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Abstract—Deep learning based computer vision models like
convolutional neural networks (CNN) are more and more applied
for the automatic analysis of sonar images. Since sonar image
datasets typically have a limited number of samples, transfer-
learning is used to train these models. However, commonly
used pre-training datasets, like ImageNet, have a large domain
gap to sonar images, i.e., images in these two datasets are
fundamentally different. The selection of the pre-training dataset
and the related domain gap have shown to have an impact on the
final performance of the model. In this work, different datasets
are analysed for applying transfer-learning to a CNN for the
classification of sidescan sonar images. We quantify the domain
gap using a variational autoencoder (VAE) and the t-distributed
stochastic neighbor embedding (t-SNE) and link these values to
the classification performance of the CNN after fine-tuning.

Index Terms—Deep learning, Sidescan sonar, Transfer-
learning, Computer vision, Sonar image classification

I. INTRODUCTION

Sonar image data is typically captured using autonomous
underwater vehicles (AUVs) or ships equipped with sidescan
or synthetic aperture sonars. These vessels survey the seafloor
following a pre-defined path to search for sunken objects of
interest. However, collecting data is cumbersome and costly
as it requires specialized personneal and equipment. Although
significant progress has been made in the field of sonar
image classification, especially by developing deep learning
models [1]–[3], the outcome of deep learning models remains
limited due to the need for more data.

In applications in which the available amount of data is
limited, transfer-learning can be applied to improve the overall
training of the models [4]. With this concept, a model is
first pre-trained on a large source dataset, which does not
necessarily represent the final task. In a second step the model
is fine-tuned on the real target dataset. For classification, one
of the most common pre-training dataset is ImageNet [5],
containing over one million optical RGB images and 1,000
object classes. However, compared to sidescan sonar images,
the samples from ImageNet are fundamentally different in
terms of the imaging sensor, image content and resolution,
resulting in a large domain gap between ImageNet and a
sonar image dataset (see Table I). Researchers have shown that
selecting pre-training datasets with a small domain gap to the
target dataset can improve the performance of the model [4].

This paper presents a study on classification datasets, which,
compared to ImageNet, are expected to have a smaller domain
gap to a sidescan sonar image dataset. For measuring the

domain gap we calculate the Euclidean distance in the latent
space of a variational autoencoder (VAE) as well as the
Euclidean distance in the t-distributed stochastic neighbor
embedding (t-SNE) representation. We train a convolutional
neural network (CNN) used in previous work [6] on the most
promising datasets as well as ImageNet. The classification
performance after fine-tuning on our sonar image dataset is
compared to the one of a network trained from scratch.

The remaining of the paper is organized as follows: Sec-
tion II introduces the datasets which are investigated in this
work. Afterwards, Section III covers the measurement of the
domain gap. The designed CNN and training parameters are
briefly explained in Section IV. In Section V the results of
our experiments are presented. Finally, Section VI closes the
paper with a summary of the main findings and outlook to
future work.

II. SELECTED DATASETS

Sidescan sonar data was collected over multiple sea trials
in the time span from 2019 to 2023 using a Edgetech 2205
sidescan sonar mounted on a SeaCat AUV. The sonar image
dataset build from these trials was already described in [6]. It
contains objects from the four classes Tire, Rock, Cylinder and
Wreck as well as an additional Background class. The number
of samples in the training and test set are given in Table I. Note
that the number of test samples is larger than the number of
training samples due to the fact that the number of training
images from the class Rock was limited to keep the training
set balanced (see [6] for more details).

The most common dataset to pre-train deep learning models
for the classification task is ImageNet. However, ImageNet
contains optical RGB images with a higher resolution more
details than sonar images and thus the domain gap to sidescan
sonar dataset is expected to be large. During pre-training with
ImageNet the network learns features based on color which
are meaningless for the target task of classifying sonar images.
Thus, one criteria for selecting the datasets in this work was
that the images should be grayscale to ensure a small domain
gap. Typical sensors whose images fulfill this requirement
are ultrasonic transducers, synthetic aperture radar (SAR) or
X-ray. Another aspect for the selection was the number of
training samples, since a dataset used for pre-training should
contain more samples than the target dataset. We used Kaggle
and Roboflow to search for open source datasets and selected
the following ones: Malo [7], Fetal [8], Ship&Boats [9],



SAR [10] and Hand X-ray [11]. Originally, the SAR dataset
contains ships to be detected. To use it for a classification
task, we extract the ships and additional background snippets
at random positions. This results in a binary classification
dataset. In addition to these datasets, we manually modified
the images from ImageNet to be grayscale. Table I gives an
overview about the selected datasets regarding the number of
classes and number of samples.

