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Ein préadiktives Entwurfsverfahren fiir Verdichter-Blisks
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Die vorliegende Arbeit beschreibt die Anwendung von ML Methoden auf ein klassisches
Ingenieursproblem: Die strukturmechanische Dimensionierung von Verdichterkomponenten. Der
Fokus liegt dabei in gleichen Teilen auf der Erzeugung synthetischer Daten mithilfe von
vollautomatisierten Prozessen sowie dem anschlieBenden Training der ML Modelle. Die
Entwicklung der Methode folgt dem folgenden Aufbau: Zunachst wurde eine geeignete
geometrische Beschreibung der Verdichterscheibe erarbeitet. Um die anschlieRende
strukturmechanische Berechnung zu ermdglichen, wurden an die Geometrie angepasste
Vernetzungsprozesse, sowohl flr das Verdichterblatt als auch fir die Scheibe, entwickelt. Fir
die Ermittlung der Bauteilauslastung wurde die finite Element Methode angewandt. In einem
Léser- und Analysevergleich zeigte der open-source Léser CalculiX mit einer linear statischen
Analyse die beste Kombination aus bendtigter Berechnungszeit und erreichter Genauigkeit.
Mithilfe von speziell entwickelten Methoden kdnnen die bendétigten Ziel- und Kontrollgré3en aus
den Ergebnisdaten extrahiert werden. Der bis hier beschriebene Prozess bildet die Grundlage
fur eine Parameteroptimierung der Scheibengeometrie. Gesucht sind Scheiben mit der
geringsten Masse die dennoch die notwendigen Restriktionen einhalten. Die Integration in das
GTlab Framework ermdglicht die vollstandige Automatisierung des Optimierprozesses. Dies ist
zwingend notwendig um eine ausreichende Menge an synthetischen Datensatzen zu generieren
die die optimalen Scheibenformen fir verschiedene Eingabeparameter enthalten. Der erzeugte
strukturierte und gereinigte Datensatz dient als Trainingsgrundlage flir verschiedene
Ersatzmodellarchitekturen. Bei einem Vergleich hinsichtlich Vorhersagegenauigkeit und
Robustheit erwies sich das neuronale Netz unter Einbeziehung von Malnahmen gegen
Rauschen, wie Dropout-Schichten und angepasste Loss Funktionen, als die Uberlegene Lésung.
Nach der Validierung wurde das Modell als Teil des strukturmechanischen Moduls mit dem GTlab
Framework zur Verfligung gestellt. Die vorgestellte Methode ermdglicht die Auslegung von
Verdichterscheiben nahezu in Echtzeit. Das trainierte Modell ist in der Lage, optimale
Scheibendesigns basierend auf Eingabemerkmalen, hauptsachlich der Schaufelgeometrie und
den herrschenden Lasten, vorherzusagen und fasst damit ein multidimensionales
Optimierungsproblem in einem recheneffizienten Ersatzmodell zusammen. Eine Bewertung lasst
sich anhand zweier state-of-the-art Methoden durchfiihren. Bei einem Vergleich mit einer
schnellen  Vorauslegungsmethode Uberzeugt die Neuentwicklung sowohl in der
Gegenuberstellung der Berechnungszeit mit Millisekunden gegentiber mehreren Sekunden, als
auch deutlich im Detailgrad. Die Vorauslegungsmethode eignet sich hier lediglich zur
Gewichtsabschatzung. Im Vergleich mit etablierten Detailauslegungsmethoden wird ein ahnlicher
Detailgrad bei gleichzeitig drastischer Reduktion der Berechnungszeit erreicht. Abschlieend
wird ein Ausblick gegebenen mit der Absicht die Methode zu generalisieren und zu verbessern
um sie auf komplexere Fragestellungen anwenden zu kénnen.
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The present work describes the application of ML methods to a classical engineering problem:
The structural mechanical sizing of compressor components. The thesis focuses on the
generation of synthetic data via fully automated procesesses and the subsequen training of ML
models in equal depth. The development of the method follows the structure outlined below:
Initially, a suitable geometric description of the compressor disk was developed. Consequently,
the disk can be described based on eight independent parameters while maintaining a very high
degree of design freedom. To enable subsequent structural mechanical calculations, meshing
processes tailored to the geometry were developed for both the compressor blade and the disk.
The finite element method was applied to determine component stress and the displacement
field. In a solver and analysis comparison, the open-source solver CalculiX, using a linear static
analysis, showed the best combination of required computation time and achieved accuracy.
Using specifically developed methods, the necessary target and control variables can be
extracted from the result data. The process described so far forms the basis for parametric
optimization of the disk geometry. The goal is to find disks with the lowest mass that still comply
with the necessary constraints, such as maximum stresses and displacement ratios. Integration
into the GTlab Framework enables the complete automation of the optimization process. This is
essential in order to generate a sufficient quantity of synthetic data points containing the optimal
disk shapes for various input parameters. The structured and scrubbed dataset serves as a
training ground for various surrogate model architectures. In a comparison regarding prediction
accuracy, required data volume, and robustness, the neural network, incorporating measures
against noise such as dropout layers and tailored loss functions, proved to be the superior
solution. Following validation, the model was made available as part of the structural mechanics
module within the GTlab Framework. The introduced method enables the design of compressor
disks almost in real-time. The trained model is capable of predicting optimal disk designs based
on input features, primarily blade geometry and prevailing loads, effectively encapsulating the
multidimensional optimization problem into a computationally efficient surrogate. An evaluation
is conducted using two state-of-the-art methods. In comparison with a rapid preliminary design
method, the new development succeeds both in terms of computational time, with milliseconds
versus several seconds, and in the level of detail achieved. The preliminary design method is
suitable merely for weight estimation. In comparison with established detailed design methods, a
similar level of detail is achieved while simultaneously drastically reducing the needed
computation time. The detailed methods require minutes to hours depending on the optimization
procedure used. Finally, an outlook is given with the intention for the method to be generalized
and improved in order to apply it to more complex problems.
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Abstract

The present work describes the application of ML methods to a classical engi-
neering problem: The structural mechanical sizing of compressor components.
The thesis focuses on the generation of synthetic data via fully automated pro-
cesesses and the subsequen training of ML models in equal depth. The devel-
opment of the method follows the structure outlined below: Initially, a suitable
geometric description of the compressor disk was developed. Consequently, the
disk can be described based on eight independent parameters while maintaining
a very high degree of design freedom. To enable subsequent structural mechan-
ical calculations, meshing processes tailored to the geometry were developed
for both the compressor blade and the disk. The finite element method was ap-
plied to determine component stress and the displacement field. In a solver and
analysis comparison, the open-source solver CalculiX, using a linear static anal-
ysis, showed the best combination of required computation time and achieved
accuracy. Using specifically developed methods, the necessary target and con-
trol variables can be extracted from the result data. The process described so
far forms the basis for parametric optimization of the disk geometry. The goal
is to find disks with the lowest mass that still comply with the necessary con-
straints, such as maximum stresses and displacement ratios. Integration into
the GTlab Framework enables the complete automation of the optimization
process. This is essential in order to generate a sufficient quantity of synthetic
data points containing the optimal disk shapes for various input parameters.
The structured and scrubbed dataset serves as a training ground for various
surrogate model architectures. In a comparison regarding prediction accuracy,
required data volume, and robustness, the neural network, incorporating mea-
sures against noise such as dropout layers and tailored loss functions, proved
to be the superior solution. Following validation, the model was made available
as part of the structural mechanics module within the GTlab Framework. The
introduced method enables the design of compressor disks almost in real-time.
The trained model is capable of predicting optimal disk designs based on input
features, primarily blade geometry and prevailing loads, effectively encapsulat-
ing the multidimensional optimization problem into a computationally efficient
surrogate. An evaluation is conducted using two state-of-the-art methods. In
comparison with a rapid preliminary design method, the new development suc-
ceeds both in terms of computational time, with milliseconds versus several
seconds, and in the level of detail achieved. The preliminary design method
is suitable merely for weight estimation. In comparison with established de-
tailed design methods, a similar level of detail is achieved while simultaneously
drastically reducing the needed computation time. The detailed methods re-
quire minutes to hours depending on the optimization procedure used. Finally,
an outlook is given with the intention for the method to be generalized and
improved in order to apply it to more complex problems.






