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Abstract—Next-generation (NG) synthetic aperture radar
(SAR) systems will be capable of performing high-resolution,
wide-swath acquisitions at frequent revisit times. The overcoming
of conventional SAR limitations will also lead to the generation of
very large volumes of onboard data, which need to be stored and
managed by the system and downlinked to the ground. This poses
severe constraints in terms of onboard memory requirements
and downlink capacity, and in this challenging scenario, the
onboard quantization of SAR raw data represents a crucial
aspect, acting as a tradeoff between the achievable product
quality and the resulting onboard volume of data. State-of-the-
art (SoA) quantization schemes allow for enhanced data rate
allocation; however, the optimization is directly performed on
raw data, without targeting a desired performance on the final
higher level SAR/interferometric SAR (InSAR) product. In this
article, we investigate the use of artificial intelligence (AI), and
in particular of deep learning (DL), for developing a flexible
onboard SAR raw data quantization method, with the aim of
deriving an optimized and fully adaptive data rate allocation
given a set of desired performance metrics and requirements
in the resulting focused SAR and InSAR products, without
relying on a priori information on the acquired scene. Different
performance parameters are considered, such as the signal-to-
quantization-noise ratio (SQNR), the phase errors, the InSAR
coherence loss, as well as the resulting noise equivalent sigma
zero (NESZ), extending the capabilities of the architecture to
provide multiple bitrate estimations for a single input scene at
the same time, depending on the desired application case. We use
experimental TanDEM-X bistatic SAR data, both for the training
of the DL model as well as for the validation and demonstration
of the suitability of the proposed method. In view of a potential
onboard implementation, a possible hardware architecture for
the proposed compression scheme is investigated as well.

Index Terms—Convolutional neural network (CNN), deep
learning (DL), performance-optimized quantization, synthetic
aperture radar (SAR) raw data compression.
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I. INTRODUCTION

NEXT-GENERATION (NG) synthetic aperture radar
(SAR) systems will allow for a huge leap in performance,

by exploiting large bandwidths and digital beamforming
(DBF) techniques, in combination with multichannel [1],
[2] and/or multistatic configurations [3]. This will allow for
the realization of high-resolution, wide-swath interferometric
SAR (InSAR) and polarimetric SAR (PolSAR) acquisitions
[4]. Moreover, present spaceborne SAR missions, such as
Sentinel-1 [5], or future ones, such as NISAR [6], [7], and
especially ROSE-L [8] and Sentinel-1 NG [9], [10], will
acquire data either globally or over selected areas with a
temporal sampling in the order of one week or less. As
a consequence, an unprecedented volume of data will be
generated on such systems, which will have to be stored
and then downlinked to the ground. This aspect represents
a crucial, high-demanding requirement for the design of the
SAR system itself [1].

In this scenario, the definition of efficient onboard SAR raw
data quantization methods is of paramount importance. On
the one hand, the specific data compression strategy defines
the resulting volume of onboard data, which is linked to the
required onboard memory and downlink capacity, and on the
other hand, it directly affects the quality of the generated
SAR products. These two aspects must be carefully con-
sidered due to the limited acquisition capacity and onboard
resources of the system and, at the same time, to allow for
the achievement of the specified higher level SAR products
requirements and quality. Moreover, the nonlinear contribution
of the quantization error in the raw data representation has
strong implications in the final SAR and InSAR image (and to
higher level products such as digital elevation models (DEMs)
or biophysical parameters), due to its dependency on both
system parameters and local backscatter characteristics [11].
A widely used method for SAR raw data quantization is the
block-adaptive quantization (BAQ) [12], originally proposed
for the Magellan SAR mission to Venus. It represents a good
tradeoff between signal representation quality and resulting
data volume, as it adapts the quantization levels to the signal
statistics of the input raw data samples within a certain
block, aiming at minimizing the quantization error. In the
last decade, novel algorithms have been proposed starting
from the principle of BAQ, allowing for an improved and
more targeted performance optimization and resource alloca-
tion. Typically, these are acquisition-dependent compression
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schemes, as, e.g., for the case of the flexible dynamic BAQ
(FDBAQ), where the bitrate is selected depending on the
local signal-to-thermal-noise ratio (STNR) [13], [14]. For
its computation, the STNR requires the knowledge of the
backscatter within the illuminated scene, which is estimated
on board from the raw data power. The quantization settings
are then selected based on a series of lookup tables (LUTs),
which are stored on board. In turn, these are derived on
the ground by considering large-scale backscatter statistics
obtained from available global backscatter maps. However, the
FDBAQ carries out the bitrate allocation without considering
the actual performance degradation in the resulting high-level
SAR products and applications. Indeed, the local variability
and inhomogeneities in the backscatter distribution severely
impact the resulting quantization degradation [11], requiring a
direct link between the quantization settings and the focused
SAR domain to be properly handled.

An attempt to close this gap is represented by the
performance-optimized BAQ (PO-BAQ) [15], which is based
on the estimation of a 2-D spatial-variant bitrate alloca-
tion map in the raw data domain depending on the final
performance requirement defined on the higher level SAR
and InSAR products, such as the signal-to-quantization-noise
ratio (SQNR) or the interferometric phase errors. In order to
estimate the local distribution of the SAR intensity and, in
particular, its degree of homogeneity, the PO-BAQ exploits
a priori knowledge on the SAR backscatter statistics of the
imaged scene. This information allows for deriving 2-D bitrate
maps (BRMs), which must be available on board (stored or
uplinked) before commanding. For these reasons, the PO-BAQ
is not fully adaptive to the acquired scene since the quanti-
zation settings are derived from prior considerations and do
not directly account for the local conditions at the time of the
SAR survey. In addition, different quantization techniques have
been proposed in the literature, investigating their potential
for specific SAR configurations. This is the case, e.g., of the
FFT-BAQ [16], the principal components block quantization
[17], the multichannel block-adaptive quantization (MC-BAQ)
[18], and predictive coding for range compressed [19], [20]
and staggered SAR raw data [21], [22], as well as trans-
form coding [23] for the frequency scan (FScan) acquisition
mode [24].

In this challenging scenario, the advent of artificial intelli-
gence (AI), and in particular of deep learning (DL), represents
one of the most promising approaches for an effective explo-
ration of the data information content [25], [26], [27]. In
the field of remote sensing, convolutional neural networks
(CNNs), and especially convolutional autoencoders (CAEs),
have already demonstrated a high potential for the compression
and restoration of optical images, thanks to their ability
in handling 2-D spatial patterns [28], [29], [30]. Regarding
SAR data, several DL models have been proposed for the
compression of fully focused images [31], [32], [33], which,
for a real utilization in a spaceborne mission scenario, would
require the computationally expensive implementation of a
complete onboard focusing chain. In the context of SAR raw
data digitization and compression, the topic has remained
highly unexplored, mainly due to the lack of spatial correlation

and self-similarity among samples typically observed in the
raw data domain, which complicates the task of pattern recog-
nition. A first attempt to utilize machine learning (ML) was
proposed by Hay et al. [34], where they utilized shallow ML
methods to dynamically select different types of quantizers,
i.e., BAQ or FFT-BAQ, depending on the characteristics of
the recorded SAR raw data. Differently, Pilikos et al. [35]
proposed the use of a CAE for the compression of the real
and imaginary parts of the SAR raw data matrix and quantized
the output of the encoder using a learned vector quantization.
A high compression rate was achieved at the cost of severe
distortion of the reconstructed signal. This work was further
extended in [36], with the development of a vector-quantized
variational autoencoder (VQVAE). Finally, Asiyabi et al. [37]
proposed a complex-valued CAE with side information to
simultaneously compress both real and imaginary parts of
the raw data matrix. To the best of our knowledge, these
approaches currently remain at early stages of development
and their robustness and operational applicability still need to
be thoroughly assessed.

