Simulation-driven analysis of airborne in-situ observations of natural methane emissions in northern Scandinavia

K.-D. Gottschaldt¹, K. Hartung¹, A. Fiehn¹, H. Huntrieser¹, P. Jöckel¹, B. Kern¹, F. Langot², C. Mallaun³, J. Marshall¹, M. Mertens¹, V. Nenakhov³, M. Pühl¹, F. Reum¹, A. Roiger¹

¹ German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, Germany
² Laboratoire de Météorologie Dynamique (LMD), Ecole Polytechnique, Palaiseau, France
³ German Aerospace Center (DLR), Flight Experiments, Oberpfaffenhofen, Germany

BACKGROUND

BACKGROUND Global methane budget

• Affected by climate change

BACKGROUND Methane emissions' hotspots in Europe

CLM Community Assembly, Oberpfaffenhofen, 22 October 2024, Gottschaldt et al.

BACKGROUND Emission inventories

Large discrepancies = Uncertainties

BACKGROUND How can airborne in-situ CH₄ measurements help?

- Bridging spatial scales between ground-based and satellite data
- Supplement passive satellite sensors that struggle with
 - high solar zenith angle
 - difficult surface and thermodynamic conditions
- Provide high-quality data for validation of space missions → Currently few regional scale and profile data available
 - for high northern latitudes

Regional snapshots, complementing other observations

 Allowing for regional flux estimates and process-related studies

MAGIC 2021 CAMPAIGN

CLM Community Assembly, Oberpfaffenhofen, 22 October 2024, Gottschaldt et al.

MAGIC 2021 CAMPAIGN DLR Cessna

- Flexible measurement platform
- Operated mostly in the boundary layer during MAGIC
- Measured along flight track: Methane, 3d wind, T, p, ¹³C(CH₄), CO₂, C₂H₆, H₂O
 ① 1 ... 10 Hz
- In-situ instrumentation less affected by bad weather than remote sensing

Main scientific objective: Evaluate inventories with observation-based flux estimates

Photo:

DLR

MAGIC 2021 CAMPAIGN Methane measurements

Mixing ratios

- Measured
- Observed variability ~50 ppb

Emission fluxes

- To be derived
- Area sources

Other methodologies needed than for point sources

1. Eddy covariance 2. Inverse modelling :

MAGIC 2021 CAMPAIGN Putting the flights into perspective

- Back trajectories
- Eulerian forward
- Inversion

MODELLING

MODELLING Regional Eulerian forward simulation

MECO(n) = global ECHAM + regional COSMO

MESSy-fied ECHAM and

COSMO/MESSy models nested n times

arth Submo

Jöckel et al. (2010) Kerkweg & Jöckel (2012ab) https://messy-interface.org

 Characterization of sources contributing to the observations, where the simulation sufficiently reproduces the measurements
→ Identify deficiencies in inventories or model

Estimate background CH₄ for inverse modelling

MODELLING MECO(2) setup

Global ECHAM (EMAC) instance	Regional COSMO nests
T106	50 km and 7 km nests with dynamical and chemical bc from global instance
Synoptic scale dynamics nudged to ERA5	Without nudging, but coupled via boundaries
Full chemistry	CH ₄ sink due to OH and dry deposition
Branched off a decadal global simulation, July 2021 spinup	August 2021 for analyses

Dedicated output along the given flight tracks (curtains) each time step (S4D) \rightarrow **Best possible co-location**

Acknowledgement HPC: DKRZ project bd0617 "Multiscale Earth System Chemistry Modelling"