Kurzfassung

Die vorliegende Arbeit beschreibt die Anwendung von ML Methoden auf ein
klassisches Ingenieursproblem: Die strukturmechanische Dimensionierung von
Verdichterkomponenten. Der Fokus liegt dabei in gleichen Teilen auf der Erzeu-
gung synthetischer Daten mithilfe von vollautomatisierten Prozessen sowie dem
anschlieBenden Training der ML Modelle. Die Entwicklung der Methode folgt
dem folgenden Aufbau: Zunachst wurde eine geeignete geometrische Beschrei-
bung der Verdichterscheibe erarbeitet. Um die anschlieBende strukturmechanis-
che Berechnung zu ermoglichen, wurden an die Geometrie angepasste Vernet-
zungsprozesse, sowohl fiir das Verdichterblatt als auch fiir die Scheibe, entwick-
elt. Fir die Ermittlung der Bauteilauslastung wurde die finite Element Meth-
ode angewandt. In einem Loser- und Analysevergleich zeigte der open-source
Loser CalculiX mit einer linear statischen Analyse die beste Kombination aus
benotigter Berechnungszeit und erreichter Genauigkeit. Mithilfe von speziell en-
twickelten Methoden konnen die benotigten Ziel- und Kontrollgrolen aus den
Ergebnisdaten extrahiert werden. Der bis hier beschriebene Prozess bildet die
Grundlage fiir eine Parameteroptimierung der Scheibengeometrie. Gesucht sind
Scheiben mit der geringsten Masse die dennoch die notwendigen Restriktionen
einhalten. Die Integration in das GTlab Framework ermoglicht die vollstandige
Automatisierung des Optimierprozesses. Dies ist zwingend notwendig um eine
ausreichende Menge an synthetischen Datensatzen zu generieren die die op-
timalen Scheibenformen fiir verschiedene Eingabeparameter enthalten. Der
erzeugte strukturierte und gereinigte Datensatz dient als Trainingsgrundlage
flir verschiedene Ersatzmodellarchitekturen. Bei einem Vergleich hinsichtlich
Vorhersagegenauigkeit und Robustheit erwies sich das neuronale Netz unter
Einbeziehung von Malnahmen gegen Rauschen, wie Dropout-Schichten und
angepasste Loss Funktionen, als die Uberlegene Losung. Nach der Validierung
wurde das Modell als Teil des strukturmechanischen Moduls mit dem GTlab
Framework zur Verfligung gestellt. Die vorgestellte Methode ermoglicht die
Auslegung von Verdichterscheiben nahezu in Echtzeit. Das trainierte Modell ist
in der Lage, optimale Scheibendesigns basierend auf Eingabemerkmalen, haupt-
sachlich der Schaufelgeometrie und den herrschenden Lasten, vorherzusagen
und fasst damit ein multidimensionales Optimierungsproblem in einem rechen-
effizienten Ersatzmodell zusammen. Eine Bewertung lasst sich anhand zweier
state-of-the-art Methoden durchfiihren. Bei einem Vergleich mit einer schnellen
Vorauslegungsmethode tiberzeugt die Neuentwicklung sowohl in der Gegenliber-
stellung der Berechnungszeit mit Millisekunden gegentiber mehreren Sekunden,
als auch deutlich im Detailgrad. Die Vorauslegungsmethode eignet sich hier
lediglich zur Gewichtsabschatzung. Im Vergleich mit etablierten Detailausle-
gungsmethoden wird ein ahnlicher Detailgrad bei gleichzeitig drastischer Re-
duktion der Berechnungszeit erreicht. Abschlielend wird ein Ausblick gegebe-
nen mit der Absicht die Methode zu generalisieren und zu verbessern um sie
auf komplexere Fragestellungen anwenden zu konnen.






1 Introduction

Aerospace research and development is in a constant struggle to in-
crease efficiency and as a consequence build lighter airplanes which
need less fuel. While the technology matures, improvements are
harder to gain with classic methods, yet the matter of climate
change urges for greener jet engines and new technologies. The rise
of artificial intelligence could be the disruptive technology needed to
speed up development and reach the ambitious goals to mitigate the

negative effects of aviation on our planet.

1.1 Background and Motivation

The impact of aviation on climate change has typically been esti-
mated at 1.8-2.5% [1], but a recent study by Lee et al. [2] puts
the contribution of global aviation to anthropogenic global warm-
ing at 3.5%, while taking into account both the direct influence
of emitted carbon dioxide (CO2) and non-CO2 effects such as ni-
trogen oxides (NOx), water vapor and other particulate emissions,
which have been difficult to estimate to date. This approach allows
a quantitative comparison of the impact of different emitters. The

still seemingly small share can lead to a neglect of aviation’s impact
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Figure 1.1: CO2 emissions by sector [3]

compared to other climate damaging actors such as electricity or
heat generation. If the total global greenhouse gas emissions are
considered, the transport sector accounts for about 16%, according
to Ritchie et al. [3] (Figure 1.1). Both the share of transportation
in total emissions and particularly the share of aviation in the trans-
portation sector of 11.1% have remained almost unchanged since
the end of the 1990s [1], while the absolute amount of CO2 emit-
ted by aviation alone has more than doubled worldwide in the same
period, from about 500 million tons to more than a billion [4]. The

constant share of these sectors therefore simply means that total

12



1.1 Background and Motivation

emissions have continued to rise and will probably continue to do
so unless global climate policy changes. The impact of aviation is
even more relevant when the global view is replaced by a distinction
between developed, developing and emerging countries. A look at
the distribution of the emissions in the United States already shows
a significantly higher share for the transport sector, at around 27%
[1]. Even if this value cannot be directly compared with figure 1.1
due to possible differences in clustering, the global inequality of dis-
tribution becomes clear when converting to per capita emissions.
As shown in figure 1.2, average per capita emissions in the United
States in 2019 were more than five times the global average. VYet,
the growth in air travel has not yet peaked, even in the developed
world. Combined with rising demand in developing and emerging
markets, a study by the German Aerospace Center (DLR) [5] pre-
dicts that annual air traffic will grow by an average of 3.7% over the
next 20 years, with most of the growth expected in Asian countries.
In absolute terms, this means an increase in the number of passen-
gers from four billion in 2016 to over 9.4 billion in 2040. While
North America and Europe follow very similar trajectories, Asia will
account for most of the growth in the short term and Africa and
the Middle East in the medium term [2]. Increasing air traffic at
the current rate while maintaining emissions is incompatible with
climate goals of 1.5 or even 2.0 degrees [6]. In consequence the
aviation industry is far from irrelevant to mitigating the effects of
climate change. In order to significantly improve the environmental
performance of aviation in the future, there is an increasing focus

on future technologies such as full electric flight or hydrogen as an
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1.1 Background and Motivation