We also setup a simulation using a CAD software where
we randomly placed models of ships, tires and rocks in a
scene to generate a dataset of synthetic sonar images. Within
the generated CAD environment, the essential features and
components are: floor, light, and objects. The floor is an
extruded planar surface which extends in a rectangular form.
It includes different surface elevations along its area and in
some other scenarios it also contained a ripple pattern using
a simple sin() function. For better resemblance with real
sonar images, an additional sand texture was set to the planar
surface. In a second step, for enhancing the environment to
a more realistic scene, two light sources were placed on
the 3D assembly. By alternating its location and angle a
wide range of possibilities in image diversity was achieved.
Finally, the objects of interest, e.g., ships, boats and tires, were
downloaded from a free CAD source. Only the rock class was
manually created implementing a free-form option from the
same CAD software.

III. MEASURED DOMAIN GAP

To quantify the domain gap between the pre-training data-
sets and the sidescan sonar dataset we first map the images to
a lower dimensional space Afterwards, the Euclidean distance
between the center points of the datasets in this space is
calculated. Mensink et al. propose to use a backbone CNN
which was pre-trained on ImageNet to extract features of
images from the individual dataset and calculate the distance
between these feature vectors [4]. However, since ImageNet is
one dataset to be investigated we disregard this approach. In
this work, t-SNE as well as a VAE are used for the purpose of
dimensionality reduction. The t-SNE method maps the images
to a two dimensional space where images that are similar to
each other should lie close to each other in the embedding.
The encoder of the VAE maps the input images to a latent
vector and the decoder learns to reconstruct the image from
this. We design the VAE to have a latent vector of size two
to obtain a two-dimensional representation of the images.

Because the images from ImageNet have three color chan-
nels and the input to the network has to be the same for
all datasets, we repeat the grayscale images from the other
datasets to match this requirement. Figure 1a and 1b show the
distribution of the investigated datasets in the t-SNE and VAE
embedding space. The calculated distances are also listed in
Table II. In the VAE embedding space the SAR dataset has
the closest distance to the sonar image dataset. Surprisingly,
although sonar images and optical images are fundamentally
different the distance for ImageNet measured in the t-SNE
the smallest compared to the other datasets. This is partly

Table I: Datasets investigated for pre-training.

Dataset Classes Training
snippets

Test
snippets

Example

Sonar 5 129 1486

ImageNet 500 252772 75000

ImageNet
(grayscale)

500 252772 75000

Malo 3 776 98

Synthetic 3 408 103

Fetal 6 7129 5271

Ship&Boats 2 812 49

SAR 2 62981 20000

Hand X-ray 6 40637 10160
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Figure 1: Comparison of the domain gap. (a) Based on t-SNE.
(b) Based on VAE.

Table II: Measured distances between to sonar and pre-training
dataset.

Dataset Distance
using t-SNE

Distance
using VAE

ImageNet 18.880 1.150
ImageNet
(grayscale)

19.029 1.266

Malo 41.713 2.516
Synthetic 23.321 1.020
Fetal 25.542 1.324
Ship&Boats 37.788 2.605
SAR 22.647 0.888
Hand X-ray 29.334 1.946

due to the large spread of the ImageNet samples in the
embedding space. Comparing the distances for the original
and the grayscaled version of ImageNet only a slight change is
visible with the original one even having a smaller distance in
the VAE representation. Intuitively, the grayscaled images are
more similar to sonar images and should lead a smaller domain
gap. This shows that both methods might not be optimal to
measure the domain gap and further research needs to be done
to quantify the domain gap between datasets.

Additionally, Figure 2a and 2b show the distance plots
for the grayscale images when the input to the network
only consists of one channel. Thus, the original ImageNet is
excluded. It can be seen that this modification has only minor
influence on the distribution in the t-SNE representation. For
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Figure 2: Comparison of the domain gap with one channel
input. (a) Based on t-SNE. (b) Based on VAE.

the VAE the effect is slightly stronger. However, the general
distribution of the datasets stays the same, e.g. in both cases
(three channel and one channel) the datasets SAR, Synthetic
and Fetal are grouped in the same area.

