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A B S T R A C T

The Worldsoils project has developed a pre-operational Soil Organic Carbon (SOC) monitoring system in a cloud
environment. The system predicts topsoil organic carbon content at regional and continental scales from Earth
Observation (EO) satellite data with a continuous cover over Europe. The system utilizes spectral models for
croplands and a digital soil mapping approach for permanently vegetated areas such as grasslands and forests.
Models strongly rely on soil reflectance composites from the Sentinel 2 multispectral instrument providing the
median reflectance for all valid pixels over a period of three years. The bare soil frequency, a proxy for the degree
of crop cover, is clearly lower in a Mediterranean pilot region compared to croplands in temperate regions. This
is due to the extensive crop cover in the Mediterranean with winter cereals and fodder crops. The graphical user
interface provides SOC content and the prediction interval ratio (i.e. 90 % uncertainty interval divided by the
median) for 50 m pixels in three pilot regions and 100 m pixels for the rest of Europe. The SOC prediction al-
gorithms are reasonable compared to others at the continental scale (R2: 0.41 for croplands and 0.28 for
permanently vegetated areas). Apart from tree crops in Macedonia (Greece) the soil reflectance composite at-
tributes the correct model to validation sets of cropland and grassland in the pilot regions. The SOC prediction is
satisfactory in Wallonia (Belgium; R2 0.51) but is less accurate in Greece and the Czech Republic. In particular in
Greece, the poor performance is linked to the low bare soil frequency due to the abundance of tree crops, cereals
and fodder crops. The monitoring system can reproduce spatial patterns in SOC content similar to the ones
obtained from a detailed regional algorithm using the new generation of hyperspectral satellites. However, the
very high values in kettle holes in a morainic landscape of Northern Germany are underestimated.
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1. Introduction

The soil is the most important terrestrial carbon pool and therefore
small losses or gains in SOC represent significant sources or sinks of
atmospheric CO2. The spatial variability of SOC is notable because of
variations in driving factors: climate, soils, land use or historical man-
agement practices, amongst other factors such as microbial activity.
Moreover, SOC content is required to calculate the SOC/clay ratio which
has recently been recognized as one of the quantified descriptors in the
EU soil monitoring law (Council of the European Union, 2024) as a
parameter to evaluate soil structure. Earth observation plays an
important role in monitoring SOC content (e.g. Angelopoulou et al.,
2019; Vaudour et al., 2022). SOC is a heterogeneous material and does
not show features in narrow spectral ranges. Instead, broad features
occur in the visible range around 450, 590 and 664 nm and in the near
infrared (NIR) and shortwave infrared (SWIR) regions, mainly related to
lignin and cellulose (Chabrillat et al., 2019; Castaldi, 2021).

One of the main challenges for remote sensing of soils is the fact that
the time windows during which the soils are bare (e.g. just before
seeding) are relatively short and depend on the crop calendar for each
field. Moreover, the soil surface conditions can disturb the signal
reflecting the soil properties and hinder measurement standardization.
Therefore, imagery acquired on a single date does not always provide a
continuous and reliable map of soil properties (e.g. Vaudour et al.,
2019).

In the last decade the soil composite mapping processor (SCMaP;
Rogge et al., 2018) and similar techniques have been developed (Diek
et al. 2017, Demattê et al., 2018). These techniques use the large mul-
tispectral satellite archives and can distinguish croplands and perma-
nently vegetated areas (grasslands and croplands), retrieve bare soil
spectral reflectance composites (SRC) and calculate statistics related to

the length of the indicated period. This temporal compositing technique
integrates the spectra for each pixel of exposed soils for a large number
of satellite acquisitions during a defined time period. SRCs thus provide
a spatial coverage of most croplands that could not be obtained in a
single acquisition. After all, the windows when the soil is bare are short
and cannot be exploited for all fields during a single satellite acquisition
as the crops are in different stages of development. This results in
various degrees of coverage of the soil. SCMaP provides bare soil com-
posite spectra that together with an up-to-date geo referenced data base
of soil characteristics can be used to construct SOC prediction models for
croplands (Demattê et al., 2018; Safanelli et al., 2020, Safanelli et al.,
2021). Moreover, Demattê et al. (2020) identified and nominated the
bare soil frequency (BSF) while mapping at global scale. On the one
hand, the authors used this BSF as an indicator of how many times a
single pixel was bare and thus, could have an impact on soil degradation.
On the other hand, the same BSF can be interpreted as a proxy for the
crop cover dynamics during the period over which the satellite imagery
was acquired and thus reflects the production of biomass and the input
of carbon to the soil.

Safanelli et al. (2020 & 2021) used temporal soil composites of
Landsat data, creating a median reflectance of a series of satellite ac-
quisitions for each pixel. Although they were able to cover nearly all
croplands for large areas in Europe and Brazil, these authors used long
time series of Landsat imagery (36 years) and a somewhat coarse spatial
and spectral resolution (30 m pixels and 6 Bands). This long integration
period is neither optimal for detecting up-to-date SOC base line values,
nor for monitoring, as required by soil health and climate mitigation
policies. New sensors such as the Sentinel 2 constellation and the
Landsat 8 multispectral instruments have recently become available
with better spatial and spectral resolutions. The frequent overpass of
these satellites ensures a nearly complete coverage of bare croplands for

Nomenclature

BSF Bare soil frequency
CAI Cellulose absorption index
CHIME The Copernicus Hyperspectral Imaging Mission
CNN Convolutional neural networks
COG Cloud Optimized GeoTIFF
DEM Digital Elevation Model
DSM Digital Soil mapping
ESA European Space Agency
ESRIN European Space Research Institute, also known as ESA

Centre for Earth Observation
GEOCRADLE Data Hub to access and share geospatial data and

information collected from satellites and ground-based
networks.

GIS Geographic Information System
GUI Graphic User Interface
ISO International Standards Organisation
LPIS Land Parcel Identification System
LUCAS European Union Land Use/Cover Area Frame Statistical

Survey
MEC Model Efficiency Coefficient
MREF Mean reflectance composite
NASA The National Aeronautics and Space Administration of the

United States federal government
NBR Normalized Burn Ratio
NDVI Normalised difference vegetation index
NIR Near-Infrared
NPV Non-photosynthetically active vegetation
NRC National Reporting Centre on Soils
NRMSE Normalized root mean squared error

OLI Operational Land Imager of the Landsat 8 payload
PICP Prediction Interval Coverage Probability
PIR Prediction interval ratio
PLSR Partial Least Squares regression, or Projection to Latent

Structures,
PRISMA Hyperspectral Precursor of the Application Mission
QRF Quantile Random Forests
RE Relative Error
RMSE Root Mean Square Error
RPD Ratio of performance to deviation (i.e. RMSE/Std)
RPIQ Ratio of performance to interquartile range (i.e. RMSE/

(Q3-Q1)
SBG Surface Biology and Geology Mission
SCMaP Soil composite mapping processor
SCORPAN Soil, climate, organisms, relief, parent material, age, and

site factors
SOC Soil Organic Carbon
SRC Spectral reflectance composites
SSL Soil Spectral Library
SVM Support Vector Machine
SWIR Short-wavelength Infrared
TM Thematic Mapper of the Landsat Mission
UKZUZ Central Institute for Supervising and Testing in Agriculture

in the Czech Republic
UTM Universal Transverse Mercator
VIS Visible spectral range
WORLDSOILS ESA contract No. 400131273/20/I-NB to derive

topsoil SOC predictions from satellite observations
WoSIS World Soil Information Service (selection of standardised

and ultimately harmonised soil profile data)
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temporal composites collected over a relatively short period. Castaldi
(2021) has shown that three-year composites produced good quality
SOC prediction algorithms covering a large part of the European
territory.

For permanently vegetated areas such as grasslands and forests, a so-
called digital soil mapping (DSM) approach can be used i.e. establishing
a multi variate or machine learning prediction model for geo-referenced
SOC contents using a variety of spatially continuous co-variates
(Minasny & McBratney, 2016). DSM is a well-established approach to
model and map soil properties at unknown locations, see for example
Poggio et al., (2021). DSM techniques use legacy in situ soil data and
relate them to spatially explicit environmental covariates describing the
so-called SCORPAN (soil, climate, organisms, relief, parent material,
age, and site) factors (Minasny & McBratney, 2016). So far, the use of
high-resolution data products from optical sensors such as Sentinel-2 in
digital soil mapping approaches are rare, although they showed poten-
tial in case studies or small-scale applications (Loiseau et al., 2019). The
usefulness of innovative products from the Sentinel-2 archive, such as
mean reflectance composites, soil reflectance composites and BSF in-
formation seems to be promising for digital soil mapping approaches.
Indeed, BSF has had its importance corroborated by Sousa et al. (2024)
on carbon impact monitoring.