energy source. These technologies are currently at a low tech-
nical readiness level [7] and will only find application in commer-
cial aviation in the long term. The use of hydrogen alone could
reduce the impact of aviation by 50 to 75% [8]. But even ambi-
tious targets put 2035 as the earliest date for the introduction of
a hydrogen-powered medium-haul aircraft [8]. Alternative fuels, so-
called biofuels, can be used in the medium term because they can
directly replace or supplement the kerosene used in conventional en-
gines [9]. The reduction in climate-damaging emissions that can be
achieved in this way Is subject to considerable uncertainty, as many
fuel blends and additives are currently being researched. Studies
suggest a reduction of 4 to 22.5% in 2050 compared to 2022 emis-
sions corrected for COVID-19 effects [10]. While this reduction is
promising, it is not sufficient on its own. Therefore, the most ef-
fective way to reduce CO2 emissions in the short term is to further
Improve the current technology of the already very efficient turbofan
engine, while also accelerating the development of the mentioned
new technologies to market maturity. To this end, there are nu-
merous research programs, both national and international, such as
the Clean Sky program between the European Commission and the
European aviation industry. Since the inception of commercial avi-
ation, continuous improvements in aircraft and engine design have
resulted in significant reductions in fuel consumption and climate-
damaging emissions. According to a 2005 study [11], the increase
in efficiency in air transportation, measured in terms of fuel con-
sumption per passenger kilometer, was about 53% between 1965

and 2004. This large increase in efficiency can be attributed to sev-
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1 Introduction

eral technological advances. The study also concludes that progress
in fuel efficiency has been largely driven by engine development, as
only minimal improvements were made to the overall aircraft design
during the period 1955-1990. The aircraft and the engine cannot
be considered in isolation, especially in view of the computational
accuracy required today, as there are for example interactions due to
the position of the engine mount. Technical developments in engine
research have had a particularly significant impact in the following

areas:

e Materials and alloys
e Maintenance and repair

e Major Engine concept changes

Especially in the first decade after the introduction of the turbofan
engine, the rate of efficiency improvement has been steep due to
the many opportunities for improvement offered by this still young
technology. As with most technologies, the rate of improvement has
gradually declined and, while still steady in recent years, is now in the
single digits. This correlation can be seen in Figure 1.3, where the
data points have been taken from an IPCC study [6] and checked and
corrected in a meta-study from the Netherlands Aerospace Center
(NLR) [11]. Major innovations, such as the use of fiber-reinforced
ceramics, are still possible today, particularly in areas of high operat-
Ing temperature in the combustor and turbine. Less obvious is the
Impact of improved maintenance and repair methods, especially the

prediction of maintenance intervals. Yet these ensure the smooth

16



1.1 Background and Motivation

operation of the engines, enabling very high levels of efficiency to
be maintained over a product life of up to 30 years. Progress in the
overall configuration of the engines, has been more erratic and can
be attributed to several specific technological breakthroughs. The
increase in the number of shafts from two to three, patented by
Rolls-Royce PLC in 2009, leads to fuel savings of up to 11%. The
PW1000G geared turbofan engine, which entered service in 2016,
again leads to savings of 16%, according to Pratt and Whitney
[12], which includes the gains of the three shaft technology and the
gearbox. Both inventions are aimed at increasing the bypass ratio,
which has been shown to have a major impact on engine efficiency

[13] and are responsible for the steeper decline in figure 1.3 through
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Figure 1.3: Fuel consumption reduction over time (Data from [11])
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1 Introduction

the last data point. In addition, new component technologies such
as variable stator and rotor blades and consistent lightweight design
throughout the engine are responsible for high efficiency gains. Even
with an optimistic extrapolation, the trend does not greatly exceed
the 3% annual reduction average in the future. With the predicted
annual flight passenger increase of also 3% per year stated earlier
[5], the advancements of regular jet engine technology will merely
hold the status quo in terms of overall emissions and that only in
the best case scenario. In all cases these efficiency gains have one
consequence in common: an increase in engine complexity for all
processes involved. This complexity could be controlled by improv-

ing the simulation capabilities.

The aerospace industry has always been at the forefront of simula-
tion technology users and developers, due to the complex physics
involved. The development of simulation technology in the last cen-
tury has therefore been mainly focused on physical phenomena and
their better understanding in combination with increasingly accurate
theoretical models. Especially the field of engineering, computa-
tional fluid dynamics (CFD) in aerodynamics and the finite element
method (FEM) in structural mechanics have made great improve-
ments in terms of the accuracy of the representation of real-world
phenomena and the speed of the computation. These advances were
mainly driven by the introduction of computer technology into nearly
every engineering field starting in the late 1970s. While the improve-
ment of simulation methods offered a satisfactory improvement of

the prediction accuracy, the focus shifted in the later years of the

18



1.1 Background and Motivation

century. With the increase in computational power following an ex-
ponential growth commonly known as Moore's Law (Figure 1.4),
more and more data-intensive methods became possible. Especially
data science is a rapidly growing field in the recent years with the
potential to revolutionize many industries, including traditional en-

gineering. In the near future, data science could play an increasingly

® Moore's Prediction O Actual Transistor Count

10B

100M
10M
™

100k

10k e}

1971 1975 1979 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020

Figure 1.4: Moore's law [14]

important role in the design, development, and optimization of me-
chanical parts and components with the key technology of machine
learning. These algorithms are capable of analyzing large amounts
of data and identifying patterns and relationships that would be dif-
ficult or impossible for humans to detect. This allows engineers to
optimize traditional designs and identify the factors that drive de-

sign decisions. A special feature of traditional engineering is the

19



1 Introduction

widespread use of simulation tools and the associated high degree
of digitalization and automation. Only when processes from design,
manufacturing and maintenance are digitally supported, can data
science unleash its full potential. The early adoption of computa-
tional methods and the efforts to digitalize and automate design
processes enables the application of the new methods to nearly ev-
ery field of the aerospace industry and makes machine learning a
candidate to be the key technology to address the challenges de-
scribed at the beginning of this chapter and lead aviation into a

green future in @ much shorter time.

1.2 Objective and Scope

The application of machine learning methods for mechanical design
purposes will be demonstrated using a structural mechanics process.
In order to generate as large a database as possible, the prototype
process must be fully automated and repeatable, and the design
task must not be trivial, so that conclusions can be drawn for more
complex applications in the future. In the Component Design and
Manufacturing Technology department, in-depth knowledge of the
structural-mechanical design and manufacturing of engine compo-
nents has been acquired through numerous projects. The results
of these calculations have been verified, validated and calibrated on
DLR’s own test rigs. The blade design for rotors was last demon-
strated in 2022 during the CRISP (Counter Rotating Integrated
Shrouded Propfan) test bed trials at the M2VP in Cologne. The

20



1.2 Objective and Scope

methods for designing the rotor disks of a low-pressure compres-
sor were further developed and validated in cooperation with MTU
Aero Engines in a collaborative project from 2014 to 2019. There-
fore, the demonstration of a predictive design method on compressor
blisks proved to be the most promising application. Turbomachinery
blisks are used in all axial flow gas turbines. It is a safety critical
component as blade loss and disk rupture must be prevented at all
costs. Blisks and their associated shafts account for a large portion
of the absolute weight of the engine, so optimizing these compo-
nents has long been a high priority for engine manufacturers. Blade
and disk are designed using multidisciplinary optimization processes,
where the blade shape is aerodynamically dominated and the disk
design driven by structural mechanic criteria. The blade geometries
required for the disk design are provided by pre-design processes of

the Institute of Propulsion Technology within the GTlab framework.