IV. NETWORK ARCHITECTURE AND TRAINING

For the experiments we utilize a network architecture de-
scribed in our previous work, where it trained from scratch
to classify sidescan sonar images [6]. This CNN consists of
three convolutional layers with 8, 16 and 32 kernel of size
3 × 3. The output of a convolutional layer is passed through
a ReLU activation function, batch normalization and 2 × 2
max pooling. Features from the last convolutional layer are
compressed using a fully connected layer with 100 neurons
prior to the final output layer. Depending on the pre-training
dataset the number of neurons in the output fully connected
layer matches the number of classes for each dataset, e.g., the
CNN trained on the Malo dataset has three output neurons.
Dropout is added before both of the fully connected layers.
All input images are scaled to match the input size of the
network, which is 64× 64 pixel.

In the following experiment a CNN is first pre-trained on
one of the source datasets and afterwards fine-tuned on the
sidescan sonar image dataset. In all cases, pre-training is
done for a maximum number of 100 epochs using the Adam
optimizer. Early-stopping is used to avoid over-fitting so that
the training might be stopped before the last epoch is reached.



Table III: Classification performance for different pre-training
datasets. Best value marked in bold.

Dataset Macro F1-score
Source task Target task

Sonar 0.430 0.429
ImageNet 0.132 0.439
ImageNet

(grayscale)
0.113 0.379

Malo 0.701 0.199
Synthetic 0.808 0.306
Fetal 0.469 0.491
Ship&Boats 0.824 0.297
SAR 0.980 0.367
Hand X-ray 0.846 0.302

The learning rate in the pre-training step is set to 0.001 for all
source datasets. As shown in [12] an optimal performance on
the source dataset is not necessary to achieve a good transfer
learning result. Thus, we did not focus on optimizing the
performance of the CNN after pre-training. For fine-tuning, the
output layer is adapted to match the sonar image classification
task with five classes, i.e., the output fully connected layer
now has five neurons. We noticed that improvement in training
required higher patience values in early-stopping. Furthermore,
the number of epochs is increased to a maximum of 400. We
experimented with different learning rates and achieved the
best results with a value of 0.001.

V. CLASSIFICATION RESULTS

The classification performance of all models is assessed
using the macro F1-score to account for the unbalanced test
dataset. Table III shows the performance of the CNNs pre-
trained on the aforementioned datasets and fine-tuned on the
sonar image dataset. In addition, the performance on the source
task after pre-training is given. It is worth noting that pre-
training on the whole ImageNet dataset was not sufficiently
possible due to the limited capacity of the CNN. Thus, for
the number of classes was reduced to 500. Our results show
that pre-training on the Fetal dataset improves the classifica-
tion performance compared to pre-training on ImageNet and
training from scratch.

To link the classification performance and the measured
domain gap, Figure 3a and 3b plots the macro F1-score against
the Euclidean distance in the t-SNE and VAE representation,
respectively. Both figures show that the performance slightly
drops with increasing distance between the source and the
sonar dataset. Note however, that the distance not necessarily
reflect the intuitive domain gap, since ImageNet shows the
smallest distance in the t-SNE representation.

Another important aspect when pre-training a deep learning
model is the number of training samples. Comparing the
classification performance with the size of the datasets given
in Table I it can be seen that Malo and Ship&Boats, which
perform worst, contain only a few hundred samples per class.
This indicates that a small domain gap itself is not the only
requirement for a good transfer-learning result. The source
dataset also has to be sufficiently large. It should be noted
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Figure 3: Domain gap and classification performance. (a)
Based on t-SNE. (b) Based on VAE. Note that the distance
has been normalized to the maximum value.

that the results hold for the case of a CNN with a one channel
input. However in this case the improvement by pre-training
on the Fetal dataset becomes smaller.



VI. CONCLUSION

This work has presented a study on different pre-training
datasets for the classification of sonar images. Since the
number of sonar snippets is limited, pre-training can be a
beneficial way to learn relevant features in a first training step.
However, the domain gap to the sonar image dataset should be
small. Our analysis shows that distance measured in the t-SNE
and VAE embedding space does not match the intuitive domain
gap. Additional work needs to be done in order to measure the
domain gap more convincingly. Nevertheless, using the Fetal
dataset to pre-train a CNN the performance when classifying
sonar images after fine-tuning could be improved by more
than 6 percentage points compared to the CNN trained from
scratch.

The CNN used in this work has three convolutional layers
and thus is small compared to other commonly used networks
like ResNet or MobileNet. Deeper networks have a higher
capacity and the influence of the pre-training might be larger.
Extending this study to a broader pool of networks will be left
for future work.
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