In this work, we propose a novel DL method for performing
a dynamic and adaptive onboard bitrate allocation to feed a
space-varying BAQ. The core idea comes from the intuition
that a direct link between the raw data and the focused
domains can be implemented through a DL model, without
the need for a complete SAR focusing (a preliminary proof
of concept of this idea was presented in [38] and [39]).
This allows for achieving a certain desired performance in
the final focused SAR product thanks to a dynamic alloca-
tion of quantization bits, which only depends on the raw
data characteristics and on the desired quality of the output
SAR/InSAR products. To do so, we tackle the problem as
a fully supervised DL regression task, where the model is
optimized with respect to various target performance criteria in
the focused SAR domain. As exemplary optimization criterion,
we consider targeting a certain uniform performance in the
resulting focused SAR product, similar to what is done by
the PO-BAQ. This allows for achieving an application-driven
raw data quantization method, which features a high degree
of flexibility in terms of target bit allocation criteria as well
as adaptation to the local conditions (e.g., backscatter) of the
acquired scene, without the need for additional information
and data required on board. This is particularly crucial in real-
world applications, where different scenarios need multiple
tradeoffs between data quality and compression efficiency.
For instance, urban areas and high-resolution DEMs demand
higher bitrate requirements. Conversely, repetitive acquisitions
of vast land cover areas for monitoring deforestation or
mapping require a more relaxed quality setting to extract the
essential information while reducing data transmission rates
and enhancing the acquisition capacity of the system [11],
[15]. As the DL model is used for parameter estimation (i.e.,
bitrate) and the actual quantization is performed by means
of a BAQ, the proposed method enhances the performance
of traditional fixed-rate BAQ quantizers without altering their
operation principle.

This article is structured as follows. A brief overview of
SAR raw data quantization background concepts is recalled
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in Section II. The description of the proposed method, named
AI-BAQ, including the model architecture, the used dataset,
and the training strategy, is presented in Section III. Section IV
details the obtained results, including the performance analysis
on the final SAR products, while Section V illustrates a
hardware feasibility assessment for a potential onboard imple-
mentation. A discussion summarizing the main outcomes and
findings of the present research is provided in Section VI, and
finally, conclusions and outlook are drawn in Section VII.

II. BACKGROUND CONCEPTS

In this section, the basics of SAR quantization are recalled
(Section II-A) together with the considered SAR performance
parameters (Section II-B).

A. Background Concepts on SAR Raw Data Quantization

Quantization represents a fundamental step in SAR signal
processing and data reduction, involving the representation of
continuous or analog signals with a limited set of discrete
values. In the process, a quantization error is introduced and
denoted as

q = s − sq (1)

with q representing the difference between the original signal s
and its quantized version sq. This error arises due to the finite
precision used for the representation of continuous ranges with
a discrete set of values, leading to inevitable inaccuracies in
the quantized signal. The proper handling and minimization of
the quantization error is crucial for maintaining signal fidelity
and achieving efficient data reduction. If the input s has a
random nature, q can be modeled as an additive and signal-
correlated random noise source [40]. Quantization errors are
typically considered as the joint contribution of granular and
overhead noise, where the number of decision levels (i.e.,
the number of bits used to represent the samples) and the
signal clipping values directly impact the former and the
latter error term, respectively. In particular, when considering
SAR scenes featuring a high degree of inhomogeneity in the
backscatter spatial distribution, an additional signal-dependent
performance degradation is introduced (e.g., in urban areas,
which are typically characterized by a high dynamic range
in backscatter). This effect is also referred to as low-scatter
suppression [11], [41], which, differently from the granular
and overhead errors, can be detected only after focusing on
the SAR images.

In an SAR acquisition, the responses of the illuminated
scatterers overlap in the raw data domain within an area ASAR
of dimensions

ASAR = Lch × Ls (2)

where Lch is the ground range-projected chirp length and
Ls indicates the azimuth synthetic aperture [15]. The two
quantities are defined as

Lch =
cτch

2 · sin (θinc)
(3)

Ls = λ
r
La

(4)

where c is the speed of light, τch is the chirp pulse duration, r
is the slant range distance, θinc is the incidence angle, and La is
the azimuth antenna length. Moreover, the responses from the
scatterers are weighted by the azimuth and elevation antenna
patterns (APs) depending on their location with respect to the
transmitting and receiving beams.

SAR raw data quantization is typically carried out using a
block-based scheme, such as the BAQ, where the decision
levels and the clipping thresholds for the compression are
derived from the mean power of the defined raw data block.
For this reason, if two overlapping targets have different
magnitude responses and are separated in range by dr and
in azimuth by da with

dr � Lch, da � Ls (5)

the quantizer will adapt its decision levels based on the
power level associated with the stronger target, which will
be better reconstructed, while the lower signal will appear
strongly distorted [11]. According to this, in addition to the
compression rate Nb used for data digitization, the degree of
inhomogeneity in the SAR backscatter distribution crucially
impacts the quantization performance on the final SAR and
InSAR product. According to these considerations, quantiza-
tion errors must be treated as a nonlinear and signal-dependent
noise source affecting the SAR data and, for this reason, the
encoding performance of a certain quantization method in
SAR imaging has to be evaluated within windows of size ASAR
as in (2).

B. Quantization Performance Parameters

In order to assess the impact of quantization errors and
to target specific performance assessments, we consider the
following quality measures, evaluated on the final SAR and
InSAR products.

1) Signal-to-Quantization-Noise Ratio: The SQNR is a
standard quantization performance metric, which can be
defined for a given SAR image pixel as

SQNR =
|x|2

|x − xq|
2 (6)

where x is the nonquantized SAR image after digitization
through the analog-to-digital converter (ADC) and xq is the
quantized one. The SQNR can be related to the total signal-
to-noise ratio (SNR) as follows:

SNR =
σ0

σ2
N

=
σ0

σ2
TN + σ2

QN
→ SNR−1

= STNR−1 + SQNR−1 (7)

where σ2
TN and σ2

QN represent the thermal and the quantization
noise power, respectively, and STNR is the signal-to-thermal-
noise ratio. In order to exclude potential outliers in the
corresponding ASAR region in the SAR image, we consider
the median value in each ASAR window for the present
performance assessment. Hence, the resulting bitrate is not
significantly affected by the presence of sparse very high or
very low-performance pixels (clearly assuming that they do
not dominate in the area of interest).
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2) Quantization Decorrelation γQuant: In the presence of
InSAR acquisitions, the impact of SAR raw data quantization
on the total coherence γ is assessed by considering the
factorization proposed in [42] and [43]. Here, γTot can be
decomposed into the following components:

γTot = γSysγVolγTempγQuant (8)

where the different terms on the right-hand side of the equation
represent the decorrelation caused by: system parameters (γSys)
which includes SNR, ambiguities, baseline decorrelation, and
spectral shift; volumetric scattering (γVol); temporal changes
(γTemp); and quantization (γQuant). Specifically, γQuant can be
computed as

γQuant =
γxq

γx
(9)

where γxq and γx represent the coherence of the quantized and
nonquantized images, respectively. Typically, the mean value
of γQuant computed within the area ASAR is associated with its
central pixel.

3) Phase Error ϕerr: The phase error represents the absolute
difference between the phases of the quantized (ϕxq ) and
unquantized (ϕx) InSAR images

ϕerr = |ϕxq − ϕx| mod 2π (10)

which is wrapped between 0 and 2π. For the performance
assessment, the median of the distribution of the absolute value
of ϕerr is considered within the ASAR integration window for a
better filtering of outliers, similarly as for the SQNR discussed
above.