The goal is to develop a parametric geometry model of the blade-
disk pairing that allows robust optimization with high degrees of
freedom. The resulting geometries must be meshed in an automated
and fault-tolerant manner. After setting the boundary conditions,
a static FE analysis is performed. The previous steps are repeated
until an optimal solution of the disk geometry with respect to its
weight is found. The input parameters such as blade properties,
material, loads and boundary conditions are stored in a database.
This database is then used for the training of the surrogate model
with selected machine learning methods. Finally, the model and the

generated results are validated. Through this process the surrogate
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model is able to predict the shape of optimal blisks based on in-
put features, mainly the blade geometry, loading and design space,
effectively encapsulating the multidimensional optimization problem
In a computationally efficient surrogate. The selection of structural
mechanical requirements for the disk design is based on the most
current and comprehensive understanding available to the author.
Nonetheless, the design of the process is designed to accommodate
the incorporation of new or modified structural requirements for the

design of compressor blisks as they arise.
The following chapter will give an overview over the state of the art

design and manufacturing technologies used in modern aeroengine

engineering.
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In order to develop a method for the efficient and robust design of
compressor blisks, a basic understanding of the component must
first be acquired. This starts with the question of what makes the
new design method different from existing methods and what new
challenges arise. Additionally, the present available manufacturing
methods have an impact on the design constraints and subsequent

behavior of the component.

2.1 Bladed Disks

A blisk is a rotor with an integral connection between the blade and
the disk, i.e. a one-piece design. Prior to the introduction of the
blisk design, all rotors in axial turbomachinery were multi-piece. In
the downstream stages, the multi-piece design is still used because
of the high temperatures and the resulting demands on material
properties. For this purpose, the blades are usually mounted on the
disk by means of form-fit connections. There are numerous designs
of blade-disk connections, but the most commonly used design is the
firtree. A comparison of the integral and multipart designs can be

seen in figure 2.1. The multi-piece design simplifies repair, as dam-
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Figure 2.1: Blade and disk vs blisk design [15]

aged blades can be easily replaced, and the form fitting connection
also decouples the vibration behavior of the disk and blade. How-
ever, the major disadvantage compared to the blisk design is the
increased weight. The continuous development and optimization
of high-pressure axial compressors is accompanied by an increasing
load on the rotor blade rows. Higher compressor pressures lead to
higher stage pressure ratios. The increasing cost pressure is met
by reducing the number of components and stages, which means
that blades with longer chord lengths have to be used due to the
high flow velocities at higher rotor speeds. These blades place a
higher load on the blade-disc connection than older blades due to
the higher centrifugal forces. The integral design has a clear advan-
tage here because the stresses are much lower due to the lack of

notches. The first application of this design was demonstrated as
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early as the 1980s in the General Electric T700 military helicopter
engine [16], in which the axial stages were of integral design. One
of the first serial productions was marked by the presentation of
the EJ200 engine for the Eurojet in 1995. Even in the first ver-

Figure 2.2: EJ200 low pressure compressor blisks [15]

sion of the engine, the entire low-pressure compressor was of blisk
design. This invention, driven by MTU Aero Engines, was neces-
sary for the engine’s required service life because the high speeds
and associated centrifugal forces would have led to fretting corro-
sion in conventional designs. Fretting corrosion occurs on the small
edges and imperfections of the blade roots and disk recesses and

can eventually lead to cracking and blade loss. This problem is not
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limited to the low-pressure compressor, which is why MTU used the
blisk design for the first time in the high-pressure compressor on the
second version of the EJ200 engine. Whereas the service life had
previously been limited to 400 flight hours, it was now possible to
achieve the required 4000 hours [17]. Another positive aspect is the
reduction of leakage through gaps between disk and blade, which has
a direct impact on aerodynamic efficiency [18]. These performance
improvements ultimately led to the breakthrough of the blisk design.
Originally limited to military engines, the blisk design is now used in
virtually all types of engines. One of today’'s most advanced and ef-
ficient engines, the Trent XWB also uses blisks up to the first three
stages of the high-pressure compressor. Rolls-Royce Ltd. reports
a weight saving of 15 percent compared to a multipart design [19].
The engine cross-section shows that almost all stages of the low-
and high-pressure compressors are designed as blisks. The resound-
Ing success of the design is also reflected in the production figures,
as Rolls-Royce announced the delivery of the 10,000th blisk from
the Oberursel plant in Germany in 2019 [19]. The key advantages
and disadvantages of the blisk design can be summarized as shown

in table 2.1. The specifics of blisk manufacturing, maintenance and

Advantages Disadvantages

Weight reduction Complex manufacturing
Assembly cost savings Complex maintenance
Reduction of leakage flow High costs

Reduced installation space

Table 2.1: Advantages and Disadvantages of the Blisk Technology
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design are covered in the following sections.

2.1.1 Manufacturing and Maintenance

Most blisks used in axial compressors are made of titanium alloys,
mainly T16242 and T164. Only in the rear stages of the high-pressure
compressor, the temperatures are too high that nickel alloys such
as Inconel have to be used. Since the 1950s, the amount of ti-
tanium alloys used in aircraft engines has increased from three to
33 percent [20] because of its high strength to density ratio and
temperature resistance up to 540 °C. The process developed in this
paper is demonstrated on the low-pressure compressor, so only the
manufacturing and maintenance processes for titanium alloy blisks

are described below.

Milling

The most commonly used process is high-speed milling from solid
plates. Blade geometries and disk contours are machined from cold-
forged blanks on CNC milling machines. For simple geometries,
turning processes may be sufficient for the disk contours. Due to
high-cost pressure, high-speed milling has become established, which
stands out from the usual milling processes with cutting speeds of
100 m/s in fine machining and up to 350 m/s in rough machining
[21].  Very high accuracies are achieved for titanium alloy blisks
with sufficiently large blade dimensions. The high volumes required,
as described in the previous section, have led to a high degree of

automation in blisk production. Milling makes the process highly
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repeatable and standardized. In 2013, MTU Aero Engines opened
one of the world’'s most modern factories for the series production
of compressor blisks for the Pratt Whitney PW1000G engine. The

Figure 2.3: MTU Aero Engines: Modern blisk manufacturing facility [22]

10000 square meter facility allows for the automated production
of up to 3500 blisks per year. The use of 24 Micron HPM 800U
milling machines allows all blisks required for the GTF program to
be produced in a single integrated manufacturing cell, rather than

having to use different machines for each machining step [22].

Electrochemical Processing

Particularly in military applications, blisks are used with very small
blade dimensions that make milling difficult or even impossible. With
the use of blisk technology in high pressure compressors, this prob-
lem has also found its way into commercial engine manufacturing.

For titanium or nickel alloy blisks with small diameters and some-
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times highly complex blade geometries, the process of electrochemi-
cal machining has been developed. In this process, a cathodic tool is
lowered into the anodically poled workpiece and the desired areas are
removed by means of a rapidly flowing electrolytic solution. A major
advantage is the very good reproducibility of the process, since there
Is almost no tool wear. For this reason, electrochemical processing
Is becoming increasingly commercially attractive for civil applica-
tions and have been in use in Pratt and Whitney's PW1100G-JM
since 2015 [23]. The electrochemical manufacturing process used by
MTU for the fifth and sixth HPC blisk has been tested and approved
by Pratt and Whitney for the A320neo engine.

Linear Friction Welding

Linear friction welding, originally developed by MTU Aero Engines
for repair purposes, is now increasingly being used as a manufactur-
Ing process. Under high pressure, the blade is welded to the disk in
a linear oscillating motion. The process has already been applied to
the EJ200 engine described in the previous section. A large amount
of test and application data is available for components manufac-
tured using the linear friction welding process. The process is divided

into the following steps [15]:

1. The components to be joined are brought into contact under
pressure. Frictional heat is generated and the actual contact

area Iincreases.