As an example, many croplands have a negative carbon balance and
have lost a large part of their carbon pool since the start of agriculture
(Sanderman et al., 2017). Conservation agriculture aims at reversing
this carbon balance and thus contributing to negative CO2 emissions
while at the same time increasing soil organic matter and restoring soil
health (4 per 1000 initiative). For example, Castaldi et al. (2024)
demonstrated that for a large number of fields in the Italian Po valley
there was a clear spatial correlation between SOC and the farming sys-
tems, while the inclusion of fodder crops in the rotation and no till were
the most effective practices. Many of the fodder crops such as alfalfa are
multiannual and therefore cover the soil for (most of the) growing sea-
son. Our hypothesis is that increases in SOC content accompanied by
decreases in exposure of bare soils indicate that on the one hand tillage
intensity decreases and grades to no-till. This leads to concentration of
SOC in a thinner topsoil horizon. On the other hand, C input from crops
increases as the bare soil exposure decreases. The bare soil frequency
product obtained from the temporal compositing approach indicates the
percentage of bare soil acquisitions compared to the total number of
acquisitions that exclude clouds, haze and snow. Due to the normali-
zation with the total number of acquisitions, it is comparable across
Europe even if the cloud cover conditions vary (Heiden et al., 2022). The
bare soil frequency can be used as an indicator of activity i.e. cropland or
permanently vegetated area or conservation agriculture in cropland i.e.
length of the crop cover during the spring-autumn season. Moreover, the
uncertainty of the SOC prediction in each pixel increases when the
number of bare soil spectra included in the composite drops below 10
(Dvorakova et al., 2023).

Digital soil mapping has successfully been applied for SOC moni-
toring over regions (e.g. Cheng et al., 2024; Wang et al., 2024) to large
countries (e.g. Australia, Wadoux et al., 2023). However, constraints
have appeared. The co-variates, such as climate, topography and vege-
tation indices, generally reflect the driving factors for variability in SOC
at rather large resolution (e.g. 300 m; Wang et al., 2024). For high
resolution maps a geo-referenced large data set of SOC contents is
required often to be collected over a rather long period (e.g. 1970–2020
in Australia; Wadoux et al., 2023). Moreover, some regions such as al-
luvial plains show little variability in co-variates (Wang et al., 2024) or
are characterised by a combination of low sampling density and some
extreme values of SOC (e.g. Scandinavia, de Brogniez et al., 2015).
Spectroscopic approaches have demonstrated the potential for mapping
SOC using satellite imagery of bare fields reducing the requirement for
recent SOC data and exploiting the multispectral satellite signal to
enhance the differences between cropland fields (e.g. Angelopoulou
et al., 2019; Vaudour et al., 2022).

We present a pre-operational system that leverages the Sentinel 2
image archive, environmental covariates and the European land use/
cover area frame statistical survey LUCAS soil data set (Tóth et al., 2013;
Orgiazzi et al., 2018) to derive topsoil SOC content for the European
continent. The system uses a novel concept of combining bare soil SOC
prediction models with models for vegetated soils. The operational
system covers the entire processing chain from the pre-treatment of the
Sentinel 2 images, calibrating the algorithms for soil property predic-
tion, integrating uncertainty estimations and producing combined maps
for vegetated and bare soils. Results are provided for three consecutive
years in a graphical user interface that supports soil monitoring. In the
near future, such a system has the potential to evolve from an up-to-date
baseline SOC assessment towards monitoring of SOC content and other
soil properties. The system is standardized over Europe as it is calibrated
on the LUCAS database with uniform sampling and analytical protocols.
The system is scalable up to regions and even farm scale. The latter
would require aggregation of the pixel predictions to the field level
based on the field lay out using the European land parcel information
system (LPIS; e.g. Samarinas et al., 2023).

The objectives of this paper are to describe the tests and validation of
this operational system using a novel dual approach: (1) direct spectral
soil mapping for soils that are visible in bare conditions and (2) digital
soil mapping for those that are permanently vegetated. Specific tech-
nical objectives are:

⋅ To provide up to date annual SOC content maps for Europe covering
croplands, grasslands and forests

⋅ To develop transparent SOC prediction models
⋅ To validate results in three large pilot regions with external data

from National Reporting Centres on Soils
⋅ To enable the system to produce uncertainty maps for evaluating the

relevance of spatial or temporal trends
⋅ To provide an indicator for the length of the bare soil exposure

during the growing season

The SOC monitoring system results are validated using external
datasets in three European regions (Wallonia (Belgium), Central
Macedonia (Greece) and the Czech Republic). Additionally, an example
of the spatial trends for a region in northern Germany with a large SOC
content variation is presented to demonstrate the validity and accuracy
of the SOC predictions achieved exemplarily in a local area with large
SOC variability.

2. Material and methods

The SOC monitoring system comprises a collection of modules that
covers the whole processing pipeline from the Sentinel-2 archive
exploitation to the final SOC content and uncertainty map (Fig. 1). It
starts by accessing several external data sources which include all
Sentinel-2 L2A reflectance data from 2018 to 2022 and the ESA
WorldCover data set (Table S1). These data are used as input for the
SCMaP to create temporal composite products (section 2.2). The SOC
content values of the LUCAS soil data set and the Soil Reflectance
Composite (SRC) are the input data for the subsequent modelling for
bare soil pixels described in section 2.3.1. For soils that are always
covered by vegetation, a digital soil mapping approach is followed
integrating environmental covariates, novel products from SCMaP and
the SOC content values from the LUCAS soil data set (section 2.3.2).
Both models generate separate SOC content maps for bare soil pixels and
for vegetated pixels at 20 m spatial resolution. The results are then
mosaicked to get a combined SOC content and uncertainly map at 50 m
spatial resolution for three pilot regions and 100 m pixels for Europe
(section 2.4).
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2.1. Architecture of the soil monitoring system

The architecture for the EO based SOC monitoring system relies on a
visual platform for operators to monitor and control the processing of
SOC maps, as well as a user-friendly graphical interface for end users to
view and download the maps produced by the system.

The design of the system adheres to a 3-tier architecture, a well-

established software application architecture that organizes applica-
tions into three logical and physical computing tiers. In this design,
application processing, and data management functions are indepen-
dently developed and maintained in layers within each tier. This design
allows developers to add or modify functional layers within a tier,
eliminating the need to overhaul the entire application. Thus, the system
is divided into three physically separate tiers, each further segmented

Fig. 1. Flowchart of the SOC monitoring system to derive topsoil SOC content at continental scale. The number in brackets indicates the number of iterations and
resulting products with P5 and P95 being the 5th and 95th percentile.

Fig. 2. Detailed modular architecture of the SOC prediction system and actors (See abbreviations table after Conclusions).
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into logical layers: Tier-1 or presentation tier which houses the Map
Catalogue front end; Tier-2 or application tier which holds the Map
Catalogue back-end and the Map Generator; and Tier-3 or data tier which
operates the Analytical Data Lake and the Data Warehouse. This archi-
tectural choice was made to facilitate component reusability in future
iterations of the system and to enable concurrent development of tiers by
different actors: developers responsible for developing prediction
models and processors, operators responsible for system configuration
and triggering prediction processing, and end users.

There are four primary system components (Fig. 2): (i) The Map
Generator which handles the back-end processing necessary to generate
SOC predictions. It is supervised by a human operator who configures
the execution of the SOC Prediction pipeline (i.e., the EO data pre-
processing, soil prediction, mosaicking, and aggregation tasks). (ii)
The Map Catalogue that serves as the front-end graphical user interface.
This component provides the end users with 1) a map service to visually
inspect the SOC prediction layers and product metadata (generated by
the Map Generator component) and 2) a download interface via web
browser to download SOC map layers in Cloud Optimized GeoTIFF
(COG) format. (iii) The Analytical Data Lake, a storage system leveraging
a cloud storage service, holding raw and/or granular data for analytical
purposes. It holds big data from various sources with high accessibility,
e.g., LUCAS, digital elevation models (DEM), and climate data from
ERA5 (Tables S1-S3). (iv) The Data Warehouse, another cloud storage
system storing structured processed data used for the end-user graphical
interface and intermediate processing. It houses trained models, cova-
riates, image composites, intermediate predictions, SOC output prod-
ucts, and metadata.

The back-end processing (Map Generator) utilizes a suite of pro-
cessors developed by the WorldSoils project team, implemented as
Docker images.

2.2. Temporal compositing approach using SCMAP

The advantage of temporal compositing is to (1) generate results that
reflect not just one single point in time but a temporal average that
balances out strong seasonal dynamics and preserves permanent dif-
ferences between regions; (2) in case of bare SRC, it enlarges the area for
which direct soil modelling can be applied. The larger this area, the
better the prediction results since direct spectral models show mostly
better cross-validation results. The challenge is to develop a rigorous
pixel selection process to collect undisturbed bare soil pixels by covering
an area as large as possible at the same time.

