HELICOPTER HOVER CFD SIMULATIONS:

An Investigation of Various Far-Field Boundary and Initial Conditions via DLR's Legacy Block-Structured FLOWer CFD Solver

TABLE OF CONTENTS

- Research Motivation
- Existing Boundary Conditions
- New / Contemporary Boundary Conditions
- Parametric Studies
- Mesh and Settings
- Results and Conclusions

Research Motivation

- Stationary hover is one of the most crucial flight conditions for a helicopter.
- Reaching steady state from freestream (Quiescent flow) can take considerable time.
- Bringing far-field closer to source of disturbance can decrease computational cost.
- Initializing flow field can aid in expediting solution (supposedly).

Existing Boundary Conditions

Standard far-field condition

- Focuses on creating a theoretically unbounded domain.
- Specifying free stream conditions such as density, velocity, and pressure, for the boundary
- Must be allocated far enough from the source of disturbance, in a region where the flow is meant to resemble free stream conditions.

Froude Source-Sink far-field condition [1]

- Based on actuator disk theory
- 1D momentum theory along axis of rotation
- Supposedly allows shorter finite far field distance

$$W_{in} = -\frac{V_{tip}}{4}\sqrt{\frac{C_T}{2}} \left(\frac{R}{d}\right)^2$$

$$W_{out} = -2V_{tip}\sqrt{\frac{C_T}{2}}$$

Research Motivation Existing Boundary Conditions New Boundary Conditions

Parametric Studies

Mesh and settings

New/Contemporary Boundary Conditions

Results and

Conclusions

Jia's Modified Version of the Spalart Model [2]

- Based on a static jet function
- Velocities decay with 1/r instead of 1/r²
- Inject an approximate representation of the wake underneath the actuator disk
- Supposedly allows shorter finite far field distance

Mesh and settings

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

New/Contemporary Boundary Conditions

Jia's Modified Version of the Spalart Model

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Test	Туре	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance	
		1					1E-06	
Conve	ergence	2		C A	Frende		1E-05	
Invest	teria tigation	3	MZ 25R	SA	Froude	QuiscentFlow	1E-04	
	ugauon	4					1E-03	
		5		SA				
		6	M2 6R	SA (0 Coef)	Froude	QuiscentFlow	1E-06	
Turbi	ulence	7		SST				
Mo	odel	8		SA	Froude	QuiscentFlow	1E-06	
Invest	tigation	9	M2 25R	SA (0 Coef)				
		10		SST				
		11	<u>M1 25R</u>	SA	Froude	QuiscentFlow	1E-06	
$\frac{\text{Doma}}{\text{M} = \text{N}}$ $\text{C} = \text{C}$	<u>ain type:</u> ⁄lonocoque chimera		<u>Grid Level:</u> 1 = finest 2 = coarsest	Downstream I boundary loca	airfield ation in blade radii			
earch vation	Existing	Bounda	ry Ne	ew Boundary Conditions	Parametric Studie	es Mesh and	settings	Resul Concl

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance	Reason:
	1			Freude		1E-06	- Stability
Convergence	2	M2 25D	54		QuiesentFlow	1E-05	 Accuracy
Investigation	3		SA	Floude	Quiscentriow	1E-04	
	4					1E-03	
	5	M2 6R	SA		QuiscentFlow	1E-06	
	6		SA (0 Coef)	Froude			
Turbulence Model Investigation	7		SST				
	8		SA			1E-06	
	9	M2 25R	SA (0 Coef)	Froude	QuiscentFlow		
	10		SST				
	11	M1 25R	SA	Froude	QuiscentFlow	1E-06	

New Boundary Conditions

> Parametric Studies

Blade back view

Fundamental Constant Settings							
Temporal Intergration scheme (main + turbulence equations)	Backward Euler LU-SGS [3]						
Order of implicit dual time stepping scheme	2						
Space discretization scheme for main equations	Finite Volume + Upwind Scheme						
Finite Volume upwind scheme	SLAU2 with Albada limiter [4]						
Order of spatial accuracy of upwind scheme	4						
Cell discretization scheme	Cell-centered						
Vortex Modification	Dacles-Mariani et al. [5]						
Reference tip mach number	0.6423						
Reference rotor radius (grid units)	2						
Angle of Attack (deg)	9.5						
Rotor Model	HART II [6]						