4) Total Noise Equivalent Sigma Zero NESZTot: The
NESZTot quantifies the minimum backscatter signal strength,
which can be detected by an SAR system, and it can be
decomposed into the following two terms:

NESZTot = NESZth + NESZq (11)

where NESZth and NESZq are the thermal and quantization
noise equivalent sigma zero (NESZ) contribution, respectively.
The first term represents the system thermal noise floor and
varies along the range depending on the system parameters
and the second one considers a further degradation introduced
by quantization noise. NESZth on a given swath position
can be theoretically computed by knowing specific system
parameters [43], [44], while the additional impact given by the
quantization can be expressed in terms of quantization noise
power as

NESZq = |x − xq|
2. (12)

Also, in this case, the median value is considered within the
ASAR integration window.

III. METHOD

We address the problem of optimizing the onboard bitrate
allocation as a deep supervised regression task. For a given
input block of raw data, we estimate the target bitrate, which
ranges within a continuous interval of possible values. The
choice of a supervised learning approach lies in the possibility
of generating reliable labeled data, as detailed in the following.
In Fig. 1, the complete high-level framework of the proposed

Fig. 1. Flowchart of (a) training and (b) inference for the proposed AI-BAQ
method. The top plot highlights that the architecture is trained in order to link
uncompressed (i.e., not quantized) raw data and reference BRMs generated
in the focused domain. In the estimation task depicted in the bottom figure,
the trained architecture is able to provide the required BRM, which fulfills
a specific requirement (in the SAR image domain) directly from the raw
data without specific a priori knowledge or information. An SoA adaptive
quantizer, such as, in our case, a standard BAQ, performs the actual raw data
encoding exploiting the estimated BRM.

approach is depicted (a detailed description of the DL model
architecture is provided later on in Section III-B). Fig. 1(a)
characterizes the training phase of the DL model for the
regression task, which aims at estimating a 2-D BRM starting
from the SAR raw data. In particular, the reference BRMs used
during this supervised learning phase are derived from target
performance parameters computed in the fully focused image
domain, requiring a prior alignment between the considered
portion of SAR raw data and the corresponding focused SAR
image. In this way, a direct link between the uncompressed
raw data and a certain expected performance of the derived
higher level SAR products can be established without the
need for nearly real-time onboard SAR focusing. Moreover,
it is important to remark that the DL model training can be
performed on ground, prior to its operational deployment on
board.

Fig. 1(b) shows the structure of the complete onboard
quantization framework, called AI-BAQ, where the trained DL
model is used to dynamically estimate a BRM, given a certain
target performance parameter, which is finally used as input
to a BAQ for performing the actual quantization of the input
raw data.

In Section III-A the dataset generation used to train and
test the proposed AI-BAQ is described, followed by details on
the DL architecture in Section III-B and training strategy in
Section III-C; then, the performance evaluation framework is
outlined in Section III-D.
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Fig. 2. Considered dataset for training and testing the proposed DL model. Each marker indicates the approximate location of the experimental TanDEM-X
data taken commanded with BAQ bypass (i.e., 8-bit ADC).

TABLE I
TEST SITES’ DESCRIPTION, DATE, AND THEIR APPROXIMATE LOCATION

FOR TRAINING (UPPER GROUP) AND TEST (LOWER GROUP)

A. Dataset Generation

For the generation of a representative and consistent dataset
to be used to train, validate, and test the proposed DL
model, we utilize 21 TerraSAR-X and TanDEM-X bistatic data
acquired in bypass configuration, i.e., raw data are digitized
with a uniform 8-bit ADC and no further quantization is
applied. The acquisitions cover a variety of land cover types,
including deserts, snow- and ice-covered regions, forests, and
urban areas, characterized by variable local topography. Their
location is shown in Fig. 2 and further detailed in Table I.
Seventeen acquisitions are used for training and validation,
while the remaining four acquisitions are used for testing. We
are aware that this could lead to some correlation between
the datasets caused by the illumination of the same area on
the ground; nevertheless, given the relatively small amount of

Fig. 3. Approach used to derive the reference BRMs for training the DL
architecture based on thresholding on a given performance requirement. In
this case, the SQNR is selected as a performance parameter; however, the
same method can be applied to derive other metrics as well (e.g., phase errors
and coherence loss).

available acquisitions, we decided to also include these two
areas in testing.

For the generation of the reference BRMs to be used during
the supervised training, we requantize the bypass acquisitions
on ground using different BAQ rates [i.e., 2, 3, 4, and 6
bits/sample (bps)] and then performe the complete SAR and
InSAR processing [45], allowing for the derivation of different
SAR and InSAR products for each quantization rate. In order
to achieve more granularity in the reference data, even if only
integer (BAQ) bitrate values are available, we perform an
interpolation on the obtained performance such that we are
able to define a fractional bitrate, which satisfies a specific
requirement, as proposed in [15]. Afterward, we derive a
binary mask for each requantized raw data by setting a
threshold on the specific target performance parameter. An
overall reference BRM is then computed by selecting the
minimum number of bits that ensures a certain performance
in the corresponding area of the focused SAR/InSAR product.
In this way, we generate a reference map that correctly
targets a certain uniform performance in the focused SAR
product. An example of this method is depicted in Fig. 3,
where the SQNR is considered as the target performance
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Fig. 4. Comparison between the normalized mean range power for a
homogenous TanDEM-X acquisition over Greenland (orange curve) and the
two-way normalized elevation AP (blue curve) utilized for this specific
acquisition.

metric. Moreover, if a target performance cannot be achieved
even in the original bypass acquisitions (e.g., because of
particular acquisition geometries or system parameters), we
arbitrarily set the number of quantization bits to the minimum
value of 2 bps. An example of that is the case in which
the NESZth is larger than the required one due to system
parameters (e.g., the used range beam). This criterion could, of
course, be changed depending on the objective of the estima-
tion. Since quantization errors in SAR images are integrated
within a large area on the ground [see (2)], as introduced in
Section III-A [15], the derived BRM typically shows a smooth
spatial variability.

Here, NESZth and NESZq are the thermal and quantization
NESZ contribution, respectively. The first term represents
the system thermal noise floor and varies along the range
depending on the system parameters and the second one
considers a further degradation introduced by quantization
noise. The input to our DL architecture consists of patches of
128×128 samples of uncompressed raw data amplitude, noted
as xk. In order to link this information to the corresponding
reference bitrate value, the derived reference BRM is averaged
within a window of the same size as the corresponding raw
data patch (128 × 128 samples), centered around the patch
center sample and noted as yk. In this way, a single reference
bitrate yk value is associated with the entire input raw data
patch xk. The achieved granularity (one bitrate value per patch)
does not cause a significant loss of information, because of the
smooth spatial variability of the original reference BRM.

Furthermore, we observed that preliminary BRMs estimated
on homogeneous scenes (such as, e.g., Greenland, where both
the backscatter distribution and, consequently, the reference
BRM are rather uniform for a given requirement) showed an
elevation angle-dependent error caused by the weighting of
the AP. Indeed, a good match between the mean range power
and the AP range beams can be observed, as it is shown in
Fig. 4. Here, the slight shift between the two curves is due to
the fact that the comparison (i.e., range pattern compensation)
is normally performed in the range-compressed domain and
not in the raw data domain, in order to have a precise overlap
between the range beam and the received echo. This effect

needs to be compensated in order to remove the impact of the
AP on the estimation of the BRM through the DL model.

As part of preprocessing, we therefore consider the follow-
ing operations to define the input x to the DL architecture:

x =
|sraw|

ks,max
� P̃range (13)

where |sraw| is the amplitude of the raw data. ks,max is a
normalization factor, derived by considering raw data statistics
on high backscatter areas, which scales the overall distribution
of all the input raw data amplitudes between 0 and 1. Finally,
P̃range represents the normalized elevation AP considered for
the acquisition, which is applied as element-wise division (�)
for each single range line.