A summary of the temporal compositing based on SCMaP (step 2 in
Fig. 1) follows, aligned with Rogge et al., (2018), Heiden et al., (2022).

In principle, four main products are generated (see Table 1) using the
archive of Sentinel-2 based on the methodology shown in Fig. 3. The
bare surface and the vegetation mask are used to assign each pixel of the
processed area to the correct SOC model. The mean reflectance com-
posite and the bare surface frequency are inputs for the digital SOC
mapping for the vegetated surfaces. The bare SRC will be utilized in the
spectral SOC mapping for the bare soils. For the bare soil and surface
selection, a combined spectral index (PV+IR2) is used to separate
photosynthetically active vegetation (PV) from bare surfaces (Normal-
ized Difference Vegetation Index – NDVI, Rouse et al., 1974) and to
reduce the influence of non-photosynthetically active vegetation (NPV)
using the Normalized Burn Ratio (NBR, (García and Caselles, 1991; Key
& Benson, 2003; eq. (1).

PV+ IR2 = ((B8 − B4)/(B8 + B4) )+ ((B8 − B12)/(B8 + B12) ) (1)

where Bx is the reflectance of the used Sentinel-2 band. Initially,
thresholds need to be defined, which are calculated per UTM-Tile and
analysing the time period 2019–2021. The regionalisation of the
thresholds is necessary to reflect the differences in the environmental
conditions of the region that emerged from a different climate, terrain

properties and thus, affects the characteristics of the land cover. For each
UTM tile, the minimum index composite is built by collecting for each
pixel the minimum PV+IR2 value in the time period. The frequency
distribution of spectral index values for the agricultural fields are then
compared with the frequency of grasslands by overlaying the land cover
classes grassland and cropland from the WorldCover data set for 2020
and 2021. These two landcover classes are used to optimize the sepa-
ration between PV and NPV. In general, the clear separation of both land
covers is not possible due to the limited spectral information of Sentinel-
2. The histogram separation threshold method (Heiden et al., 2022) is
then used to derive a tile-based threshold that is further the baseline to
select bare surfaces.

For the WorldSoils system, level 2A reflectance data including their
mask product (scene classification layer) are used for the processing. For
the exploitation of the Sentinel-2 archive, a rigorous cloud handling is
necessary that includes several filter steps. Initially, only level 2A scenes
are selected for processing that have a cloud coverage < 80 %. For
scenes that are still contaminated with clouds, the scene classification
layer of the Sentinel-2 L2A product generated during the atmospheric
correction stage is used to filter out clouds, haze and snow by keeping all
vegetation (class 4), no-vegetation (class 5) and water (class 6) pixels
only. In a later stage of the processing, selected bare surface reflectance
pixels are further masked out by two soil-specific filters. First, due to the
distinct difference in the NIR and SWIR between clouds and almost all
soils, pixels with the following conditions are masked out as clouds:

(B11 − B8A)/(B11 + B8A) > 0.02 (2)

where Bx is the reflectance of the used Sentinel-2 band. Second,
remaining haze and thin cloud contamination is detected based on
higher blue reflectance. For this purpose, a local statistic outlier filter is
implemented:

b⩽median(B)+3σ; σ = 1.48median(|B − median(B) | ) (3)

where B is the vector of all blue reflectance values in the time series and
b the blue reflectance to be tested. Further, the Normalised Difference
Snow Index (NDSI) is applied as defined by ESA (Sentiwiki, 2024) With
this rigorous cloud and snow filtering, it is possible to average the pixels
based on the mean. This has been done for every valid pixel in the time-
period (mean reflectance composite) and for the bare surface/soil
reflectance composites. Additionally, statistical products such as the
bare surface frequency are derived. The latter is the ratio between the

Table 1
Specification of products generated using the Soil Composite Mapping processor
(SCMaP).

Product Description

Bare surface and the
vegetation mask (MASK)

The 3-band mask contain information about:
Band 1 − pixels with alternating cover from soil
exposure to vegetation
Band 2 − pixels with permanent vegetation cover
Band 3 − pixels with permanent non-vegetation
cover.
The spatial resolution is 20 m.

Mean reflectance composite
(MREF)

The mean reflectance composite in [reflectance
values*10.000] is the mean of all valid pixels
(vegetation, no vegetation, bare soils and it excludes
clouds, snow, etc.). All original 10 m and 20 m bands
of Sentinel-2 are resampled to 20 m.

Bare surface frequency (BSF) This image contains information about the bare
surface frequency and is scaled between 0 and 1. It
quantifies the fraction of bare surface pixels
compared to the total number of valid pixels. It is a
measure for the use intensity of the soils.

Bare surface reflectance
composite (SRC)

The bare surface reflectance composite in
[reflectance values*10.000] is the mean of all bare
surface reflectance pixels (except of clouds, haze,
snow, etc.). All original 10 m and 20 m bands of
Sentinel-2 are resampled to 20 m.

B. van Wesemael et al. Geoderma 452 (2024) 117113 

5 



bare surface pixel count product and the valid pixel count product.
For the WorldSoils system, the above-described composite products

are generated for three different time periods with the same processing
parameters (Table 2). For each of the time ranges, we used the spring
(03, 04, 05) and autumn month (08, 09, 10) only. As described in Heiden
et al. (2022), the winter month have been excluded due to the high solar
zenith angle. For angle higher than 70◦, the estimation of the atmo-
spheric parameter (water vapour, aerosols) result in high uncertainties
due to the low energy level that is received by the Sentinel-2 sensor
(Vermote et al., 2016). The summer months June and July do not
contain a lot of bare soil fields due to the ripening phase and thus, they
are also excluded.

2.3. Data sets

2.3.1. Data sets for training the models
The LUCAS topsoil dataset is a large European soil spectral library

(about 20,000 soil samples). The campaign was launched in 2009 and
the sampling was repeated in 2015 and 2018 in the framework of the

European land use/cover area frame statistical survey (Tóth et al., 2013;
Orgiazzi et al., 2018). The topsoil sampling (0–20 cm) locations were
selected using a Latin hypercube-base stratified sampling design from
the LUCAS master sample grid of 2 km by 2 km. The LUCAS dataset
consists of laboratory spectra and 12 chemical and physical variables for
each soil sample that were acquired in the same laboratory. To train the
bare soil model, first the bare soil reflectance composite for each of the
LUCAS 2015 and LUCAS 2018 cropland points was extracted after
examining a three-year period from 2018 to 2021 and calculating the
mean over the bare soil signatures. It should be noted that if a LUCAS
point was revisited in 2018, we kept only its most recent SOC analysis. In
addition to the actual points themselves, to augment the data, a 3x3 grid
(i.e., pixels each corresponding to 20 m of spatial resolution) around
each point was constructed and its eight adjacent neighbours were also
collected. This resulted in about 71,235 unique spectral signatures, each
associated with either a neighbour or the central pixel corresponding to
a LUCAS topsoil measurement. The assumption behind our effort to
collect the neighbours originates from the fundamental principle that
adjacent pixels ought to have similar SOC value (or very close to it).

Thus, to account for the inherent imbalanced distribution of SOC that
has high positive skewness, it is possible to collect extra training data for
the large SOC concentrations. For this reason, we kept only the central
pixels from soil samples corresponding for which SOC is less than 50 g C
kg− 1 and kept both central and neighbouring pixels for which SOC
content is equal to or exceeds 50 g C kg− 1. In total, 13,949 records
formed the final set, the distribution of which is depicted in Fig. 4.
Following this step, a spectral-based outlier detection methodology was
employed to remove a few samples which had outlying nature, even if
they passed from the bare soil filter, to ensure that the highest-quality
data remained. This is necessary to account for unforeseen anomalies
which may be present in the spectral signatures, particularly at points
that are detected infrequently as bare, which could not be detected by
the process used to select only the bare fields. To this end, the one-class
Support Vector Machine (SVM) algorithm was employed in the first two
principal components (Seliya et al. 2021). In one-class SVMs, outlier
detection is achieved by learning a high-dimensional hypersphere that
tightly encloses the training data, representing the expected normal

Fig. 3. Soil Composite Mapping processor (SCMaP) − temporal compositing flowchart.

Table 2
Processing parameters for the Soil Composite Mapping processor (SCMaP)
approach.