> Research Motivation

Existing Boundary Conditions New Boundary Conditions

> Parametric Studies

Results and Conclusions

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance	
	12			Froude	QuiscentFlow		
	13	M2 25R	SA	Standard	QuiscentFlow	1E-06	
	14			New Model	New Model		
	15		SA	Froude	QuiscentFlow		
	16	M2 6R		Standard	QuiscentFlow	1E-06	
BC and IC condition Investigation	17			New Model	New Model		
	18		SA	Froude	QuiscentFlow		
	19	C2 6R		Standard	QuiscentFlow	1E-06	
	20			New Model	New Model		
	21	C2 6R	SA	New Model	QuiscentFlow	1E-06	
	22			Froude	QuiscentFlow		
	23	C1 6R	SA	Standard	QuiscentFlow	1E-06	
	24			New Model	New Model		

Existing Boundary

New Boundary Conditions

Parametric Studies

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Conditions

Results and Conclusions

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance	
	12			Froude	QuiscentFlow		7
	13	M2 25R	SA	Standard	QuiscentFlow	1E-06	Honocoque domain tests
	14			New Model	New Model		
	15			Froude	QuiscentFlow		
	16	M2 6R	SA	Standard	QuiscentFlow	1E-06	
BC and IC	17			New Model	New Model		
condition	18	C2 6R	SA	Froude	QuiscentFlow		
Investigation	19			Standard	QuiscentFlow	1E-06	
	20			New Model	New Model		
	21	C2 6R	SA	New Model	QuiscentFlow	1E-06	
	22			Froude	QuiscentFlow		
	23	C1 6R	SA	Standard	QuiscentFlow	1E-06	
	24			New Model	New Model		

Results and Conclusions

Plots of CT, FM, and pseudo-iteration sum for Monocoque Grids

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Axial Velocity Field Evolution Contour Plots

Test details:	
Grid	M2 6R
BC	New
IC	New
Framerate(rev)	10

Research

Motivation

Axial Velocity Field Evolution Contour Plots

Test details:	
Grid	M2 6R
BC	Froude
IC	QF
Framerate(rev)	10

Research

Motivation

17

Axial Velocity Field Evolution Contour Plots

Test details:	
Grid	M2 6R
BC	Std
IC	QF
Framerate(rev)	10

Research

Motivation

18

Axial Velocity Field 'Settled' Contour Plots

Eddy Viscosity Field 'Settled' Contour Plots

Plots of CT, FM, and pseudo-iteration sum for Monocoque Grids

Recirculation Phenomena beyond 500 Revolutions (M2 25R)

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Results and Conclusions

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance	
	12			Froude	QuiscentFlow		
	13	M2 25R	SA	Standard	QuiscentFlow	1E-06	Monocoque VS Chimera in 6R domain
	14			New Model	New Model		
	15	M2 6R		Froude	QuiscentFlow	1E-06	
	16		SA	Standard	QuiscentFlow		
BC and IC	17			New Model	New Model		
condition	18	C2 6R	SA	Froude	QuiscentFlow	1E-06	
Investigation	19			Standard	QuiscentFlow		
	20			New Model	New Model		
	21	C2 6R	SA	New Model	QuiscentFlow	1E-06	
	22			Froude	QuiscentFlow		
	23	C1 6R	R SA	Standard	QuiscentFlow	1E-06	
	24			New Model	New Model		

Plots of FM Comparison: Monocoque vs Chimera

New Model (BC & IC) - vs - New Model (BC)

Results and

Conclusions

C2 6R

Mesh and settings

200

Summary

0.80

0.75

0.70

Figure of Merit

0.50

0.45

0.40

26

0

100

50

150

Nrev

- New boundary condition is more robust
- Initialization aids in faster convergence
- New boundary condition seems to be aiding simulation reach it's 'steady state' when regarding the number of inner iterations