Overall, the complete dataset for training the DL model
consists of about 11 million independent data patches, derived
from 17 TanDEM-X SAR images, out of which 80% are used
for training and 20% are used for validation. This deliberate
split ensures that the DL model is exposed to a substantial
portion of the overall dataset during training, hence allowing
for robust learning. Simultaneously, the reserved 20% serves as
a distinct validation subset, allowing for the monitoring of the
optimization process by assessing the model’s generalization
capability to previously unseen data.

Finally, for testing the trained DL model, four acquisitions
(not included in the training dataset) are selected, represent-
ing: Greenland (snow/ice), Uyuni (soil and rock), Las Vegas
(urban areas), and Mexico City (urban areas and high-relief
topography). The main goal is to evaluate the performance
of the method when applied to different scenarios. In fact,
homogeneous scenes featuring both high (Greenland) and low
(Uyuni) backscatter values are meant to highlight estimation
biases throughout the scene; differently, the scenes over Las
Vegas and Mexico City are chosen to test the robustness of the
method as they feature a high variability in both backscatter
and topography. The considered backscatter images (β0) are
depicted in Fig. 5, together with their mean value and standard
deviation.

B. DL Model Architecture

The proposed DL architecture for the regression of BRMs
is presented in Fig. 6. It is composed of a sequence of
three convolutional layers (with 64, 128, and 256 3 × 3
kernels) with rectified linear unit (ReLU) activation function,
interleaved by max-pooling layers that halve the dimensions
of the input features at each layer. This first part of the
network mirrors the structure of a typical fully CNN (FCNN).
This configuration allows the model to extract hierarchical
features from the input raw data, capturing both low- and high-
level representations. Such a structure is in theory capable of
emulating a pseudo-focusing operation as a result of multi-
ple subsequent convolutions, similar to the principle of the
unfocused SAR processing, which allows for deriving a noisy,
partially focused image by simply applying boxcar filters
instead of matched filters in both range and azimuth directions
[46]. Moreover, the use of convolutional layers is particularly
beneficial for extracting informative spatial relationships and
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Fig. 5. Backscatter (β0) for the four test images. (a) Greenland (−6.3 ± 5.6 dB), (b) Uyuni (−9.8 ± 7.6 dB), (c) Las Vegas (−8.6 ± 7.0 dB), and (d) Mexico
City (−9.8 ± 7.6 dB). The corresponding mean µ and standard deviation σ are reported at the bottom of each image in the form of µ± σ.

Fig. 6. DL model architecture for estimating the BRM as a regression task. Three consecutive 3 × 3 convolutional layers with 2 × 2 max-pooling layers are
followed by a flattening operation in order to feed the data to the fully connected (dense) layer responsible for the regression operation. As output, a single
value (bitrate) is estimated for each of the M desired optimization cases (i.e., different target performance parameters).

patterns in image-based data [47], [48]. Following the convo-
lutional blocks, a flattening layer [with a dropout to improve
convergence (dropout rate of 0.2)] followed by a 128-element
fully connected layer is introduced. This latter layer serves as a
transition point where the learned features are aggregated and
processed for the estimation. A final linear regression layer
returns an M×1 vector of bitrate values, where M represents
the number of optimization parameters considered during the
training process.

The architecture’s hyperparameters (number of layers, num-
ber of kernels, size of the dense layer, and size of the
input patches) are selected through empirical hyperparameter
tuning, as a tradeoff between achievable performance and
onboard computational complexity, in a direct synergy with
the hardware feasibility assessment presented in Section V.

The input raw data patch of size 128 × 128 samples
(in range and azimuth dimensions) implies the storage in
the onboard memory of 128 azimuth lines, which is still
a manageable size with current hardware components for

spaceborne SAR. Moreover, 128 range samples represent the
standard range block size for the application of the BAQ
quantizer in current spaceborne SAR missions.

The output vector is crafted to provide a continuous value
representing the predicted bitrate within the range between
2 and 6 bps, which are typical values for SAR applications.
The dimension of the output vector M is a deliberate choice,
corresponding in size to the number of considered target
performance parameters. This allows the architecture to build
a one-to-many relationship between a single input patch xk and
a vector of M possible output values y j

k, where j = [1, . . . ,M],
hence enhancing the flexibility in the choice of the number of
optimization parameters. The notation considers the subscript
k as the patch index (i.e., its position), while the superscript j is
the target performance case (e.g., for a network optimizing for
SQNR = [10, 15, 20, 25], y1

k represents the bitrate required
on patch xk to achieve an SQNR of 10 dB). This principle
is depicted in Fig. 7, where an optimization of multiple
SQNR target values is considered; the output vector results
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Fig. 7. Example of the flexible approach considered for the input–output
relationship of the DL method. For each considered input raw data amplitude
patch xk , M reference outputs y1,...,M

k values are used during the training
phase, allowing the architecture to estimate the required bitrate for multiple
optimization parameters at once.

Fig. 8. Flowchart depicting the relationship between true bitrate values y and
estimated bitrate values ŷ. During the training, both y and ŷ are used in the
loss function computation, while during inference, the predicted bitrate values
ŷ are passed to the BAQ to perform the quantization of the input patch. In this
example, all the quantization values are used, while in an operative context,
the required performance target will define which value must be used.

in a 1-D estimated bitrate vector of size M×1, where each
value corresponds to the required bitrate to achieve a different
performance target (e.g., SQNR = [10, 15, 20, 25] dB). This
means that, at inference time, a specific BAQ rate can be
estimated and applied to blocks of 128 × 128 pixels within the
input raw data in order to achieve a user-defined performance
in the higher level SAR product. The practical realization of
nonuniform bitrates estimated by the network is done through
azimuth-switched quantization (ASQ) within each input patch
[49]. Here, by toggling integer quantization rates along the
azimuth dimension, it is possible to effectively implement a
fractional bitrate.

C. Training Strategy

For training the proposed DL model, we design a multiob-
jective loss function L as a combination of two terms, defined
as follows. As the goal of the quantization rate regression
task is to produce an estimation as close as possible to the
reference value, ideally matching it, the first term of the loss

Fig. 9. Evolution of the loss function during training (blue) and validation
(orange).

Fig. 10. Flowchart of the performance evaluation framework. The input raw
data are fed into the trained DL model, which predicts the required bitrate R̂
to be used by a BAQ. The same raw data are also quantized by means of a
fixed-rate BAQ and an FDBAQ. The full SAR processing is then performed
for all the resulting encoded images, and the performance evaluation is carried
out in the focused SAR image domain by comparison with the uncompressed
focused SAR data (bypass case).

function is the mean square error (mse) between the true
y and estimated values ŷ, serving as the core optimization
criterion. Additionally, in order to impose further control
over the resulting mean quantization rate for all optimization
parameters, we introduce as a second term the estimation ŷ
itself, resulting in

L = α
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where N represents the batch size used during training, M is
the number of desired performance target (i.e., network output
size), and α serves as a weighting term for balancing the two
different contributions. Since larger bitrate values ŷ reflect into
higher values of L, a proper setting of α allows for optimizing
a DL model, which, besides the quantization performance,
can favor a more stringent constraint on the overall bitrate.
As also depicted in Fig. 7, the pedix k refers to the patch
index, while the apex j represents the output value for a
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Fig. 11. Comparison of reference BRM on the Mexico City test case. (a) Backscatter (β0), (b) normalized raw data amplitude ((|sraw |/ks,max)), and
(c)–(f) different reference BRMs. (c) Reference BRMs related to a target SQNR = 15 dB, (d) γQuant = 0.95, (e) ϕerr = 10◦, and (f) NESZtot = −19 dB. For
the different requirements, the reference BRMs are varying in terms of both bitrate and spatial pattern.

specific performance requirement. To better describe the flow
of information during training and testing, we provide in Fig. 8
how the true y and predicted ŷ bitrate values are used as input
to (14) and during inference to the BAQ.