Processing parameter Value

Sentinel-2 Level 2A input Sen2Cor processor
Sentinel-2 Level 2A cloud

masking
Scene classification layer:
classes 4 (vegetation),5 (no vegetation) and 6
(water) are kept

Time range (years) 2018–2020, 2019–2021, 2020–2022
Time range

(month used in each time
period)

03, 04, 05, 08, 09, 10

Cloud cover < 80 %
Spectral index PV + IR2 (see equation (1)
Threshold Variable per Sentinel-2 tile
Normalized Difference Snow

Index
0.00 (ESA, Sentiwiki, 2024)

Minimum bare soil count 3
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behaviour. This approach maximizes the margin between the data and
the boundary, effectively isolating outlying points that fall outside the
learned decision surface. The hyperparameter of SVM is nu, which is an
upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors (Chang and Lin, 2001). We used a nu value
0.02 and employed a linear kernel, after visually checking the samples
that were detected as outliers. After using the one-class SVM algorithm,
13,034 samples were left as inliers, and we proceeded to use them for
modelling (Fig. 4).

With respect to the permanently vegetated model, additionally, a set
of about 40 covariates was prepared as candidate predictors based on
their likely influence on soil formation for the permanently vegetated
areas. The mean reflectance composites (Table 1) for all pixels were
included in the covariates set. An overview of the covariates is given in
the supplementary materials. The World Soil Information Service
(WoSIS; Batjes et al., 2024) provides a compilation of quality-assessed
and standardised soil profile data that can be used to support digital
soil mapping and environmental applications at broad scale levels. The
data come from 174 countries and represent more than 900 k soil layers
(or horizons) and over 6 million records. The number of measurements
for each soil property vary (greatly) between profiles and with depth,
this generally depending on the objectives of the initial soil sampling
programmes. For this study the data for the region of interest were
selected and used in addition to the LUCAS dataset.

2.3.2. Data sets for evaluation of the SOC monitoring system in three pilot
regions

The Earth Observation-Soil Monitoring System has been validated in
three contrasting regions: Wallonia, Belgium; Macedonia, Greece and
the Czech Republic. These three focus studies include the use of local/
regional reference data, independent form the training data used in the
development of the SOC prediction algorithms and the derived rela-
tionship which are compared to the use of the default reference rela-
tionship based on the LUCAS topsoil database (Supplementary
material). Different analytical methods are used to measure SOC in the
pilot regions. Most frequently used methods are wet oxidation also
called Walkley-Black method (Walkley & Black, 1934) or its modifica-
tions, and dry combustion, e.g., with a CN-analyser (direct analyses), as

well as near infrared reflectance spectroscopy (NIR calibrated to SOC
contents analysed with a CN analyser). The use of different methods and
laboratories in the pilot regions can result in a bias compared to the
LUCAS survey that used a standardized method in a single reference
laboratory (ISO 10694:1995).

2.4. SOC prediction algorithms

2.4.1. Spectroscopic models for bare (cropland) soils
To develop the model from the SRC generated from the multi-

temporal Sentinel-2 data which predicts topsoil SOC content in bare
soils (corresponding to croplands), various AI modelling pipelines were
tested. First, we considered standard machine learning models such as
the Random Forest (Breiman, 2001) and Extreme Gradient Boost
(XGBoost) learners (Chen & Guestrin, 2016) which are ensemble
methodologies that work well on tabular data. Their hyperparameters
were optimized using 5-fold cross-validation in the calibration set (i.e.,
data available for training only) and grid search to obtain the most
robust models. These models exhibited relatively low performance given
the highly imbalanced nature of the dataset, due to SOC’s inherent high
positive skewness where most of the patterns have low SOC content. To
overcome this limitation, imbalanced learning techniques were also
considered such as under-sampling, over-sampling, and custom
weighted loss functions (e.g., weighted Random Forest). At this stage,
we also implemented custom artificial neural networks and convolu-
tional neural networks (CNNs) that were optimized using Bayesian
optimization (Schmidinger & Heuvelink, 2023) while additionally
considering custom loss functions to account for the imbalanced nature
of the dataset. A 10-fold cross-validation strategy in the calibration set
was employed to find the optimal hyperparameters by checking the
metrics of the internal validation set of each fold. The folds were
spatially stratified in the geodetic domain. Ultimately, the best model
was the CNN model with a custom loss function and oversampling of the
minority class (as detailed in the sections below), that outperformed all
the other approaches and was used in the end.

The custom CNN model is a multi-input one-dimensional model
which uses as input simultaneously the SRC (which corresponds to a
mean bare soil reflectance) and the Standard Normal Variate

Fig. 4. SOC content distribution of the data collected after using the 3x3 neighbouring grid for high (i.e., >=50 g C kg− 1) SOC content values after removing the
outliers. Statistical parameters are in g C kg− 1.
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transformation thereof, each of length 10 (i.e., the 10 Sentinel-2 bands
after removing B1 used for coastal aerosol, B9 that targets water vapor,
and B10 that detects cirrus clouds). It then utilizes three convolutional
layers to successively extract higher level features, with 18, 60, and 98
filters and a kernel size of 4. After flattening, 7 fully connected layers
follow (with 200, 240, 168, 200, 160, 256, and 224) and then final layer
produces the predicted value. The activations functions in each layer are
a mix of linear and leaky ReLU (rectified linear unit), while the final
layer uses the tanh activation function ensuring that the output is always
constrained with the bounds seen from the training dataset. The model
was trained using the Adam learner and a learning rate of 0.00156 with
a batch size of 128 (Kingma & Ba, 2014).

2.4.2. Digital soil mapping
SOC in permanently vegetated areas was predicted using a digital

soil mapping (DSM) approach. DSM is a well-established approach to
model and map soil properties at unknown locations, see for example
Minasny & McBratney (2016). DSM techniques use legacy in situ soil
data and relate them to spatially explicit environmental information
describing the so-called SCORPAN (S: soil, C: climate, O: organisms, R:
relief, P: parent material, A: age and N: site, location) factors. Among
these SCORPAN factors, organisms (within soil and above) play a
dominant role in explaining the variability in SOC at the regional to
landscape scale. A statistical relationship between measured soil prop-
erties and soil forming factors (e.g. terrain, vegetation, climate) as
measured by environmental covariates will be established (see the
covariates in Table S3). The layers were selected from a variety of open
source datasets available for the test area. Remote sensing products are
particularly effective in providing covariates characterising the role of
organisms i.e. cropping systems such as land use (change) maps and
indicators for C input from the vegetation (e.g., NDVI, Poggio
et al.2013). SOC observations at various locations in Europe were
related to the previously described environmental covariates. The soil
observations were split in 10 equally sized folds. Model tuning was
performed with a 10-fold cross-validation procedure applied to multiple
combinations of hyper-parameters. The main method explored was
Random Forest (Breiman, 2001). Models were obtained with the ranger
package in R (Wright& Ziegler, 2017), with the option quantreg to build
Quantile Random Forests (QRF; Meinshausen, 2006), for spatial uncer-
tainty assessment. With this option, the prediction is not a single value,
e.g., the average of predictions from the group of decision trees in the
random forest, but rather a cumulative probability distribution of the
soil property at each location. The importance of the variables was
calculated using the Gini impurity Index (Ishwaran, 2015). A set of
about 40 covariates was prepared as candidate predictors based on their
likely influence on soil formation. The soil composite averages for all
pixels were included in the covariates set.

The number of decision trees (ntree) was set as 500 and the number
of covariates used in the tree splits (mtry) as the (rounded) square root of
the number of covariates. Ten-fold cross-validation was used to assess
the internal performances of the model. The observations in each fold
were spatially stratified in the geodetic domain. The final model was
fitted with all available data. The final prediction models were gener-
ated using the ranger package as computationally optimized imple-
mentation of Random Forest. The option quantreg was used to build
quantile regression forests (Meinshausen, 2006). This yields a cumula-
tive probability distribution of topsoil SOC content at each location, thus
also quantifying prediction uncertainty.

2.5. Mosaicking

The inputs for the mosaicking are a raster created from the soil and
permanently vegetated masks produced by SCMaP and the SOC pre-
dicted in croplands and permanently vegetated areas. The model output
was a weight surface that can be used to calculate a SOC content in each
pixel to be used as a contiguous map. The weight surface was obtained

using a transition function around the border of the vegetated and bare
soil predictions. We used a linear transition, with the weights defined in
equation (4).

weight = (max dist + 2) − buffer/(max dist + 1) (4)

where max_dist is the maximum buffer distance in number of cells.
This linear weight surface is transitioning from 1 inside the region to

0 in the cells farther from the region border. The same procedure was
used for the uncertainty parameters (expressed as the ratio of the 90 %
percentile and the median ((P95-P5)/median). The mosaicking step was
carried out at 20m resolution for each of the 100 combinations. The
combinations were derived from the 10-fold bootstrapping iterations for
both bare and vegetated soil predictions. The 100 combinations were
aggregated (resampled) at 50 and 100 m resolution, respectively for the
test areas and the European scale.