MODELLING Methane inventories for campaign analyses

		EMAC	COSMO		
EDGAR + EMPA total CH_4		\checkmark	✓ +bc	Inversion-optimized anthropogenic + natura	al Q
WetCHARTs mean		\checkmark	√ + bc	Wetlands	her
WetCHARTs #2913		\checkmark	√ + bc	Wetlands	уеа
JSBACH-HIMMELI		\checkmark	√ + bc	Peatland + inundated land + mineral soil	SI
JSBACH-HIMMELI	A		√ + bc	Peatland + inundated land + mineral soil	с <u> </u>
JSBACH-HIMMELI	A		√ + bc	Peatland	Dail amp pei
JSBACH-HIMMELI	A		√ + bc	Inundated land	y for piag riod
JSBACH-HIMMELI	A		√ + bc	Mineral soil emissions	רכ
Johnson et al. (2022)		\checkmark	√ + bc	Freshwater diffusion + ebullition	Oth
$GFAS \to MESSy\ BIOBURN$		\checkmark	✓ + bc	Biomass burning	her ars

bc = Transport across boundaries into finer domain (One-way coupling)

Selection of separate methane tracers

MODELING Individual emission classes: JSBACH-HIMMELI

CLM Community Assembly, Oberpfaffenhofen, 22 October 2024, Gottschaldt et al.

Inventories: FMI / Markkanen & Raivonen | Background: Google Earth | Graphics: DLR / Gottschaldt

PRELIMINARY RESULTS

DLR

PRELIMINARY RESULTS Contributions of individual sources to measurements

EDGAR + EMPA total CH_4 generally too low, but contains some of the special emissions

PRELIMINARY RESULTS **Contributions of individual sources to measurements**

Disentangle regional emissions from "background"

e.g. separate transport into COSMO domain from emissions in the domain

PRELIMINARY RESULTS Example: Variations

- Double counting issues affect absolute values
- \rightarrow Analyse variations instead
- Variations along track correspond to spatial gradients
- Gradients likely reflect local emissions
- Emission flux estimates use gradients
- Curtains may provide hints on deviations due to representation of vertical gradients in the PBL

PRELIMINARY RESULTS Correlations of variations

- Indication of which emissions dominate the observed variation per flight
- Compare inventories
- Refine by e.g. separating profiles from level measurements
- Consider additional statistical parameters

Interpret case by case

PRELIMINARY RESULTS Example: Narrow miss?

Distinct airmass at eastern edge of the flight pattern might just be at a slightly different position in the simulation \rightarrow Check 4d output fields

Photo: DLR / K.-D. Gottschald

- MECO(n) hindcast of MAGIC-2021: Promising first results
- Potential to provide critical pieces of the puzzle in the interpretation of the measurements
- Outlook:

22

- \rightarrow Evaluate dynamics (p, T, wind, PBLH) sim vs obs
- \rightarrow Improve emissions setup, fix quirks ... then rerun simulation
- \rightarrow Extend analyses
- → Inform flux analyses (inverse modelling, eddy covariance, ...)

THANK YOU

Contact: klaus-dirk.gottschaldt@dlr.de

CLM Community Assembly, Oberpfaffenhofen, 22 October 2024, Gottschaldt et al.

REFERENCES

- Jöckel, P. et al., 2010. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geoscientific Model Development, Volume 3, p. 717–752.
- Johnson, M. et al., 2022. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions. Journal of Geophysical Research: Biogeosciences, Volume 127, p. e2022JG006793.

JSBACH-HIMMELI:

- Aalto, T. et al., 2020. Second CH4 fluxes from wetlands and water bodies from BU models, s.l.: VERIFY deliverable D4.5: Observation-based system for monitoring and verification of greenhouse gases.
- Raivonen, M. et al., 2017. HIMMELI v1.0: Helsinkl Model of MEthane buiLd-up and emIssion for peatlands. Geosci. Model Dev., Volume 10, p. 4665–4691.
- Reick, C. et al., 2021. JSBACH 3 The land component of the MPI Earth System Model: Documentation of version 3.2, Hamburg, Germany: Max-Planck-Institut für Meteorologie.
- Kerkweg, A. & Jöckel, P., 2012a. The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy. Geosci. Model Dev., Volume 5, pp. 87-110.
- Kerkweg, A. & Jöckel, P., 2012b. he 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 2: On-line coupling with the Multi-Model-Driver (MMD). Geosci. Model Dev., Volume 5, pp. 111-128.
- Saunois, M. et al., 2020. The global methane budget 2000-2017. *Earth Syst. Sci. Data,* Volume 12, pp. 1561-1623.