To improve convergence and mitigate the effects of van-
ishing gradients during training, we normalize the input as
described in (13), while for the reference output y, we intro-
duce the following linear conversion formula to scale the
dynamic between 0 and 1:

y =
R
4
− 0.5 (15)

where R stands for the quantization rate, spanning between
2 and 6 bps. In the same manner, the predicted value from
the architecture ŷ in [0, 1] is converted to a 2–6 bps value
representation by inverting (15) into

R̂ = 4 · (ŷ + 0.5) . (16)

Before the subdivision in training and validation, the dataset
is randomly shuffled to mitigate biases associated with sequen-
tial data arrangement, contributing to a more representative
and unbiased learning for the model. The training is carried
out using the ADAM optimizer [50] with an initial learning
rate of 10−3, further reduced by a factor of 10 at epochs 15
and 20 to improve convergence. The loss function evolution
for both the training (blue) and validation (orange) is shown in
Fig. 9. We apply early stopping with a patience of four epochs
based on the validation loss. This means that the training
was halted if the validation loss did not improve for three
consecutive epochs. The choice of patience was determined
through empirical verification, balancing training efficiency
with model performance to prevent overfitting.

D. Performance Evaluation Framework

The testing phase of the DL model consists of two separate
operations. The first step involved testing the BRM regression
capabilities, i.e., assessing the estimation accuracy in terms of
bps, while the second step consists in the evaluation of the
resulting performance metrics in the SAR image domain. For
the first task, the estimated BRM is compared with the “true”
BRM derived by exploiting a priori knowledge of the scene
(with the same approach used for deriving the reference BRMs
for the training phase). The comparison consists of measuring

the difference ∆R between the reference and test BRM, where
each pixel is evaluated as

∆R = R̂ − R. (17)

The estimation error ∆R is considered as mean error (µ) and
standard deviation (σ) on the entire test BRM, providing
information about the estimation bias and standard deviation.
The second part of the test phase consists of the performance
evaluation in the final SAR image domain. For this, we
consider the framework depicted in Fig. 10. The raw data
are quantized with the estimated BRM, according to the
proposed AI-based quantization scheme, and the complete
SAR processing is carried out, resulting in a focused SAR
image. In addition to AI-BAQ, other quantization methods
are considered on the same test acquisition as well (i.e., the
direct BAQ and FDBAQ) in order to assess the performance of
all the methods against the uncompressed (i.e., nonquantized)
one. The quantization performance parameters (introduced in
Section II-B) are calculated on the final SAR images, provid-
ing valuable insight into the respective quantization method,
and its settings (i.e., bitrate for the BAQ or performance target
for the AI-BAQ) used for encoding the data. Concerning the
FDBAQ, we implemented the method as in [13], considering,
for the quantization rate derivation, a threshold on the NESZ
of −19 dB (corresponding to the requirement on the TerraSAR-
X satellite) and taking into account typical TanDEM-X system
parameters [44].

IV. EXPERIMENTS AND RESULTS

In this section, we describe the conducted experiments and
the achieved results. Each experiment considers different target
performance parameters or a combination of them, aiming at
achieving a certain uniform performance in the SAR focused
domain. Moreover, for each scenario, the same input SAR raw
dataset is used during training, while the reference BRMs are
separately computed according to the different optimization
targets. An example is presented in Fig. 11, where, for a
single SAR raw data matrix, the corresponding focused image
and different BRMs are depicted, depending on the specific
target performance parameter. It then becomes clear how,
even if the same optimization criterion is considered (uniform
performance), the DL model needs to learn different spatial
patterns depending on the reference BRM.
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Fig. 12. BRM estimation results for case A1 on the Mexico City test scene.
(Left column) Reference and (right column) estimated BRM for the cases of
(a) and (b) SQNR = 10 dB, (c) and (d) SQNR = 15 dB, (e) and (f) SQNR =
20 dB, and (g) and (h) SQNR = 25 dB.

In Section IV-A, we consider a scenario in which a uniform
performance in the final SAR product is targeted, considering
multiple SQNR values. InSAR-related performance parame-
ters, i.e., the phase error ϕerr and the coherence degradation
γQuant, and the total NESZ are analyzed in Sections IV-B
and IV-C, respectively. In Section IV-D, we concentrate on
the combination of multiple performance parameters using

Fig. 13. SAR performance results on the Mexico City test site for the
experiment considering a uniform SQNR performance throughout the scene
and overall four different SQNR target values.

a single DL model. This case represents a very challenging
scenario since it significantly increases the level of complex-
ity of the regression task. The impact of the α parameter
[introduced in (14)] is detailed in Section IV-E and, finally, a
comparison with reference state-of-the-art (SoA) quantization
algorithms is presented in Section IV-F. According to this, it
is worth noting that since the optimization criteria adopted by
the FDBAQ [13] and by the methods proposed in this article
are different, a direct performance comparison is not straight-
forward. However, we wish to point out that our approach
allows for implementing a multiple performance and data rate
optimization using a single DL architecture, hence allowing
for higher flexibility depending on the specific application
requirements.

A. SQNR Optimization

As the first case, we consider the BRM optimization task on
a uniform target SQNR. In the specific, we aim at estimating
bitrate values for achieving an SQNR of 10, 15, 20, and 25 dB
(i.e., M = 4). For this case, the loss function considers an α
parameter equal to 0. As an example, the reference BRMs
and the estimation results over the Mexico City test scene
are depicted in Fig. 12 for all four different SQNR cases.
Regarding the SAR performance results, the corresponding
SQNR histograms computed in the focused SAR domain are
presented in Fig. 13. Here, one can appreciate how the distri-
bution of the SQNR correctly varies depending on the target
input requirement. The different level of granularity between
the reference BRMs and the estimated ones is caused by the
fact that each value of the reference BRMs is estimated using
a large integration window ASAR in the SAR image, as in (2).
Differently, each single pixel in the estimated BRMs represents
the output prediction obtained from an input patch of only
128 × 128 raw data samples. The complete performance for
all test acquisitions is reported in Tables II and III (A1 case),
showing both the BRM estimation error (i.e., ∆R in bps)
and the resulting performance in the focused domain (SAR
performance column). In all cases, the performance of the
BRM estimation is almost unbiased (mean ∆R ∈ [−0.4, 0.3]
bps) with a standard deviation always lower than 0.4 bps.
Regarding the SQNR performance, the distribution mean val-
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TABLE II
PERFORMANCE RESULTS FOR TWO OUT OF THE FOUR TEST ACQUISITIONS (GREENLAND AND UYUNI TEST AREAS) FEATURING HOMOGENEOUS

BACKSCATTER. EACH ARCHITECTURE CONFIGURATION (FIRST COLUMN) IS NAMED AFTER THE SUBSECTION IN WHICH IT IS INTRODUCED. FOR
EACH CASE, THE TARGETED PERFORMANCE PARAMETERS ARE REPORTED (SECOND COLUMN), AND FOR EACH ESTIMATION (LINES),

WE REPORT ESTIMATION RESULTS IN TERMS OF BITRATE DIFFERENCE (∆R = R̂−R) AND RESULTING RATE IN THE CYAN COLUMN,
AS WELL AS THE FINAL PERFORMANCE AFTER SAR PROCESSING IN THE ORANGE COLUMN. BOTH THE ESTIMATION

DIFFERENCE AND PERFORMANCE RESULTS ARE EXPRESSED AS MEAN AND STANDARD DEVIATION (µ ± σ). THE
ACHIEVED PERFORMANCE OF SOA METHODS (BAQ AND FDBAQ) ON THE SAME SCENES IS REPORTED FOR

ALL THE INVESTIGATED PARAMETERS (SQNR, NESZ, ϕerr , AND γQuant) IN THE LOWER TABLE

ues correctly follow the target performance, with a spread
that varies depending on the backscatter characteristics of the
scene.