2. During the transition phase, wear is released until the contact
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area equals 100 percent of the cross-section. The materials

reach a plastic state.

3. In the equilibrium phase, heat is removed from the cutting
surface while a plastic zone is created. Movement causes

further wear, which shortens the length of the components.

4. In the deceleration phase, the amplitude is slowly reduced until

the movement stops. The pressure is maintained.

Tensile tests on friction-welded specimens show sufficient strength
compared to unwelded specimen. A comparison of the strength and
elongation of two unwelded titanium alloys and their friction-welded
joints in table 2.2 shows a negligible reduction in strength of only
1.34%. The high elongation value compared to the 8 alloy can be
explained by the fact that the elongation of a composite is always
determined by the part of the composite with the lower stiffness and

Is therefore close to the value of the oo+ alloy. This process is more

Alloy oys [MPa] o, [MPa] ¢ [%]
B Ti-6246 1051 1155 13
a+0 Ti-6246 1044 1125 18
Welds 1030 1078 19

Table 2.2: Friction welding strength and elongation

complex to automate than milling, which is why milling is preferred
for high volume applications. However, for repair processes involving
large damage to one or more rotor blades, the process currently has

a unique selling point.
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2.1.2 Design Methods

Disk design is a long ongoing effort in engineering. The following
sections detail different approaches to solve the dimensioning prob-

lem.

Analytical Dimensioning

For axisymmetric disks of arbitrary profile, a solution for the stress
calculation was already proposed from Grammel [24] in 1936. With
the known angular velocity w, the following relationship exists be-
tween the disk thickness y, as a function of the radial distance from

the axis of rotation r and the stress components o, and oy
d 2,2
E(rary)—%—l—pw rey =0 (2.1)

Assuming a homogeneous isotropic material, the following relation-
ship can further be derived from the elasticity equations with the

transverse contraction number v.

d

r(mor — uira(p) + (W +1)(o, —0p) =0 (2.2)

d

For a given profile shape y,, the simultaneous solution of the equa-
tions (2.1) and (2.2) would now solve the stress problem. Since in
the case of the blisk design, the profile shape is the desired quan-
tity, the problem must be reversed. The profile shape, assuming a

known stress distribution, can generally be given as a linear differ-
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piml nml o oslade] plas

1.2 0.05 700 4 460

Table 2.3: Parameters for analytical disk design demonstration

ential equation of first order

d 2.2
r—0, — 0, — Ogp + pW<r
y:aexp(—/ 0 2Ly (23)
r

where a Is the integration constant. For compressor disks, some
simplifications can now be made. A hyperbolic approach is sought
which has a finite non-zero thickness at the inner edge r = ry and
radial stress o, = 0 on the inside and o, = o, on the outside. The

differential equation (2.3) thus becomes
y = a(r + ko) —kthewrer) exp(—pwzcr[g —(k=1Dr]) (2.4)

with the dimensioning constant ¢

a a k
c = (l’ 1’0)(/’2+ /’0) (25)
O'al’a

According to [25], k can be approximated as 1 for gas turbines,

which makes formula (2.4) significantly simpler to
y = a(r + /,O)—pw2crge—0.5pw2cr2 (26)

To check the accuracy of the formula, a disk design is performed
using the data in table 2.3 as an example. For better illustration,

different speeds were used, and the results are shown in Figure 2.4.
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With modern computing power, the evaluation of several hundred
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Figure 2.4: Results of the analytic disk dimensioning

different disk profiles takes only seconds, so the described approach
has found application in numerous disk optimization methods. Yet
computer support made it also possible to solve the underlying dif-
ferential equation iteratively.

Finite Difference Optimization

The finite difference method (FDM) is the numerical method for
solving partial and ordinary differential equations by approximation
with a finite number of difference quotients. The method can be
regarded as a precursor of FEM and is described in detail by Smith
[26]. For the disk design application, the consideration of the cylin-

drical r, ¢ coordinate plane is still sufficient. The differential element
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used for the discretization can then be defined according to figure
2.5. A particularly robust application of this method to the dimen-

Differential Element

Section A-A T

Figure 2.5: Finite differential element for disk dimensioning [27]

sioning of disks for axial impellers was developed at NASA in 1995
[27]. In contrast to earlier similar approaches by Manson [28] or
Millenson [29], here, among other things, thermal stresses resulting
from large temperature differences were integrated into the method,
which is particularly necessary for disks for the high-pressure com-
pressor. Analogous to the analytical solution, the formulation of the
tangential and radial stresses according to the elasticity law is given
by
E
O, = U[er—l—ueq;— (]."‘U)CXT] (27)
E .
O¢p = m[Ephl + Ve, — (1 + I/)OtT] (28)
But in contrast to the previous section, the thermal stresses are con-
sidered by the last term, with the coefficient of thermal expansion

a and the temperature difference T. The required slice thickness is
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calculated as a linear function of the radius with
t=mr+n (2.9)

where n is a dimensional constant. In the cylindrical coordinate

system, strains are defined as

€ = % (2.10)
du
= (2.11)

where the desired profile thickness can now be formulated purely
as a function of the radial displacement. Using the function (2.1)
already known from the previous section and the temperature depen-
dent formulations for the stresses (2.7) and (2.8), the differential
equation to be solved can be expressed in the form

d2u+ 2mr +n @4_ v l+5 2mr +n u—
dr2 mr2+ nr ) dr 2 2 r \mr2+4nr -
dT < 2mr+n 1) 7_] pw?(1 — v?)

— — 2.12
a(l—Hj)[dr—'— mr? + nr E ro(212)

The equation (2.12) is a linear inhomogeneous differential equation
of second order, which requires two boundary conditions for the so-
lution. Here, analogous to the analytical solution, o, = 0 can be
assumed at r=0, and the radial stress at the outer radius of the
disk can be calculated due to the centrifugal force on the cross-
section caused by the rotor blades. The difference quotient % to

be solved can now be calculated at finitely many points for a quan-
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titative solution. In addition, the method proposed by Armand [27]

»

o

Figure 2.6: Disk sections of the finite difference method [27]

dimensions not only the disk contour, but also a parallel section at
the disk interior, which is necessary for clamping during manufac-
turing, as well as the platform at the outer diameter for connection
to the blade. For this purpose, the disc is divided into six sections
In the radial direction, as shown in Figure 2.6. As can be seen, the
method was not developed specifically for the design of blisks, but
for disks with conventional blade connections. Section 6 contains
the necessary parameterization of the blade-disk connection in the
form of a dovetail blade root. The loads resulting from the rotation
are only applied to the top of section 5, which allows the finite dif-
ference model to consider only sections 1-5. Thus, for blisk design,
section 6 can be neglected, and the method can be applied without
further modification. The theory described here has been imple-
mented programmatically and is known as NASA's engine weight
estimate computer code (WATE) [30]. The WATE algorithm has
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been integrated into the GTLab framework used in this thesis and
can be used for predesign calculations. (See section 3.1) During the
development of the program, a classification of different slice pa-
rameterizations was defined, which is still used today. A distinction

Is made between the disk types shown in Figure 2.7. A more modern
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Figure 2.7: Different disk parameterization classes [31]

implementation of this method can be found at Gutzwiller [32] with
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the program T-Axi Disk [31], which has a graphical user interface
and converts geometries directly into a format readable by the FEM
program ANSYS for validation. The finite difference method is very
suitable for a preliminary weight estimation of compressor compo-
nents and, due to the consideration of thermal stresses, also for
turbine components. However, the calculated disks are only valid
under the assumption of mirror symmetry. In modern engines, how-
ever, the flow channel often has very large gradients, which makes
the disk geometry strongly asymmetric and the disks designed with
the WATE code are no longer applicable without modification. An
example of highly asymmetric disc geometries is shown in figure 2.8

In the next section.