.1e6 Standard Froude New Model

250

300

Less inner iterations required

References

- 1. G. Srinivasan. "A Free-Wake Euler and Navier-Stokes CFD Method and Its Application to Helicopter Rotors Including Dynamic Stall". In: Associates, Inc. Technical Report 93- 01 (1993).
- 2. F. Jia, Q. Wang, and P. Spalart. "Improved Initial and Boundary Conditions for Hovering Rotor CFD Simulations". In: Vertical Flight Society's 78th Annual Forum (June 2022). DOI: 10.4050/F-0078-2022-17474.
- 3. S. YOON, L. CHANG, and D. KWAK. "LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term". In: 9th Computational Fluid Dynamics Conference. DOI: 10.2514/6.1989-1964.
- S. Y. et. al. "An efficient CFD approach for simulating unsteady hypersonic shock–shock interference flows". In: Computers and Fluids 27.5 (1998), pp. 571–580. ISSN: 0045- 7930. DOI: <u>https://doi.org/10.1016/S0045-7930(97)00061-3</u>.
- 5. J. Dacles-Mariani, J. Dacles-Mariani, D. Kwak, et al. "On numerical errors and turbulence modeling in tip vortex flow prediction". In: International Journal for Numerical Methods in Fluids 30 (1999), pp. 65–82.
- 6. M. Smith, J. Lim, B. Wall, et al. "An assessment of CFD/CSD prediction state-of-the-art using the HART II International Workshop data". In: Annual Forum Proceedings AHS International 1 (May 2012), pp. 1–41.

Complimentary Material

New/Contemporary Boundary Conditions

Jia's Modified Version of the Spalart Model Supplementary Equations

Cartesian Components

$$u_{x} = u_{r} \frac{x}{\sqrt{x^{2} + y^{2} + z^{2}}} - u_{\theta} \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}} \frac{x}{\sqrt{x^{2} + y^{2}}}$$

$$u_{y} = u_{r} \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}} - u_{\theta} \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}} \frac{y}{\sqrt{x^{2} + y^{2}}}$$

$$u_{z} = u_{r} \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}} + u_{\theta} \frac{\sqrt{x^{2} + y^{2}}}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

Spherical Components

$$u_r = \frac{-A}{r_m} \sqrt{\frac{T}{\rho}} \left[f_m(\theta_m) + \tan\left(\frac{\theta_m}{2}\right) \frac{\mathrm{d}\theta_m}{\mathrm{d}\theta} \Big|_{\theta_m} \right]$$
$$u_\theta = \frac{A}{r_m} \sqrt{\frac{T}{\rho}} \tan\left(\frac{\theta_m}{2}\right) f_m(\theta_m)$$

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/02/2023

Blade cross-sectional view

Monocoque

Blade top-down view

Monocoque

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance
	1		SA	Froude	QuiscentFlow	1E-06
Convergence	2	M2 D25				1E-05
Investigation	3					1E-04
	4					1E-03
	5	M2 D6	SA	Froude	QuiscentFlow	
	6		SA (0 Coef)			1E-06
Turbulence	7		SST			
Model Investigation	8		SA		QuiscentFlow	
	9	M2 D25	SA (0 Coef)	Froude		1E-06
	10		SST			
	11	M1 D25	SA	Froude	QuiscentFlow	1E-06

Convergence Criteria Tests Plots

Test Type	Case	Grid used	Turbulence Model	Boundary Condition	Initial Condition	Convergence Tolerance
	1			Froude	QuiscentFlow	1E-06
Convergence	2	M2 D25	C A			1E-05
Investigation	3		SA			1E-04
	4					1E-03
	5	M2 D6	SA	Froude	QuiscentFlow	1E-06
	6		SA (0 Coef)			
Turbulence	7		SST			
Model Investigation	8		SA			
	9	M2 D25	SA (0 Coef)	Froude	QuiscentFlow	1E-06
	10		SST			
	11	M1 D25	SA	Froude	QuiscentFlow	1E-06

Turbulence Model Tests Plots

Turbulence Model Blade Tip Vorticity Plots

Axial Velocity Contour Plots (C2 R6)

Alexios N Philippou, Institute of Aerodynamics and Flow Technology, 13/12/2023

Grid

Frame(rev)