B. InSAR-Related Parameter Optimization

A different scenario is investigated for the experiment
reported at line B1 of Tables II and III. Here, we consider
the optimization for a uniform requirement on a phase error
ϕerr of 10◦ and a quantization decorrelation γQuant of 0.95
(where γQuant represents the quantization decorrelation factor
in the factorization of the interferometric coherence presented
in [43]). Also, in this case, the parameter α in the loss function
is set to 0. Being γQuant an interferometric parameter, the
required rate is derived from the interferometric pairs, while

during inference, we perform the prediction on a single image
(reference image) and apply the resulting rate on both raw
data (i.e., references and secondary images). The performance
is finally evaluated after the interferometric processing. The
performance remains consistent and shows similar values as
in the previous case, demonstrating that the DL model can cor-
rectly manage different optimization parameters. Remarkably,
the targeted phase error is correctly achieved in all test cases,
including the more inhomogeneous ones, which represent very
challenging scenarios due to the high dynamic variation of the
backscatter.

C. Total NESZ Optimization

As the thermal NESZ for TerraSAR-X and TanDEM-X
typically spans in the range of about −17 up to −25 dB
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TABLE III
PERFORMANCE RESULTS FOR THE TWO TEST ACQUISITIONS (LAS VEGAS AND MEXICO CITY TEST AREAS) FEATURING INHOMOGENEOUS BACKSCAT-

TER AND HIGH-RELIEF TOPOGRAPHY. EACH ARCHITECTURE CONFIGURATION (FIRST COLUMN) IS NAMED AFTER THE SUBSECTION IN WHICH
IT IS INTRODUCED. FOR EACH CASE, THE TARGETED PERFORMANCE PARAMETERS ARE REPORTED (SECOND COLUMN), AND FOR EACH

ESTIMATION (LINES), WE REPORT ESTIMATION RESULTS IN TERMS OF BITRATE DIFFERENCE (∆R = R̂−R) AND RESULTING RATE
IN THE CYAN COLUMN, AS WELL AS THE FINAL PERFORMANCE AFTER SAR PROCESSING IN THE ORANGE COLUMN. BOTH

THE ESTIMATION DIFFERENCE AND PERFORMANCE RESULTS ARE EXPRESSED AS MEAN AND STANDARD DEVIATION
(µ ± σ). THE ACHIEVED PERFORMANCE OF SOA METHODS (BAQ AND FDBAQ) ON THE SAME SCENES IS

REPORTED FOR ALL THE INVESTIGATED PARAMETERS (SQNR, NESZ, ϕerr , AND γQuant)
IN THE LOWER TABLE

TABLE IV

PERFORMANCE COMPARISON VGG16 AND THE PROPOSED CNN

depending on the acquisition settings [44], we select four target
performance values (i.e., also in this case a DL model with
M = 4) of NESZ equal to −15, −17, −18, and −19 dB (with
again α = 0). An example of reference and estimated BRM
for the test acquisition of Mexico City is presented in Fig. 14
by considering all different NESZ requirements. Here, it is
particularly interesting to note the increase in quantization

bits at the borders of the swath (near and far range), which
are characterized by higher (i.e., worse) NESZ values due
to a lower gain in the AP. The estimated BRMs also show
different spatial patterns with respect to the ones in Fig. 12,
accounting for the different optimization task. The complete
results over all test acquisitions are reported at line C1 in
Tables II and III. The BRM mean estimation error ∆R always
remains below 0.4 and 0.9 bps for the test sites characterized
by homogeneous and inhomogeneous backscatter, respectively,
with a standard deviation confined between 0.1 and 0.7 bps.
A consistent performance is also achieved when computing
the total NESZ in the focused SAR domain, showing a good
agreement with the target performance. This can be seen, e.g.,
in Fig. 15, where the histograms of the NESZ for the Mexico
City test acquisitions are presented for all different target



GOLLIN et al.: AI-BAQ: DEEP LEARNING FOR ADAPTIVE SAR RAW DATA QUANTIZATION 5220620

Fig. 14. Estimation results plots for the case C1 on the Mexico City test
scene. (Left column) True and (right column) estimated BRMs for the cases
of (a) and (b) NESZ = −15 dB, (c) and (d) NESZ = −17 dB, (e) and
(f) NESZ = −18 dB, and (g) and (h) NESZ = −19 dB. The bitrate allocation
increases at near and far range, accounting for the lower gain of the AP (i.e.,
larger thermal NESZ).

requirements. The only test case, which severely deviates from
the expected performance, is the case of NESZ = −19 dB for
the Greenland scenario (reported in line C1 of Table II). This
is due to the fact that this specific acquisition was performed

Fig. 15. SAR performance results from the experiment B1 on the Mexico
City test scene for each targeted case of NESZ.

using a very-far-range beam, which did not allow for achieving
a sufficient NESZ even in the unquantized bypass data. In this
case, the resulting estimated BRM correctly assigns two quan-
tization bits per sample to the entire scene, as learned during
training.

D. Combination of Different Performance Parameters

The scenarios investigated in the previous test cases have
shown the capability of the DL model to correctly regress
different BRMs depending on a specific target performance
parameter. In this section, we now investigate a scenario in
which different performance parameters, namely, SQNR and
NESZ, are jointly estimated by a single DL model. The aim is
to test the capacity of the model to correctly recognize different
spatial patterns at the same time, through the minimization
of a multiobjective loss function. Specifically, we combine
three requirements of SQNR and three of NESZ, for a total of
M = 6 output predicted values. The complete results for this
experiment are reported at line D1 of Tables II and III. The
results are extremely consistent with the previous experiments,
which considered a single optimization parameter (lines A1,
B2, and C1 in Tables II and III), confirming the capability of
the network to correctly manage different estimation scenarios
at a time.

E. Role of the α Parameter

The correct prediction of a certain target performance might,
in some cases, be of less relevance in the presence of stringent
constraints in the downlink or onboard memory resources.
Differently from, e.g., the BAQ quantizer, with the proposed
method, the resulting overall data rate is not known a priori,
meaning that the required memory storage is also unknown
before the encoding is performed. Even though this figure
might be empirically derived from large-scale simulations,
in this section, we investigate the possibility of tuning the
BRM estimation itself by acting on the α parameter in the
loss function [introduced in (14)]. To do so, we consider
two identical cases with respect to A1 (uniform SQNR opti-
mization), and we train the DL model with α = 0.95 and
α = 0.75 (identified in Tables II and III as cases E1 and E2,
respectively). The first case represents a scenario in which
a given performance is required with a small constraint on
the resulting data volume (i.e., the architecture will tend to
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Fig. 16. SAR performance results from the experiment A1, E1, and E2 for a
target SQNR of 20 dB on the Mexico City test scene. The constraint on the
α parameter for the cases E1 (α = 0.95) and E2 (α = 0.75) results in a lower
data rate penalizing the performance (as it is confirmed by the histograms
shifting toward the left-hand side).

slightly underestimate the bitrate), while the latter is a scenario
in which onboard resources are crucial, aiming at significantly
reducing the overall bitrate, at the cost of penalizing the final
target performance. The effects of these choices for the Mexico
City test site are visible in Fig. 16, which depicts the resulting
histograms of the SQNR when considering a target SQNR of
20 dB and an α parameter equal to 0 (A1), 0.95 (E1), and
0.75 (E2). As expected, an increase of the α parameter results
in a general underestimation of the SQNR, which is marginal
for E1 and more evident for E2. Nevertheless, this also allows
for a consistent reduction of the overall quantization rate R̂,
which decreases from 3.1 bps (A1) down to 2.6 bps (E2),
leading to an overall reduction of 0.5 bps. A similar trend
can be observed for all the other considered test cases.