Topology Optimization

As a special design method, topology optimization should be men-
tioned. This relatively new method has recently gained popularity
mainly due to its very good suitability for the design of 3D printed
components. The basic formulation of the theory can be found as
early as 1904 by Michell [33] with the analytical solution for the best
material utilization in steel beams from the point of view of struc-
tural analysis. Structures designed according to this principle are
known today as Michell structures after their inventor [33]. How-
ever, the commercial application of the method to general problems
became relevant only with sufficient computing power. A milestone
in this respect was the release of the structure solver Optistruct by
Altair in 1994 [34], which allowed topology optimization with lit-
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tle effort and for general problems. Since then, much progress has
been made in this area and new approaches to topology optimiza-
tion have been found. Eschenauer and Olhoff [35] distinguish the

following classes in their review on topology optimization:
e Homogenization method
e Perimeter method
e Macrostructure approach

For the design of disks, however, only the classical homogenization
method can be considered due to the manufacturing boundary con-
ditions resulting from section 2.1.1, since the newer methods always
lead to undercuts and are strongly designed for the application of
additive manufacturing [35]. The theory of topology optimization,
especially all its subclasses, is very complex and will only be described
in a basic way here. A more detailed explanation can be found in
Bendsoe and Sigmung’s compendium on topology optimization [36].
Similar to the previous sections, linear elasticity theory forms the ba-
sis of the method:

€ = Ejjxio”! (2.13)

with the elastic tensor E. The optimization task is now the optimal
choice of this elastic tensor, which is a variable of the design space.
If this space is now divided into a finite number of elements, anal-
ogous to the FEM, the stiffness matrix K can be given as the sum

of the stiffness of all elements e = 1, .., N as follows:

N
K=Y Ke(Ee) (2.14)
e=1
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The topology optimization now determines where in the design
space material is needed and where no material is needed, i.e. the
stiffness is high or zero. A possible formulation of this problem is
the Solid Isotropic Microstructure with Penalty (SIMP) method

Eijxr = 0P Ed (2.15)

where E,ij, Is the stiffness tensor of a given isotropic material and
thus the maximum value of an element. The application of this
method to the problem of disk sizing is shown in Figure 2.8a using

the example of two different low-pressure compressor blisks. Al-

1,00

0,82

(a) Low Detail (b) High Detail

Figure 2.8: Topology optimization of an LPC blisk

though this method does not require disk symmetry, the transition
to the blade platform is performed unrealistically. The runtime of

the topology optimization of Figure 2.8a was 3 hours and 12 min-
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utes! which is too high to compete with the computation times of
FDM, if no significant gain in detail is achieved in the process. The
creation of the model is also not trivial, since the manufacturing con-
straints must be met, I.e., undercuts must be avoided. Due to its
formulation, the topology optimization always aims at a structural
design that would only be feasible for wafers from additive manufac-
turing and would have to be suppressed for conventional processes
by setting appropriate boundary conditions. Additive manufacturing
processes for blisks will not be applicable in the short term future
due to the safety-critical nature of the component, which is why
topology optimization is not an appropriate means of solving the
disk dimensioning problem, at least at the time of this work, and

will be neglected in the following chapters.

Finite Element Method

The Finite Element Method (FEM) is the most promising method
for solving the dimensioning of complex disk geometries with a high
level of detail. The FEM is based on a similar principle to the Finite
Difference Method and is essentially a method for solving differen-
tial equations. However, instead of dividing a physical space into
finitely many difference quotients, it is divided into finitely many el-
ements. The theory of FEM has already been sufficiently described
in the literature and can be deepened for the interested reader either
theoretically in Zienkiewic's fundamental work [37] or application-

oriented in Klein [38]. The pure dimensioning of blisks using FEM

LAll computational time measurements reported in this thesis were conducted
on identical hardware: DELL Latitude Windows 10 17 16 GB RAM
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Is simplified compared to the conventional blade-disk design from a
static point of view, since the contact modelling of a positive blade
root connection is omitted. However, the integral connection of
blade and disk has almost no structural damping, so the isolated
consideration of blade vibrations in the dynamic design is no longer
permissible. Typically, the blade and disk are meshed incompatibly
and connected through mathematical correlations with solver spe-
cific names like multipoint constraints (MPC) or ties. Numerous
examples of blisk design and sizing using FEM can be found in the
literature. However, to the best of the author’s knowledge, there is
a lack of highly automated and robust process chains that would be
necessary to generate a surrogate model. In the conclusion of the
paper [24] on which the analytical solution is based, the following

statement can be found

Es erfordert lediglich einige Rechengeduld, beliebig
viele weitere Losungen|...[herzuleiten, um so einen moéglichst
umfassenden Katalog von fertigen Losungen der tech-
nischen Praxis zur Verfiigung zu stellen. - Grammel,
1936 [24, p.11]

This quote resembles the current situation, where we have the tech-
nical possibilities for a general solution, but the implementation still
requires a lot of manual effort. The method described in this thesis

picks up here and develops a solution in the following chapters.
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2.2 Data Science

After describing the prototype process component in detail, the fol-
lowing sections focus on the second key technology of the method
to be developed, machine learning (ML) methods. ML methods are
a subset of Artificial Intelligence (Al). Here, ML methods are the
programmatic implementation that enables the Al to perform its
task. This is done with specialized algorithms such as deep learn-
ing. An overview of the relationships is given in the figure 2.9. The

Artificial Intelligence

A technique which enables machines to
mimic human behaviour

Machine Learning

Subset of AT techniques which use
statistical methods to enable machines to
L . improve with experience

Deep Learning

Deep Learning

Subset of ML which make the computation
of multi-layer neural networks feasible

Figure 2.9: Al definition (derived from [39])

following sections first give a general overview of the state of the

art and then describe the methods specialized for design processes.

2.2.1 Machine Learning

The term ML methods has evolved over time to encompass a wide

range of different methods, some of which are highly specialized.
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Roughly speaking, all ML methods use algorithms that analyse input
data and predict different output values depending on the input data.
The classification of methods depends mainly on how the data is
prepared, how the method is processed, and how the program learns

its behaviour. There are three main types of ML:

Unsupervised Learning

The input data for unsupervised learning (UL) requires relatively
little preparation, since no classification or labelling of the data is
required. Rather, the algorithm searches for patterns that are pos-
sibly unknown to the user. The engine determines correlations and
relationships by analysing the available data. Most UL algorithms
solve the problem by sorting or clustering the data. The main rep-

resentatives of this genre are

e Adaptive resonance theory (ART)
e Self organizing maps (SOM)

e Different clustering algorithms

Applications include big data problems in statistics.

Supervised Learning

In supervised learning (SL), the user knows what patterns or classes
to look for in the data provided. The data set used for training has
been labelled so that the method can learn to classify unlabelled data

in the future. SL methods distinguish between linear and non-linear
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classification as shown in Figure 2.10. In linear approaches, the
input and output data can be represented by linear relations, in non-
linear ones by functions of arbitrary complexity. Disk sizing falls into
the category of SL and nonlinear methods because different levels
of abstraction, such as discretization, mean that linear relationships

between input and output are not expected.