2.6. Model evaluation and validation

2.6.1. Model attribution testing
The SOC data provided by the National Reporting Centres (NRC; see

section 2.3.2; Figures S2, S4 and S6) was sampled in agricultural soils
during the last decade, i.e. 2019–2021 for Wallonia (Figure S1),
1995–2022 for Macedonia (Figure S3) and from 2018 onwards for the
Czech Republic (Figure S5). The samples were geo-referenced and the
field technicians from the NRC’s distinguished the land cover types at
the time of sampling i.e. cropland (mainly annual crops), tree crops and
grassland. We used these observed land use data to test the accuracy of
the attribution to the correct SOC prediction algorithm using a confusion
matrix. As can be seen in steps 3 and 4 of Fig. 1, annual crops should be
attributed to the bare soil model and grasslands and tree crops to the
vegetated soil model. We calculated the user’s, producer’s and overall
accuracy according to the following theoretical example where A-F are
number of observations in the classes (Table 3).

2.6.2. Cross validation of algorithms
This approach was used to perform an evaluation of the models’

performance using the reference data (i.e., LUCAS and WoSIS). A tenfold
cross validation was considered crucial for robustly assessing the
model’s generalization ability and minimizing the risk of overfitting. We
divided the dataset into ten subsets, with nine of them used for training
and one for testing in each iteration. The accuracy metrics were calcu-
lated in the test set of each fold and their mean values served as our
primary performance indicators such as model efficiency coefficient
(MEC), which is the equivalent of the R2 of predicted and observed
values computed against the 1:1 line, root mean square error (RMSE),
normalized root mean square error (NRMSE), bias, relative error (RE),
Ratio of performance to deviation (RPD) and Ratio of performance to
interquartile range (RPIQ); eqs. (5–11).

Table 3
Theoretical Confusion matrix for algorithm attribution.

Reference

Classified ​ cropland Tree
crops+grassland

Others User’s
accuracy

Bare soil A1 B 0 A/(A +

B)
Vegetated
soil

C D 0 D*/(C +

D)
others E F 0 −

Producer’s
accuracy

A/(A +

C + E)
D/(B + D + F) Overall

Accuracy
(A + D)/
(A + B +

C + D +

E + F)

1 A-F are number of observations in the classes.
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MEC = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(6)

NRMSE =
RMSE

y
(7)

Bias =
∑n

i=1

yi − ŷi

n
(8)

RE =

∑n
i=1

⃒
⃒
⃒
⃒
yi − ŷ i
yi

⃒
⃒
⃒
⃒

n
*100 (9)

RPD =
SD

RMSE
(10)

RPIQ =
IQ

RMSE
(11)

where ŷ = predicted value, y = mean observed value, y = observed
values, n = number of samples with i = 1, 2, …, n, and SD the standard
deviation and IQ the interquartile range (quartiles 0.25 and 0.75) of the
observed values.

This method allowed us to obtain ten values per each accuracy
metric, from which we calculated the mean. By averaging the values
across the ten folds, we obtained a more reliable estimate of the model’s
overall performance, providing a scientific and precise evaluation of its
predictive capabilities. This approach enhances the validity of our
findings and strengthens the confidence in the model’s efficacy.

2.6.3. Monitoring and uncertainty assessment
Considering that CNNs are considered as black-box models in the

context of explainable AI, we used a post-hoc interpretability mecha-
nism, namely the Shapley values, to interpret the CNN model (Schwalbe
& Finzel, 2024). We attributed importance scores to each input feature,
highlighting which features most influence the model’s predictions.
These values are calculated via the SHapley Additive exPlanations
(SHAP) algorithm which computes the contribution of each feature
based on coalitional game theory (Lundberg et al., 2017).

To assess the uncertainty of prediction of the two models, the PICP
(prediction interval coverage probability) levels for various PI (predic-
tion interval) levels are calculated, to ascertain if the uncertainty esti-
mations are reliable (Safanelli et al., 2020; Schmidinger & Heuvelink,
2023). The underlying idea is to evaluate what percentage of soil sam-
ples from the test set lies in its respective prediction interval. In the ideal
scenario, the PICP is equal to the PI-level, e.g., for a 90% PI we desire a
PICP of 90%. If the PICP is over the PI-level, then the model is overly
pessimistic in its uncertainty estimations, whereas in the opposite case
the model is optimistic.

The two different learning algorithms (namely the CNN-based model
for bare soil predictions and the QRF for permanently vegetated areas)
used two different approaches to produce estimates of the uncertainty.
On the one hand, QRFs by design provide not only the mean of the
response variable, as conventional RF does, but also its entire distribu-
tion; thus, the task of extracting the quantiles of predictions is simple. On
the other hand, for the CNN model a different approach was followed.
Ten different models were trained using ten different bootstrap itera-
tions of the training dataset; each model provided its own prediction,
which were then stored separately.

Furthermore, to visualize the uncertainty as a map in the Worldsoils
system, we calculated the prediction interval ratio (PIR; eq. (12).

PIR = (P95 − P05)/P50 (12)

where P05, P50, and P95 are the 5th, 50th, and 95th percentile of
prediction; P50 is the median.

2.6.4. Evaluation of the monitoring system in the pilot areas
The three pilot regions i.e. Wallonia (Belgium), Macedonia (Greece)

and the Czech Republic are described in detail in the supplementary
materials. For the validation we extracted the predicted SOC value of the
pixel corresponding to the location of the sample in the data sets of the
National Reporting Centres on Soils. The location of the samples is given
as the centre of the field. The spectrum of the pixel corresponding to the
recorded location of the soil sample is then linked to the measured SOC
content. Unfortunately, the protocols for taking composite samples and
recording their location varied between the pilot regions as explained in
the next paragraphs. Therefore, we did not weight the spectra to
represent an average of the field. An additional limitation is that we did
not have access to the land parcel identification system (LPIS) for all
pilot regions.

For each of the three years of our study the validation samples in
Wallonia (Belgium) were collected by the network of agricultural lab-
oratories (REQUASUD) and reached more than 10,000 with a mean SOC
content of 17.4–18.0 g C kg− 1 and a standard deviation of 10.6–11.6 g C
kg− 1 (Table S4 and Figure S2). Each soil sample was collected at the
field-scale as a composite of ten sub-samples. As the sample points are
poorly distributed across the region, we applied a stratified random
selection. Samples were selected in such a way that they would be
distributed according to the cropland or grassland surface throughout
the entire region. Moreover, we removed the samples in a specific land
cover type that were either attributed to the wrong model or for which
the SCMaP could not attribute a model type (i.e. others; see section
2.6.1). This allowed to focus on the performance of the SOC prediction
algorithms. The measured SOC contents were determined from samples
collected in the middle of the period for which the soil reflectance
composites were made (e.g. samples collected in 2019 for the
2018–2020 composite).

The reference soil data from the croplands of the Macedonian region
are shown in Figure S4. It consists of 2208 samples from agricultural
land (e.g., arable land and tree crops). The data originated from two
different sources: i) National Paying Agency in conjunction with the
Aristotle University of Thessaloniki – Laboratory of Applied Science; and
ii) GEOCRADLE EU Initiative (Tziolas et al., 2019). The data were
collected between 1995 and 2022, following the same principles (5 m
radius, 0–30 topsoil). The SOC content is in general low with a mean of
12.60 g C kg− 1 and a standard deviation of 5.79 g C kg− 1.

The dataset used for validation in the Czech Republic (Figure S6)
comes from routine agrochemical soil testing (AZZP) carried out by the
Central Institute for Supervising and Testing in Agriculture (UKZUZ).
The testing is repeated in the period of six years on the whole area of
agricultural soils (last cycle 2014–2019). Every year ca. 60,000 samples
are collected (SOC only ca. 5000 per year based on a stratified selection
according to soil type; Figure S6). SOC monitoring started in 2018, and
since then about 20,000 samples for SOC have been collected. One
composite sample consists of min. 30 individual samples from an area of
7–10 ha (coordinates known only for centroid of area). SOC is obtained
by spectroscopy in the NIR spectral region (1000–2500 nm) using
reflectance values.

3. Results

SOC contents for the 0–20 cm topsoil were predicted based on
reflectance composites of a moving interval of three years: 2018–2020,
2019–2021, 2020–2022. The Graphical User Interface (GUI; http
s://world-soils.com) displays the SOC content maps for these three
time periods covering Europe at 100 m resolution and the three pilot

B. van Wesemael et al. Geoderma 452 (2024) 117113 

9 

https://world-soils.com
https://world-soils.com


areas at 50 m resolution are available on website GUI together with
maps of the 90% uncertainty intervals.