F. Comparison With SoA Algorithms
In order to provide a first comparison in terms of data rate

and SAR performance with SoA methods, we now consider
the BAQ and FDBAQ quantization algorithms, summarizing
the performance in Tables II and III at lines F1 and F2,
respectively. The BAQ can be applied by setting a constant
quantization rate throughout the acquisition. We consider the
cases of 2, 3, 4, and 6 bps, reporting the resulting performance
in terms of SQNR, NESZ, ϕerr, and γQuant, respectively. As an
example, Fig. 17 depicts the performance in terms of SQNR
and NESZ for the Mexico City test area obtained by applying
the BAQ and the FDBAQ, respectively. The corresponding
results on the same scene achieved by the proposed AI-BAQ
framework for different target performance parameters are
presented in Fig. 17(c) and (d). Considering the SQNR plots
[Fig. 17(a) and (c)], it is possible to appreciate how the AI-
BAQ is able to target a specific performance parameter, which
is confirmed by the limited dispersion of the distributions with
respect to SoA methods. When considering the NESZ, one
can note how the AI-BAQ is able to overall adapt to different
requirements on the minimum acceptable NESZ, shifting the
resulting distribution accordingly. Moreover, it is also worth
noting that, when considering the AI-BAQ requirement of
NESZ = −19 dB, the corresponding NESZ distribution is
similar to the FDBAQ case, showing an overall comparable
performance.

Finally, it is of interest to compare the different methods
in terms of both target performance and quantization rate,
as presented in Fig. 18. As it can be seen, all methods
are aligned on achieving a similar mean performance when
considering comparable quantization rates. As expected, the
AI-BAQ presents a much lower SQNR dispersion with respect
to the BAQ and is correctly centered around the desired target
performance. For better comparison, we have included the
performance for the BAQ at the same rate of the AI-BAQ by
means of ASQ. For a high-performance target, the AI-BAQ
shows a better performance than the BAQ as the optimization
criterion (i.e., PO-BAQ) considers the minimum rate in each
area of the scene to satisfy the requirement. To further support
the direct comparison of the methods, in Appendix 2, the
performance figures for the cases discussed in Fig. 18 are
presented as a visual comparison. The precision of the AI-
BAQ in targeting a given performance requirement is clearly
recognizable by the level of SQNR homogeneity in the final
SAR image.

V. PRELIMINARY HARDWARE FEASIBILITY ASSESSMENT

In this section, we investigate the feasibility of a potential
hardware architecture for the proposed DL-based method for
the estimation of BRMs.

Regarding the details of the proposed DL architecture, the
total number of trainable parameters (i.e., network weights) is
strictly related to the size of the dense layer (128 elements), to
the input patch size (128 × 128 samples), and to the number
of filtering kernels. Therefore, the total number of trainable
parameters considering M = 5 is ∼ 8.76× 106. If we assume
saving in single precision, the memory needed for storing
this network setup is about 34 MB. This value represents a
worse case scenario, as it could be reduced by performing
architecture storage optimization (e.g., pruning and weights
quantization [51]).

For efficient FPGA implementations, it is essential to rep-
resent the SAR raw data in fixed-point number format at
the DL model input; this has to be considered as part of
the preprocessing operation in (13). Given that the initial
layers involve convolutions (more specifically, correlations),
a feasible architecture for performing 2-D/3-D convolutions
across all feature inputs (channels) of the preceding layer
is depicted in Fig. 19 and represents the steps of loading
the image from external double-data-rate (DDR) Synchronous
Dynamic Random-Access Memory (SDRAM) into the input
buffer, loading the weights from DDR into the input buffer,
and performing the calculations and storing the results from
the output buffer back to DDR. To enhance the performance
of convolution operations, it is necessary to employ mul-
tiple blocks with different kernel weights, operating in an
interleaved mode that synchronizes memory reads/writes and
calculations. The proposed real-time operation on the data
from the instrument represents one possible solution, while
other approaches could be considered (e.g., applying the
method as part of offline encoding in the mass memory).

For CNN-based AI applications, various hardware acceler-
ators are available for NG DPUs. In our case, we consider
Xilinx Versal, which provides an excellent foundation and
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Fig. 17. (a) and (b) SAR performance results in terms of SQNR and NESZ for the SoA cases F1 and F2 on the Mexico City test scene. (c) and (d) Achieved
results of the AI-BAQ are reported and highlight the greater flexibility of the method.

Fig. 18. Performance results in terms of SQNR for the SoA cases and the
AI-BAQ on the Mexico City test scene with respect to the quantization rate.
Solid dots represent the performance mean value, while the error bars (and
colored background parts) represent its standard deviation. For the sake of
comparison, in addition to the BAQ integer rates (2, 3, 4, and 6 bps), the
resulting rates achieved by the AI-BAQ (2.7, 3.7, 4.7, and 5.6 bps) have been
implemented by means of ASQ for the BAQ.

can serve as a baseline for the hardware implementation
of this compression method [52]. The toolchain supports
various AI functions, such as 2-D/3-D convolution, ReLU,
max pooling, flattening, and fully connected layers, along with
their architectural interconnections. To provide performance

Fig. 19. Block diagram for convolution implementation.

figures, the number of multiply and accumulate operations
(MAC OPs) required in a convolution layer can be determined
by the following equation:

MAC OPsConv = Kh · Kw · FIN · FOUT · Rh · Rw (18)

where Kh and Kw denote the kernel’s height and width,
respectively; FIN and FOUT represent the input and output
features, respectively; and Rh and Rw correspond to the
resulting height and width, respectively. For the architecture
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Fig. 20. Visual comparison of SQNR in the SAR image domain over the Mexico City test scene between (a)–(e) SoA BAQ and FD-BAQ, (f)–(i) AI-BAQ of
case A1 targeting uniform SQNR values, and (j)–(m) BAQ with noninteger rates matching the average bitrate of the AI-BAQ. For each case, the average rate
R is indicated. The proposed method results in a much more homogeneous performance with respect to the SoA methods, even at the same bitrate allocation
(last row), despite the highly heterogeneous backscatter.

under consideration, the total number of MAC OPs for all
convolutional layers amounts to approximately 613.5 million.
Similarly, for a fully connected dense layer, the MAC OPs can
be calculated as

MAC OPsDense = FIN · FOUT (19)

which results in 8.4 million operations, leading to a total of
621.9 million MAC OPs for the entire architecture.

Looking ahead to future SAR missions, expected data rates
are projected to reach approximately 3000 Mb/s. Assuming
an 8-bit sample size and a patch size (frame) of 128 × 128
pixels, this equates to 131 072 bits per frame. The real-time
performance requirement in frames per second (fpsr) can be
calculated as

fpsr =
3000 Mbit

s

131072 bit
frame

= 22 888. (20)
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To estimate the performance, we use the Xilinx CNN
benchmark with the VGG16 model (Vitis-AI Model Zoo
Name: tf vgg16 imagenet 224 224 30.96G) as a compar-
ison. The selected hardware platform is the VCK190, featuring
1xDPUCVDX8G 192 AIEs (C32B6CU1L2S2) operating at
1250 MHz with fixed-point calculations. The VGG16 CNN
uses the same kernel size (3 × 3) and downsampling (stride)
size (2 × 2), sharing a similar basic structure with respect to
the proposed architecture.

Table IV provides a detailed performance comparison
between the VGG16 model, which has 30.96 GOPs, and the
proposed CNN architecture with 0.62 GOPs. To qualitatively
analyze the performance, the fpsr value is multiplied by a
factor of approximately 50 (30.96/0.62).

Given the assumptions made, the investigation of the feasi-
bility for fpsr = 22 888 from (20) suggests that the proposed
architecture can successfully meet the hardware requirements
of NG SAR missions.

VI. DISCUSSION

The results obtained from the application of the AI-BAQ
with different settings and over different scenarios demonstrate
that an effective link between the SAR raw data domain and
the focused SAR image domain can be established using a
pure DL architecture. This allows for the derivation of an
application-oriented quantization scheme, targeting a specific
performance in higher level SAR products. As an example,
one could imagine a possible future mission scenario to
plan an acquisition for differential InSAR applications. By
knowing this information a priori, the data could be quantized
onboard, minimizing the phase distortion and maximizing the
coherence, providing the user with the best possible data
quality.