Reinforcement Learning

Reinforcement Learning (RL) methods, in contrast to UL and SL
methods, do not require a training data set, but the so-called agent
learns independently based on reward or punishment functions and
thus gradually generates the database itself. The method works by
trial and error and is most similar to human learning. Applications
for RL methods include the control of complex systems such as the
navigation of drones [40]. An incomplete overview of the algorithms
of the individual ML methods can be found in 2.10.

/~  Reinforcement
learning

Figure 2.10: Taxonomy of ML methods [39]

45



2 Literature Review

2.2.2 Al Design Methods

The application of artificial intelligence in structural mechanics de-
sign is not new and can be dated back to 1989 where Adeli and Yeh
[41] used a machine learning concept for the design of steel beams.
The development of evolutionary optimization methods [42] and the
use of logic-based surrogate functions such as kriging [43] can also
be seen as a subset of the generic term Al. With the generation of
ever larger amounts of data and newer training algorithms, a number
of promising methods have emerged in the recent past that have the
potential to revolutionize classical design methods. Predictive and
generative design are two examples of the spectrum of data-driven
design methods, with the latter already finding application in many

areas due to advances in additive manufacturing processes.

Generative Design

The Generative Design (GD) subset falls mainly into the UL cate-
gory, although a recent study [44] RL methods also show promising
results. Based on the input data, the GD algorithm attempts to
automatically find correlations and patterns that can be used to
find valid solutions to the design problem according to the con-
straints. Generative Adversarial Networks (GAN) are particularly
well suited for this purpose. Examples of applications can be found
in architecture ([45], [46]), aerospace [47], and automotive [48].
The solutions developed using this method are very similar to the
topology optimization results described in the 2.1.2 section, since

similar formulations are used to find the load path. Figure 2.11
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shows a generative design of a seat bracket developed by General
Motors. According to [49], the 150 designs developed for the 3D
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Figure 2.11: Generative design example [49]
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printed component are 40 percent lighter and withstands 20 per-
cent more stress than the design used previously. In addition to the
topology optimization method of iterative material removal, recent
research has explored methods such as biomimecry [50] or morpho-
genesis [51], which follow the example of growth to iteratively add
material. GD, as with UL methods, gives good results when the
desired design is unknown or when different approaches to the solu-
tion space are to be explored. An application to the disk dimension

problem is therefore not very promising.

Predictive Design

Predictive Design (PD), on the other hand, can be classified as an
SL method because the user already has data that contains optimal
designs for certain parameter sets. The ML model is supposed to

learn from this data to develop designs input parameters that are
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not present in the training data set. A method comparison for SL
design methods at Sharpe [52] shows good results for classification

and regression problems using the following ML methods:

e Convolutional neural betworks (CNN)
e Bayesian networks (BNN)
e Random forests (RF)

e Support vector machines (SVM)

In addition to the ones mentioned above, the procedure of Kriging
is investigated in this thesis. The detailed procedure can be found

In the chapter 6.

2.3 Method selection

Since milling technology offers a high degree of automation, this
thesis will focus on this manufacturing method. To achieve the
necessary geometric detail in disk simulation, finite element analysis
(FEA) appears to be the most promising approach. Coupled with
optimization techniques, the optimal disk shape can be determined
in a fully automated manner, generating the data needed to train an
efficient model. As with most expert systems, a supervised approach
IS most promising in training the machine learning model, which will
be explored to enhance design speed while ensuring a lightweight

design.
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The ML methods described above require large amounts of data for
training, which can only be generated through automated processes.
To develop robust and repeatable processes, a professional software
Implementation is required, which in turn requires appropriate user
environments and frameworks. The following sections describe the

software infrastructure used, as well as data formats and standards.

3.1 The GTlab Framework

The Gas Turbine Laboratory (GTlab) [53] is a design platform for
engines and gas turbines used in both aviation and stationary power
generation. It is being developed under the leadership of DLR’s
engine department (TWK) and is already being used as a multidis-
ciplinary framework in numerous DLR institutes. GTlab is developed
in C++ and uses the comprehensive Qt class library. The process
control has a Python interface, which allows direct access to com-
mon Python libraries, e.g. for visualization. The interface i1s made
possible by the Meta Object System (MOS) provided by Qt [54]. To
realize the multidisciplinary design in GTlab, the application is mod-

ular and follows the plugin principle. It consists of a core framework
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Presentation Layer

[ Graphical User Interface ] (
[ Post Processing ]
t i
Application Layer o
=
[ Core Functions ] C E

[ Process Management ]

t i
Data Layer
[ Central Data Model ] %

Figure 3.1: Modular software architecture [53]

that contains the basic functionalities of the application and has
various interfaces. Modules can be attached to this framework to
extend the functionality of the software (see figure 3.1). GTlab uses
a central engine data model to store the data related to an engine
or gas turbine system [55]. The data model is implemented using
the well-established Unified Modelling Language (UML), which is
suited for describing complex systems [56]. The formulation of the
central data model enables different departments to work together

at different levels of detail.

Using the example of an engine design, a thermodynamic model
is first created using the performance module. This includes top-
level requirements such as total thrust and installation space, as
well as the various operating points derived from the mission pro-
file. The general component structure can thus be largely defined
and is shown for a generic Ultra High Bypass Ratio (UHBR) engine
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in Figure 3.2. Based on this model, predesign calculations can be

4

Figure 3.2: Generic UHBR Performance Model

started using the Predesign module or even detailed analyses. The
predesign processes already generate 3D blade geometries using the
blade parameterization described in section 4.1.2 via an interface
to the BladeGenerator. The Predesign model of the generic UHBR
model is shown in figure 3.3. The blade geometries can now be
evaluated by various disciplines with their module functionalities and
extended by detailed features such as cooling systems, fillets or, as

In this case, compressor disks.

3.2 Structural Mechanic Module

The Structural Mechanics Module (SMM) is a novel GTlab module
developed in the department for Design and Manufacture Tech-
nologies of the DLR, which provides processes for the structural

mechanical design and evaluation of engine components via the

51



3 Development Framework

=

Il
A
= amn|
0
B
=

Figure 3.3: Generic UHBR PreDesign model

module interface (Figure 3.1) in GTlab. The processes described
in this paper are a subset of the SMM process library. The SMM
concept is intended to provide a long-term evaluation capability for
engine components through standardized processes throughout the
entire development process. The state of development at the time
of writing, as well as the identification (blue arrows) of the processes

developed in the context of this thesis, is shown in figure 3.4.

3.3 Data Standards

Standardization of data formats is an essential building block in the
development of virtual engineering workflows. In other fields, such

as aircraft design, the Commom Parametric Aircraft Configuration
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Schema (CPACS) standard is already established, although the en-
gine is idealized as a mass and suspension position [57]. In the field
of engines, in the CFD world, the Computational Fluid Dynamic
General Notation System (CGNS) standard is widely used for the
storage and retrieval of CFD data. Newer CGNS files use the Hi-
erarchical Data Format (HDF5) as base format, which can be seen
as a data model template, library and file format. The hierarchical
structure mimics a filesystem and can be viewed using hdf5 viewers.
Since it is a binary file, read and write operation speeds are very
fast and can even be increased with data chunking support. In the
structural mechanic community, a standardized data format has yet
been established. Coordinated by Fraunhofer SCAI and with the
support of well-known industry representatives, the VMAP standard
has been proposed [58]. VMAP is also based on the HDF5 for-
mat and extends it with definitions for material data, geometry and
discretization standards. For GTlab, an HDF5 module has been de-
veloped that allows visualization of the file structure and provides

file handling functions [59].