3.1. The soil reflectance composites

3.1.1. Model attribution
For Wallonia, the overall accuracy of the bare soil vs vegetated soil

distinction of the Worldsoils model was very high (93.6%; Table 4). For
Macedonia, the confusion matrix displays that most of the tree crops
were indeed identified as permanently vegetated (830 / 995 and a
producer’s accuracy of 83.4 %) while annual crops had mixed results
(719 / 1213 and a producer’s accuracy of 59.3 %). The crop type “olive
groves”, one of the main tree crops, will always be attributed to the
permanently vegetated SOC prediction model due to (1) the evergreen
character of the vegetation and (2) the varying spectral mixtures with
photosynthetically active and non-active vegetation. Therefore, spec-
trally pure soils will not be visible in the Sentinel-2 data. Other tree crops
such as vineyards and orchards are also represented by spectral mixtures
and thus, not attributed directly to the bare soil prediction model. Most
of the annual crops which were identified as permanently vegetated are
cereals, which may exhibit high percentage of plant residues in the
months in which the soil may typically be bare. For the Czech Republic,
tree crops consisted mainly of vineyards, hop farms and orchards. The
overall accuracy of distinguishing bare soil from vegetated soil of the
Worldsoils model was very high (96.7%). Therefore, the influence of the
inaccuracy of the classification and possible inadequate use of the bare
soil model (97.8 % producer’s accuracy) and the permanently vegetated
model (87.3 % producer’s accuracy) is limited.

3.1.2. Bare soil count and frequency
SCMaP also calculates the bare soil count in croplands (i.e. the

number of bare soil acquisitions for each pixel) and the bare soil fre-
quency (i.e. the number of bare soil counts divided by the number of
valid pixels; Table 5). It is considered that many bare soil acquisitions in
the composite for a pixel result in a more stable signal where distur-
bances related to moisture and crop are minimal. Dvorakova et al.,
(2023) have demonstrated for a region covering parts of the Netherlands

and Belgium that the uncertainty of the SOC content predictions
strongly increased when the number of bare soil acquisitions in the
composite of a pixel dropped below 7. It can already be seen in the
confusion matrix that about 40 % of the validation samples in Mace-
donian croplands (mainly cereals and fodder crops) are classified by the
SCMaP as permanently vegetated areas (Table 4). Moreover, the median
bare soil count in Macedonia is around the critical value for model un-
certainty identified by Dvorakova et al. (2023), while only 25% of the
validation points reach this critical value in the Czech Republic and
Wallonia (Table 5).

The bare soil frequency can be compared across regions as it is
normalized by the number of valid pixels (Heiden et al., 2022). It is a
proxy of the crop cover during the period of compositing i.e. from March
until October. The lowest bare soil frequency occurs in Macedonia fol-
lowed by the Czech Republic and Wallonia (Fig. 5).

3.2. SOC prediction algorithms

3.2.1. Bare soil
The ten-fold cross-validated model evaluation metrics are shown in

Table 6, while the scatter plot of the out-of-fold predictions is shown in
Fig. 6, where we collated the predictions across the held-out sets in
cross-validation to form one comprehensive set. They both demonstrate

Table 4
Confusion matrix for the attribution of pixels to the bare soil and vegetated pixels based on the 2019–2021 composite. The number of pixels corresponding to the
validation points is given together with the Producer’s, user’s and overall accuracy in percent (see Table 3).

A ​ Reference ​
Classified Wallonia Croplands Grasslands Others Total User’s accuracy (%)

Bare soil 1 7,886 108 0 7,994 98.7
Permanently vegetated2 495 1,666 0 2,161 77.1
Others3 26 21 0 47 −

Total 8407 1795 0 10,202 ​
Producer’s accuracy (%) 93.8 % 92.8 % − Overall accuracy (%) 93.63

B ​ Reference ​
Classified Macedonia Croplands Tree crops Others Total User’s accuracy (%)

Bare soil 719 141 0 860 83.6
Permanently vegetated 463 830 0 1,293 64.2
Others 31 24 0 55 −

Total 1,213 995 0 2,208 ​
Producer’s accuracy (%) 59.3 83.4 − Overall accuracy (%) 70.2

C ​ Reference ​ ​ ​ ​
Classified Czech Republic Croplands Grasslands þ

Tree crops
Others Total User’s accuracy (%)

Bare soil 4,496 63 0 4,559 98.6
Permanently vegetated 102 440 0 542 81.2
Others 1 1 0 2 −

Total 4,599 504 − 5,103 ​
Producer’s accuracy (%) 97.8 87.3 ​ Overall accuracy (%) 96.7

1 See Fig. 1 for workflow and section 2.4.1 for algorithms for bare soils.
2 See Fig. 1 for workflow and section 2.4.2 for the algorithms for permanently vegetated areas
3 These are mixed pixels or built-up areas.

Table 5
Bare soil count statistics of the pixels for cropland validation sample points. Q1:
first quartile; Q3: third quartile.

Region Year Min Q1 Median Q3 Max Std

Wallonia 2019 0 13 23 31 58 11.86
2020 0 11 19 28 61 12.09
2021 0 15 25 34 60 13.48

Czech Republic 2019 0 11 20 29 59 13.23
2020 0 0 10 20 63 12.64
2021 0 7 16 25 51 11.76

Macedonia 2019 0 0 7 18 111 13.27
2020 0 0 9 20 104 13.33
2021 0 0 10 20 100 13.10
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that the model attains a fair prediction with an RMSE of 18 g C kg− 1 and
a low bias of 0.08 g C kg− 1. It is however evident that still the high SOC
content values are very difficult to predict and the model underpredicts
the high SOC content values.

To shed light into the underlying reasoning process, we calculated
the feature importance of the model using the Shapley algorithm. The
most important information as identified by the Shapley values appears
to be in the visible range (B3) which indicates that the model tends to
use the soil colour as one of the most important features (Fig. 7). Sig-
nificant importance is also placed on B8 in the near infrared (at about
850 nm), while SWIR (B12) is also somewhat significant. This is
consistent with the results of Castaldi (2021) who compared SOC pre-
diction models derived from the laboratory spectral data base of LUCAS,
and the Sentinel 2 and Landsat8 spectra for the pixels corresponding to
the LUCAS sampling points. They found that the visible region was the
most important for the laboratory models on the full spectra with some
effect of the NIR and SWIR region.

As these two regions are only represented by two rather broad bands
in the Sentinel 2 spectra, they are much less important in the variable
importance graphs (Fig. 7). For Brazil, the red, NIR and SWIR2 bands
were the most important contributors to the SOC prediction models
(Safanelli et al., 2021). The shift in importance towards longer wave-
lengths compared to the European case is probably due to the high iron
contents in the tropical soils in Brazil which masks the effect of colouring
by organic matter (Chabrillat et al., 2019).

3.2.2. Permanently vegetated areas
The results of the cross-validation show that the model for perma-

nently vegetated areas did not have great performances (MEC = 0.28,

RMSE = 65.35 g C kg− 1; Table 6), whilst in line with other models across
continental areas. In contrast to other continental models that have a
resolution of 250 m (Soil Grids, (Poggio et al., 2021) or 500 m (European
soil property maps based on LUCAS; (de Brogniez et al., 2015) (Ballabio
et al., 2019) the Worldsoils algorithms are calculated at Sentinel 2 (i.e.
20 m) resolution and displayed in the GUI at 50m resolution for the pilot
areas and 100 m for the remainder of Europe. This higher resolution
enables integrating management practices that can vary within or more
often between fields as co-variates in contrast to other DSM algorithms.

The model for permanently vegetated areas used SOC values across a
wide range encompassing observations with very little SOC to obser-
vations with a maximum of more than 500 g C kg− 1 (Fig. 8). This wide
range of values with few observations for the extremes is challenging to
model. The most important covariates in the model for permanently
vegetated areas were the bands from the Sentinel 2 composites (mean
reflectance composite − MREF), together with climatic and geomor-
phological features (Fig. 9).

3.3. The uncertainty

The uncertainty of the SOC predictions is expressed as the 90th
percentile range (i.e., P95-P5) or in other words the interval that covers
90% of the predictions. A zoom on an area in the North of Wallonia
clearly shows that the uncertainty of SOC predictions for the croplands
with an average SOC content of 10 g C kg− 1 is below 2.5 g C kg− 1

(Fig. 10). The pixels with higher uncertainty often partly cover a road or
are on field boundaries. The same uncertainty range of c. 25 % was also
observed for croplands in Macedonia and Czech Republic.

Fig. 5. Box plots of bare soil frequency for the validation points for annual crops in Wallonia, Macedonia and the Czech Republic validation sites.

Table 6
Cross validation of the SOC prediction algorithms.