The proposed DL model for the estimation of BRMs is
extremely compact (only about 34 MB are needed to store
the parameters onboard) and, at the same time, can jointly
implement a set of different BAQ-based quantizers without
requiring any additional computational complexity or the
storage onboard of a priori information in the form, e.g.,
of LUTs. This represents a considerable step forward with
respect to the SoA, leading to a quantization scheme that
can automatically adjust its settings simply depending on the
characteristics of the input SAR raw data and on the desired
output performance. Moreover, in this work, we concentrated
on the investigation of a single optimization criterion, i.e.,
achieving a uniform performance in the focused SAR products,
applied to different performance parameters. Since the DL
model showed itself to be able to learn different spatial
patterns depending on the reference BRM used in training, this
opens up new possibilities to extend this concept to further
optimization criteria by changing the generation process of
the reference BRMs. These could be oriented, e.g., toward
the joint maximization of the SNR and the minimization of
the bit allocation in the presence of certain types of targets,
always keeping the flexibility of having multiple application-
oriented settings available. Additionally, if needed, the entire
DL model could be easily modified by performing a new

training on ground and then simply updating the network
coefficients onboard.

Certainly, the proposed methodology represents a starting
point for the development of an operational quantization
scheme that could be used in a real spaceborne SAR mission
scenario. Several aspects will require further investigation
in order to derive a robust DL architecture for operational
deployment. In particular, the training dataset needs to be
extended in order to better represent different acquisition
scenarios and backscatter conditions, and further investiga-
tions on the DL architecture itself could lead to a general
performance improvement as well. Moreover, a crucial aspect
is represented by the overall data rate considering a certain
orbit duty cycle and acquisition scenario, which, at the current
stage of development, cannot be a priori defined or controlled.
Promising insights can be drawn from the analysis on the α
parameter; by acting on the loss function during the model
optimization phase, one can impact the overall data volume.
A proper tuning of the α parameter could be performed by
vectorizing it with respect to the different output performance
targets as well as by considering global acquisition scenarios
with determined data rate requirements. This aspect could
be combined with a learning phase characterized by the
use of different reference BRMs, oriented toward a more
efficient data reduction, keeping in mind the desired high-level
performance.

Finally, the positive outcome of the preliminary hardware
feasibility assessment suggests that the proposed method is
suitable for onboard implementation in present-generation
spaceborne SAR systems, representing a first step toward the
use of onboard AI in SAR missions.

VII. CONCLUSION AND OUTLOOK

In this article, we investigated a novel approach to per-
form a dynamic BAQ bitrate allocation for the onboard
quantization of SAR raw data by means of a DL regres-
sion model. The main advantages of the proposed method
rely on the fact that no a priori information is required by
the system for its onboard implementation, hence allowing
for an adaptive bitrate allocation only depending on the
characteristics of the SAR raw data and on the considered
target performance in the corresponding higher level SAR
product.

We presented the relevant aspects and details of the model
design as well as the definition of the training, validation, and
testing datasets and strategies, together with an assessment
of the estimation performance for a set of independent test
acquisitions. We investigated different optimization scenarios,
which confirmed that an accurate BRM estimation can be
achieved by the proposed DL model, which remains con-
sistent when the performance parameters are evaluated on
the final SAR and InSAR products. The proposed method
is capable of providing multiple optimization methods at
once, being the first bitrate allocation method to achieve
this without a priori information on the investigated scene.
We addressed the issue of the potential uncertainty in the
resulting memory storage requirement (caused by a variable
rate allocation) by performing a preliminary customization
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of the loss function, which introduces a further constraint
on the resulting bit allocation. The comparison with the
SoA BAQ and FDBAQ algorithms highlights the flexibility
of the proposed method to meet the desired performance
on different scenes. Finally, the introduction and evalua-
tion of a possible hardware implementation of the proposed
DL architecture also resulted in a positive outcome for a
future onboard implementation using current spaceborne-ready
technology.

While DL offers strong potential in Earth observation,
especially where large training datasets are available, the
lack of generalization and the prediction unreliability in the
presence of out-of-distribution values, i.e., not seen during
training, represent a major drawback for large-scale opera-
tional deployment. In this context, the proposed framework
represents an initial investigation into the use of DL for
onboard SAR raw data quantization, confirming promising
potential.

As an outlook to future activities, we intend to further
develop the methodology toward a realistic joint optimiza-
tion of both performance and data rate requirements in a
global SAR mission scenario. To efficiently validate the
method on a global scenario, the dataset will be enriched
with more experimental and synthetic generated, aiming at
improving the network generalization capabilities, covering
multiple polarizations and including different optimization
criteria as well as additional SAR acquisition configura-
tions, such as, e.g., wide-beam, multichannel, and multistatic
systems.

APPENDIX A
PERFORMANCE TABLES

This appendix contains the detailed results of the per-
formance analysis conducted over the four considered test
images: Greenland and Uyuni (Table II), characterized by
homogeneous backscatter, and Las Vegas and Mexico City
(Table III), characterized by inhomogeneous backscatter and
by the presence of high-relief topography.

APPENDIX B
VISUAL COMPARISON

This appendix provides an additional visual comparison of
SQNR performance calculated in the SAR image domain. In
particular, the cases discussed in Fig. 18 (i.e., SoA BAQ with
integer rate, FDBAQ, AI-BAQ, and BAQ at the rate achieved
by the AI-BAQ) are presented in the form of 2-D SQNR maps
[according to (6)] in Fig. 20. Here, it is possible to observe
the high degree of adaptivity of the proposed method to the
scene characteristics, resulting in a uniform performance, and
in targeting the requirement without the need for a priori
knowledge.
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[42] M. Martone, B. Bräutigam, P. Rizzoli, C. Gonzalez, M. Bachmann,
and G. Krieger, “Coherence evaluation of TanDEM-X interferomet-
ric data,” ISPRS J. Photogramm. Remote Sens., vol. 73, pp. 21–29,
Sep. 2012.

[43] P. Rizzoli, L. Dell’Amore, J.-L. Bueso-Bello, N. Gollin, D. Carcereri,
and M. Martone, “On the derivation of volume decorrelation from
TanDEM-X bistatic coherence,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 3504–3518, 2022.

[44] G. Krieger et al., “TanDEM-X: A satellite formation for high-resolution
SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11,
pp. 3317–3341, Nov. 2007.

[45] P. Prats et al., “Taxi: A versatile processing chain for experimental
TanDEM-X product evaluation,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Jul. 2010, pp. 4059–4062.

[46] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar,
vol. 11. New York, NJ, USA: Wiley, 1991.

[47] F. Sica, G. Gobbi, P. Rizzoli, and L. Bruzzone, “ -Net: Deep residual
learning for InSAR parameters estimation,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 5, pp. 3917–3941, May 2021.

[48] D. Carcereri, P. Rizzoli, D. Ienco, and L. Bruzzone, “A deep learning
framework for the estimation of forest height from bistatic TanDEM-X
data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 8334–8352, 2023.

[49] M. Martone, B. Bräutigam, and G. Krieger, “Azimuth-switched quan-
tization for SAR systems and performance analysis on TanDEM-X
data,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 181–185,
Jan. 2014.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[51] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” J. Mach. Learn. Res., vol. 18, no. 187,
pp. 1–30, 2018.

[52] A. Ushiroyama, M. Watanabe, N. Watanabe, and A. Nagoya,
“Convolutional neural network implementations using vitis AI,” in
Proc. IEEE 12th Annu. Comput. Commun. Workshop Conf. (CCWC),
Jan. 2022, pp. 365–371.

Nicola Gollin received the M.Sc. degree in infor-
mation and communication engineering from the
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