ADS-B SYSTEM FOR TRACKING OF LAUNCH VEHICLES

2024-09-30

Payload Concept for Rockets

Dirk-Roger Schmitt, Andreas Grüttemann, DLR e.V. Manuel Wilhelm, OHB Digital Connect

Member of AT-One

FOUNDING MEMBER

IOINT UNDERTAKING

Motivation

Need for Coordination and Cooperation

- Commercialization and increase of space flight activities
- Complex and highly frequented European airspace with multiple actors
- Impact of space operations on air and maritime traffic
 - Hazard Areas
 - SpaceX 2018: additional 34,841 NM and 4,645 min [1]
- FAA requests restrictions on launches, i.e. only night launches [2]

Institute of Flight Guidance, 30 September 2023

^[1] **Air Line Pilots Association.** *ALPA White Paper: Addressing the Challenges to Aviation from Evolving Space Transportation.* Washington: Air Line Pilots Association, 2018. p. 10.

Project Idea

ADS-B for enhanced situational awareness

- Seamless integration of air, space, and maritime traffic
- Increased stakeholder situational awareness
- Safe and efficient operations for all actors

Institute of Flight Guidance, 30 September 2023

Possible Application: Maritime orbital and sub-orbital Launches

Institute of Flight Guidance, 30 September 2023

ADS-B Technology

- ADS-B mandatory for most aircraft:
 - Additional situation awareness aircraft and ATC
 - Additional Situation Awareness means of tracking
- ADS-B transceiver: Signal out only
- ADS-B signals received on ground, by other aircraft and in space
- ADS-B Mode-S transponder: ADS-B signal out & tracking by ATC secondary radar.
- Secondary radar receives additional transponder signal

ADS-B Technology on a Rocket

- Transceiver: Transmitting GPS Position, heading and barometric height
- Seamless integration into Air Traffic Control
- Additional means for specific radar tracking

Messages	тс	Ground (still)	Ground (moving)	Airborne
Aircraft identification	1-4	0.1 Hz	0.2 Hz	0.2 Hz
Surface position	5-8	0.2 Hz	2 Hz	-
Airborne position	9-18, 20-22	-	-	2 Hz
Airborne velocity	19	-	-	2 Hz
Aircraft status	28	0.2 Hz (no TCAS RA and Squawk Code change)		
		1.25 Hz (change in TCAS RA or Squawk Code)		
Target states and status	29	-	-	0.8 Hz
Operational status	31	0.2 Hz	0.4 Hz (no NIC/NAC/	SIL change)
			1.25 Hz (change in N	IC/NAC/SIL)

Fig. 2: Traditional Flight Safety System Elements.

Demonstration Mission on suborbital/ sounding rockets proposed

Objectives:

- Feasibility demonstration for seamless rocket launch integration into airspace, ATM-STM integration, enhanced integrated airborne surveillance
- Responsive Tactical Launch: More safe, fast and reliable operations and integration into airspace
- Obtain experience f
 ür future Microlauncher orbital missions with GPS/ADS-B use

Technical contraints

- Sample rate 2 Hz (vs. FAA launch certification requirements of 10 Hz)
- Using ADS-B only transceiver or ADS-B Mode-S transponder:
- Mass/volume limitations, form factor, in/out antennas:
- Design of special in/out antennas @ spinning rocket:
- Interfaces to rocket or to rocket GPS receiver:
- Power supply: Interface to rocket power. Remote activation
- Rocket shock/vibration profile (GMRS G-Acceleration, Randomized Serration Profile)

Demonstration / Feasibility on a Rocket Mission (3)

Open technical questions

- GPS receiver performance at hight acceleration (150 g)
- GPS Jamming/Spoofing expected in launch area? www.gpsjam.org/

CoCoM & ITAR-Restrictions combined issue:

- CoCoM restrictions on velocity and height data 1 000 kts, 1 850 km/h, 513 m/s; 18 km, 60 000 ft
- Update from Manufacturers:
 - ITAR: MAX Speed 600 m/s; MAX Altitude 18Km
 - COCOM: MAX Speed 515 m/s; MIN Altitude -1.5Km; MAX Altitude 100Km
- It will stop delivering a position fix when either:
 - Both ITAR limits are exceeded
 - One COCOM rule is exceeded
- ADS-B standard altitude limit for coding at 126 000 ft

- Selection and procurement of appropriate transceiver/transponder on board.
- Flight qualification/testing
- Interfacing the telemetry data of the launcher with the device
- Delivery/installation of receivers for integration into a VPN-secured receiver network for the North Sea (drilling platform, ship etc.)
- Data recording and analysis of the experimental launch
- ADS-B as means for Recovery Tracking TBD

Future Integration to the Interface with Eurocontrol NM

Eurocontrol

DLR Real-Time Mission Monitoring

Integration of **launch and re-entry operation within European airspace** on a network level

Space Launch Real Time Monitoring Module and working station for the European ATM Network Manager at Eurocontrol

- →Improve NM situational awareness
- →Improve safety, enhance airspace utilization and improve contingency management for commercial space operations

Prototype

Low cost integration set-up for integration into a sounding rocket tip.

ADS-B Integration in Mobile Launch Control Center

- Demonstration Case: Mobile Launch Control Center for Offshore Spaceport @ OHB Digital Connect in Bremen
- ADS-B receiver system succesfully integrated as part of the Mobile Launch Control Center
- Operation of ADS-B transceiver has been successfully ground tested
- Planned: Use of DLR ADS-B transceiver on-board launch vehicle during offshore launch

Summary/Outlook

- ADS-B is an interesting technology for integration of space vehicle launches seamlessly into the airspace
- Existing transponders for aviation/RPAS-domain maybe used
- CoCom ITAR limits be investigated and solved
- Hight Altitude Coding in ADS-B to be defined
- ADS-B also as means for Recovery Tracking to be investigated.
- Future jamming and spamming to be considered
- Preparation for future German/European Off-Shore Spaceport
 - Delivery/installation of receivers for integration into a VPN-secured receiver network on off-shore platforms
 - Integration in Mission Control Center