MEC1 RMSE
(g kg− 1)

NRMSE Bias RE (%) RPD RPIQ PICP
(90 %)

Bare soil 0.41 18.07 0.77 0.08 58.27 1.30 0.73 0.97
Permanently vegetated 0.28 67.35 1.58 − 1.97 120.78 1.18 0.34 0.94

1 MEC: model efficiency coefficient; RMSE: root mean squared error; NRMSE: normalized root mean squared error; RE: relative error; RPD ratio of performance to
deviation (i.e. RMSE/Std); RPIQ: ratio of performance to interquartile range (i.e. RMSE/(Q3-Q1)); PICP: prediction interval coverage probability.
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3.4. Evaluation of the SOC monitoring system

So far, we discussed the performance of each of the steps in the
processing pipeline (Fig. 1). As there were different steps from attrib-
uting the pixels to one of the two SOC algorithms, mosaicking, aggre-
gation from the Sentinel 2 resolution to the 50 m (pilot regions) and 100
m resolution (rest of Europe), we used recent georeferenced data sets of
topsoil SOC contents in the pilot regions as the best approximation to an
independent validation.

Obviously, the time period is still relatively short because of the

Sentinel 2 twin satellite constellation only became operational in 2018.
The SOC content predictions for agricultural soils were compared to
independent data sets. The evaluation only concerns agricultural soils,
as the sampling protocols for forest soils are different from the ones in
agricultural soils and the date at which the former were collected does
not correspond to the dates of the SOC prediction maps. Details on the
three regions and their content datasets are given in the supplementary
material.

Overall, the performance of the monitoring system remains stable for
the three periods. This is to be expected as the periods are partly

Fig. 6. Scatter plot between observed and predicted SOC (in g C kg− 1) for the bare soil model with the 1:1 (dashed) and the regression (solid blue) lines.

Fig. 7. Mean feature importance of Sentinel 2 soil reflectance composite (SRC) bands calculated over all data.
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overlapping and cover a short period for which SOC is generally
considered to be a constant soil property (Fig. 11).

For Wallonia, the points are distributed around the 1:1 line on a
graph of predicted against observed values, although there is a tendency
to over predict the values above 80 g C kg− 1 (Fig. 11). As these high SOC
values are extremely rare, it was decided to consider both observed and
predicted values above 80 g C kg− 1 as outliers and the performance

parameters were assessed removing these outliers. Overall, the perfor-
mance of the model without these outliers is reasonable with R2 around
0.5 and RPIQ between 1.46 and 1.69. The RMSE (or accuracy) is quite
large at 8.4–9.0 g C kg− 1 mainly because of poorer prediction of pixels
with SOC contents higher than 25 g C kg− 1. The bias of the SOC pre-
dictions is small at –0.33 to –1 g C kg− 1.

For Macedonia, the SOC content in croplands with tree crops is

Fig. 8. Scatter plot between observed and predicted SOC (in g C kg− 1) for the permanently vegetated model with the 1:1 (dashed) and the regression (solid
blue) lines.

Fig. 9. Random forest variable importance computed as reduction of Gini impurity for the SOC prediction model of permanently vegetated areas. MREF B1-B10
refers to the mean reflectance spectrum of the Sentinel 2 bands; TWI: topographical wetness index. Detailed explanation of the predictors used can be found
in Table S3.
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largely over predicted (Fig. 11). This is not surprising as the tree crops
are mostly predicted by the permanently vegetated model (Table 4).
This model is trained with SOC data for entire Europe and relies heavily
on the reflectance in the Vis NIR region, reflecting that vegetation cover
increases SOC content as is the case in grasslands and forests in
temperate regions (e.g. Poeplau et al. 2011). For Mediterranean tree
crops, this is not necessarily the case as the soil is frequently tilled to
reduce the water use by weeds, and therefore the return of biomass to
these soils is quite low. For the annual crops the model predicts a con-
stant SOC content of ca 15 g C kg− 1. However, the uncertainty of these
predictions is large as already 40 % of the annual crops are attributed to
the permanently vegetated model (Table 4) and for at least half of the
validation points the bare soil count is in the critical range of 7–10
(Table 5).

For the Czech Republic, the model metrics validated on the national
dataset show relatively low values. This shows, as expected, that the
global model is not fully accurate in modelling values at the local level.
However, in case of the validation dataset, the nature of the data and the
way it is sampled, especially the composite characteristic of the data,
should be considered (Fig. 11). Overall, the model performance is poor,
with R2 around 0.1 and RPIQ between 0.8. The RMSE is high at
6.93–7.32 g C kg− 1, mainly due to the poorer prediction of pixels with
SOC content higher than 25 g C kg− 1. The bias in the SOC predictions is
small.

4. Discussion

4.1. Bare soil frequency as a proxy for conservation practices

Winter cereals and fodder crops such as alfalfa have an extensive
cover during the growing season, while spring seeded crops such as
sugar beets, potatoes and maize still show bare soils during the start of
the growing season (from March until May). As Castaldi et al. (2024)
demonstrated these cereals and particularly fodder crops are a driver for
maintaining and increasing SOC content that can therefore have a
relationship with the bare soil frequency proxy. Crop residues decrease

the bare soil frequency until it reaches critical levels for the SOC pre-
diction as demonstrated by the samples in Macedonia (Table 5). As we
used satellite imagery from March to October (Table 2) for our predic-
tion models, there is a risk that the SOC prediction in Mediterranean
environments is less accurate than the one in temperate environments.
Summer crops, seeded in April and May are more common in temperate
environments and therefore the bare soil after seeding is more frequent
in these environments (Fig. 5).

Conservation agriculture will no doubt even lead to increased cover
of residues as these are no longer ploughed into the soil by inversion
tillage. Moreover, there will be a vertical SOC gradient in the topsoil as a
result of the reduced depth and reduced intensity of tillage (Priori et al.
2024). Currently, the SWIR bands of the Sentinel 2 are too wide to
capture the signal of crop residues. Hively et al., (2021) suggested to add
a few narrow width spectral bands in the SWIR region for the detection
of the cellulose absorption index (CAI) for the next generation of Landsat
multispectral instruments. This would also be beneficial for the next
generation of the Sentinel-2 instruments and could greatly support the
frequent monitoring of agricultural transition and other applications
such as soil erosion monitoring.

4.2. Performance of the algorithms

Although most studies are relatively recent, Vaudour et al. (2022)
found a significant correlation between RMSE of the prediction and
standard deviation and range of the observed SOC. The RMSE of the
algorithm for the Worldsoils system (RMSE= 18.07 g C kg− 1, Table 6) is
slightly higher than the one predicted by Vaudour et al. (2022) based on
the same range: 15.24 g kg− 1. Castaldi (2021) used part of the LUCAS
2015 dataset and Sentinel 2 composite for their SOC content algorithm.
Not surprisingly, they obtained a similar RMSE at 16.31 g C kg− 1. The
SOC content prediction algorithm using Landsat composites over 40-
year period in Brazil covered a much smaller range of SOC contents
(max. 48 g C kg− 1; Safanelli et al., 2021) compared to the LUCAS dataset
for Europe (max. 197 g C kg− 1; Fig. 4). Considering the smaller range,
the RMSE in Brazil was also quite low at 3.76 g C kg− 1. Meng et al.

Fig. 10. Zoom of the uncertainty intervals of the predicted SOC content expressed as prediction interval ratio (PIR; eq. (12) in an area in the North of Wallonia. The
field borders of the croplands are indicated.
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Fig. 11. Predicted versus observed SOC contents for agricultural soils, top panel: Wallonia, middle panel: Macedonia, bottom panel Czech Republic. The 1:1 line is
given (broken line). Symbols: annual crops in orange, tree crops in blue and grasslands in green. The significance level of R2 is indicated (ns: non significant, * p <

0.05; **p < 0.01).
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(2024) used many Landsat TM and OLI images to predict the SOC con-
tent in the global Mollisol areas including northeast China, the United
States, Ukraine and Russia and Argentina. The range in SOC content at
82 g C kg-1is much smaller than for the LUCAS dataset (Fig. 4), resulting
in a quite low RMSE at 4.84 g C kg− 1 for the Mollisol area.

In the bare soil model, due to the high positive skewness of the SOC
distribution, we augmented the dataset by selecting neighbouring
samples for high SOC content samples. While the oversampling tech-
nique effectively increased the number of data points for high SOC
content, it’s important to acknowledge that even so there still is a pos-
itive skewness in the resulting distribution. However, this technique
enabled the models to also predict the higher SOC contents, even though
these are still somewhat underpredicted (Fig. 6). This performance is
better compared to the first models that were trained on the original
dataset without augmentation, which fail to produce predictions of high
SOC content and only model the lower end of the distribution (results
not shown). Future research could explore the impact of different
oversampling strategies, such as varying the ratio of augmented to
original samples, to better understand how this technique affects the

model’s ability to generalize to unseen data.

