented analytical approaches show a significantly
better performance with respect to computational time com-
pared to the 2D FE code BECAS. This underlines the usabil-
ity of analytical cross-section approaches in PreDoCS as a
solver within a design process where many design candidates
need to be evaluated and a high number of design iterations
occur. The higher resolution of the stress distribution due to
its exact and analytical function of the contour coordinate is
easy to differentiate analytically, which supports the usage of
the approach in gradient-based single- or multi-disciplinary
optimization processes with a high number of design vari-
ables.

Code and data availability. The code is open source and
available under the MIT License (Werthen et al., 2023,
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