4.3. Uncertainty

Andries et al. (2021) carried out a survey amongst land managers
and other stakeholders in order to investigate their preference for an
uncertainty indicator. Most of the stakeholders suggested the percentage
of observations that falls within the uncertainty interval of the model as
an indicator and suggested a threshold of 90 % for the reliability of
models to be used in decision making. The uncertainty of the Worldsoils
system does not reach this 90 % threshold, as for only 31% of the vali-
dation sample points in the Czech Republic, 43 % in Wallonia and 54 %
in Macedonia the SOC content falls within the P95-P5 (90% uncertainty)
range of the prediction. Although the pixels (50*50 m) in the pilot re-
gions are at an adequate scale to assess the within field variation in SOC
content of most of the fields (Fig. 11), an aggregation of SOC contents to
the average of an entire field results in a clearer image (Samarinas et al.
2023). After all, management practices such as tillage type or crop
rotation have a rather uniform impact within the field. Unfortunately,

Fig. 12. Satellite-based topsoil SOC content predictions in croplands based on a) the Worldsoils system using the multispectral Sentinel 2 time series 2020–2022,
resampled at 30 m and b) a regional prediction model based on four hyperspectral PRISMA acquisitions at 30 m in 2020–2021 (Ward et al., 2024). Left: Zoom around
the village of Borrentin on a Google Earth background.
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the Land parcel identification system (LPIS) is not generally available
throughout Europe and the uncertainty values cannot simply be calcu-
lated by aggregating the pixel values to the field average. Moreover, the
size of the pixels at European scale (100*100 m) is too large to char-
acterize the SOC content for individual fields.

4.4. Detecting spatial patterns in SOC

We compared the SOC values and their spatial patterns of the
Worldsoils monitoring system to the ones obtained from a regional SOC
prediction system based on the latest generation of hyperspectral sat-
ellites (PRISMA: Fig. 12). The strong variations in SOC in the young
morainic landscape of Northern Germany were picked up by the
Worldsoils system, although the extreme high SOC contents in former
glacial kettle holes were underestimated compared to the ones predicted
by the PRISMA imagery (Ward et al., 2024). The SOC content of the
Worldsoils product which is based on multispectral Sentinel 2 satellite
data matches very well the predictions from the PRISMA hyperspectral
satellite, and local spatial patterns are respected. Only in the high SOC
content values (~>120 g C kg− 1), the Worldsoils product tends to un-
derestimate SOC, as can be seen in a small area around the village of
Borrentin, close to a kettle hole (see zooms Fig. 12). At these organic rich
depressions SOC content can reach 150–200 g C kg− 1 (Ward et al.,
2020). The hummocky region shows a complex variability at a short
distance of eroded summits to colluvial foot slopes resulting in strong
variations of SOC content at small scale in the topsoils, which makes it
an ideal site for the demonstration and validation of Earth Observation
SOC products at different spatial scales. In general, absolute differences
in SOC content between the two products are more than 60 g C kg− 1.
This limitation was already seen in the validation of the Worldsoils bare
soil model. However, it should be noted that the results shown in
Fig. 12a have been derived using a European-wide model and the results
of Fig. 12b are based on a regional model of the Demmin region. Having
this in mind, the results from the European model are remarkably good
and it is very likely that a regional model using Sentinel-2 data produces
higher accuracies and lower uncertainties.

4.5. Limitations and perspectives

The overall accuracy of the monitoring system has been assessed in
the three pilot regions, whereby it must be considered that this is not a
strict validation as the sampling and analysis protocols were different
between the LUCAS calibration data sets and the external validation
data sets of the National Reporting Centres. A crucial step in the moni-
toring system is the correct attribution of the pixels to one of the two
models (spectral vs digital soil mapping) and the window of bare soils
during the Sentinel 2 over flights. These steps are not generally
considered in the evaluation of Earth observation leveraged soil prop-
erty mapping, see the review of Vaudour et al. (2022). We therefore
suggest to not only focus on the global performance indicators of the
algorithms such as R2, RMSE, RPIQ, but also provided pixel-based un-
certainty and proxies for the reliability of the composites such as bare
soil count. Moreover, the bare soil frequency is a promising proxy to
detect regenerative agriculture, even for the growing season.

As a result of the skewed distribution of SOC contents in Europe with
a small number of values larger than 150 g C kg− 1, the algorithms tend to
underestimate at such large SOC contents. The system provides the 90%
uncertainty interval for the SOC predictions at pixel level, although the
threshold of 90% of the SOC content in the sample points within the
uncertainty range of the model is not yet reached Moreover, the system
is stable as the SOC contents for the periods 2018–2020, 2019–2021 and
2020–2022 are nearly similar. It can thus be used as a baseline for SOC
content and it’s monitoring as longer time series of Sentinel 2 imagery
become available.

Both for Macedonia and the Czech Republic, the range in SOC con-
tents was rather small which had a serious impact on the evaluation

performance, although the R2 of the predicted/observed graphs was
significant for all sites (Fig. 11). This shows that spatial SOC patterns are
detectable by the WorldSoils systems and indicates that a further
regionalisation of the models in European subregions could significantly
improve the results. The WorldSoils monitoring system is a pre-
operational modular system that is running on state-of-the-art cloud
processing environments. In principle, it can be also used for areas
outside Europe, if enough calibration data are available. Moreover, it is
now ready for further methodological improvements and the mapping
and monitoring of new soil parameters such as clay content can be
implemented and tested allowing to monitor one of the soil descriptors i.
e. SOC/clay ratio of the recently published soil monitoring law (Council
of the European Union, 2024).

In the next decade, we can expect that hyperspectral-based soil
products will be more regularly available from space, that will help to
refine the regular mapping and monitoring of SOC and other soil
properties such as clays, carbonates, iron oxides. Global mapping
hyperspectral mission, such as the ESA Copernicus Hyperspectral Im-
aging Mission for the Environment (CHIME) (Celesti et al., 2022) and
the NASA Surface Biology and Geology (SBG) (Turpie et al., 2023) are
planned for 2028–2030. Meanwhile, new opportunities for soil mapping
from current spaceborne imaging spectroscopy missions are being tested
and demonstrated based on the PRISMA (Lopinto et al., 2022) or EnMAP
(Chabrillat et al., 2024) satellites. These expectations are associated
with increased accuracy compared to multispectral products due to the
improved spectral coverage and spectral resolution that shall lead to
improved quantification of disturbing factors (e.g. soil moisture, non-
photosynthetic vegetation cover) directly pixel-wise from each image,
and improved soil properties modelling. Nevertheless, hyperspectral
systems will not reach the temporal revisit time of multispectral systems
and do involve heavier computation. In this sense, multispectral-based
SOC systems such as Worldsoils are already able to deliver maps based
on the average SOC content over three years. While these maps devel-
oped from multispectral systems have some uncertainties, they offer a
unique and relatively accurate source of information that is currently
unavailable from other methods.

5. Conclusions

The Worldsoils monitoring system leverages Earth observation and
uniform soil data sets to produce a continuous SOC map covering the
European territory. The system uses separate models for croplands and
permanently vegetated areas such as grasslands and forests. It strongly
relies on compositing products from the Sentinel 2 multispectral satel-
lite. The composites provide the mean reflectance for all valid bare soil
pixels over a period of three years (from March to October). One of the
benefits of the composite is that it does provide bare soil spectra for
(nearly) all cropland pixels and it averages out spectral extremes (e.g.
very moist and very dry soils). The mean reflectance composite and the
bare soil reflectance composite is then the input to the SOC content
prediction algorithm. Additionally, the bare soil frequency is computed,
which may be used to infer information on soil management that in-
fluences the SOC contents in the long term. The derived uncertainty
level (P95-P5), expressed as absolute value (for croplands P95-P5 = 2.5
g C kg− 1), was lower than the one required by the end users (5 g C kg− 1).
As external validation, the performance of the Worldsoils monitoring
system was evaluated in three pilot regions against national soil data sets
For Wallonia (Belgium) the reflectance composites were able to accu-
rately distinguish between croplands and grasslands. The SOC predic-
tion in Wallonia was reasonable (R2 0.51), although the accuracy of the
models as expressed by the RMSE for the validation sets remains rather
large at 7.6 g C kg− 1. For the Czech Republic and Macedonia (Greece),
the validation results were less satisfactory with R2 of around 0.11. A
closer analysis in Macedonia demonstrated that the Worldsoils moni-
toring system tends to overestimate in Southern European orchards with
low SOC due to frequent tillage below the tree canopies. Moreover, the
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bare soil frequency in croplands is very low for this region. On the one
hand this result could be an indicator for practices such as the use of
conservation tillage, cover crops and grass leys, but on the other hand
the short window for bare soil degrades the prediction performance of
the algorithm.
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