3.4 REBAR Framework

For the training of the replacement model, a framework developed
at DLR is used, which was created in the context of the digitiza-
tion initiative for artificial intelligence in cooperation with several
DLR institutes. Under the working title Reducing Barriers for Al in
(applied) Research (REBAR), the framework provides a toolbox for
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the application of ML methods to simplify their scientific use. The
framework works in a pipeline-oriented manner and has been de-
signed for heterogeneous use cases based on four very different use
cases, one of which is the method described in this paper. The ML
pipeline is represented as a directed acyclic graph (DAG) and uses
the following already proven applications in the core architecture
[60]:

e Apache Airflow: Web server and scheduler
e Celery: Broker
e MLFlow: Web server and API

e Postgres and MinlO: Common components

In addition to the programming implementation of the framework, a
web platform with training and best practices guidance will be made
available to users. The framework will also be released as an open

source application in the future.

With the framework available, the automated blisk design needs to
be created. This will be the scope of the following chapter. Starting
from the geometric description of a blisk, meshing and subsequent

model building.
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4 Discretization

A basic prerequisite for an automated, robust and highly detailed
disk design is the selection of a suitable geometry parameteriza-
tion and an appropriate discretization for the FEM calculation. The
number of free geometry parameters usually has a quadratic effect
on the computational time of the optimization, and the fineness of
the discretization on the computational time of the FEM. The pa-
rameterization of a geometry is not necessarily synonymous with its
simplification, but if the number of parameters is greatly reduced,
this is often unavoidable. The initial state can then no longer be
restored with the same accuracy. To illustrate this, figure 4.1 shows
an example geometry parameterized and discretized at different lev-
els of detail. It becomes clear that the accuracy of the description
depends on the geometry description as well as on the mesh reso-
lution. If figures a and c are good representations of the geometry
and its discretization, information from figure b will be lost. In
the following sections, a solution is worked out to describe the ge-
ometry sufficiently accurately with the smallest possible number of
parameters and to provide all necessary information to solve the

dimensioning problem.
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(a) Coarse-Coarse (b) Dense-Coarse (c) Dense-Dense

Figure 4.1: Different geometry and mesh parameterization details

4.1 Geometry

The description of the geometry is always the starting point of the
FEM simulation, but as shown in Figure 4.1 it has a direct impact on
the required level of detail of the mesh. The general parameteriza-
tion of different geometries has a long history of development and,
due to its wide range of applications, occupies a whole branch of
industry under the collective term Computer Aided Design (CAD).
Geometries are described by parametric curves and surfaces. While
basic geometric shapes such as rectangles and circles are sufficient
for simple applications, splines and spline surfaces derived from them
become necessary for more complex geometries [61]. A single def-
Inition of the coordinate system is used for all the processes and

applications described below. For Cartesian coordinates, the X axis
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4.1 Geometry

Is always on the machine’s rotational axis and points downstream.

For cylindrical coordinate systems, the same is true for the Z axis.

4.1.1 Splines

The term spline is first found in 1946 as a name for a smooth
harmonic composite curve of third degree [62], but is now used
for any piecewise polynomial curve. In general, splines are capable
of approximating arbitrary curves, although a distinction must be
made between interpolating and approximating splines. Over time,
many spline formulations have been developed, but almost all of
them are based on the formulation of the so-called basic spline, or
B-spline. The B-spline is a piecewise polynomial, where each curve
can be of different degree p. The curve defined in this way always
lies in the convex hull of the control points, where the change of
the control points only affects the interval [uj, Ujtp+1]. The surface
analogous to the B-spline is the B-spline surface. This formulation is
particularly robust in application because changes in the coefficients
have only a local effect. For the approximation of a general curve

C at point u, the following applies
n
Clu) =Y _Nip(u)P, (4.1)
i=0
with the control points F;, also called de-Boor points, the degree
p, the B-spline basis functions N;, and the purely increasing node

vector U = (uy, U, .., Uy). The length of the node vector depends

on the degree p and the number of nodesas m=n+p-+ 1. The
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basis functions depend only on the node vectors and are defined

recursively via

1 fu<u<uy
Nio(u) = ’ A (4.2)
0 otherwise

at p =0 and

u — uj uj — u
Nip(t) = ————Nj 1 (u) + — 2 Nip1p-1(u) (4.3)

Uiyp — Uj Uitp+1 — Ujit1

are defined for p > 1. The formulation is valid for both 2D and 3D
and is adjusted by the dimension of the control points. The resulting

basis functions are shown in the figure 4.2. A special form of this

Figure 4.2: B-spline basis functions [39]

B-spline formulation are Non-Uniform Rational B-Splines (NURBS),

where the control points get an additional parameter, the weight.
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The relation (4.3) thus becomes the rational basis function

/\//,p(U)W,‘

Rik(u) = S0 o Nip(u)w

(4.4)

with weights w. These control the strength of the attraction, mak-
ing the NURBS a rational curve. When all weights become one, the
NURBS curve becomes identical to the B-spline formulation. The
Euler diagram in Figure 4.3 illustrates the relationships between the
different spline classes. NURBS were originally developed for the pa-
rameterization of free surfaces in the automotive industry and are
now an integral part of CAD and manufacturing software (CAM),
as well as part of numerous format specifications such as the Initial
Graphics Exchange Specification (IGES) or the Standard for the Ex-
change of Product Model Data (STEP). Smooth surfaces require
NURBS surfaces with at least G1 continuity, also known as tangent
continuity, where the tangent at the end of each spline segment
matches the tangent of the next spline segments start. For even
smoother surfaces, G2 or curvature continuity can be required. This
refers to the second derivative and implies that the rate of change
of the tangents matches at the connection of two spline segments
[63]. In general, the interactive editing of B-splines and NURBS
curves and surfaces via their control points is very intuitive and pre-
dictable. The blade and disk geometry parameterizations described
in the next sections use a B-Spline formulation for their 2D parame-
terization. When 3D properties, like volume or centre of gravity are
called, GTlab's built-in CAD kernel converts the surfaces to solids
using NURBS.
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B-spline Nurbs

Bezier | Rational Bezier

Figure 4.3: Spline classes

4.1.2 Blade Parameterization

As described in section 1.2, the starting point for the calculations
Is the blade geometry, which is primarily dimensioned according to
aerodynamic properties such as aerodynamic efficiency or pump-
iIng distance. The geometric description of compressor and turbine
blades is a prerequisite for blade optimization and has a long history
of development. Numerous publications can be found from univer-
sities and industry representatives, such as Rolls Royce [64] or Shi
[65]. These methods all use a similar approach. In the present work,
a method developed at the DLR Institute of Propulsion Technology
in the Fan and Compressor Department (AT-FUV) is used for blade
parameterization, the BladeGenerator [66]. The parameterization
is based on individual radial profile sections of the blade. A pro-
file is divided into 4 zones, leading edge (LE), trailing edge (TE),
suction side (SS) and pressure side (PS). The B-spline formulation
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BLE - BST + dBLE_SS

Pressure Side

e

BLE - BST - dBLE_PS

El

Figure 4.4: Blade profile parameterization[66]

described in the previous section is used for the construction lines of
these zones and connected to a closed curve with G2 connectivity.
To realize the description with as few parameters as possible, this
is done in a specially defined m’, 8 coordinate system. Here m’' =0
defines the LE point, m" = 1 the TE point and the angle € the
coordinate in radians surrounding the profile. The conversion first
to m’, 6 and then to x, y, z coordinates is angle fidelity and can be
done by a linear transformation. The LE and TE points and their
transitions (P g_ss, PLe_ps..) to the PS and SS zones are now
defined by B angle specifications. Then the suction side is defined

using the spline properties described in the previous section, i.e. the
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location of control points, knot vectors and weights. The degree
used is always 3. There are now 3 ways to describe the pressure

side:

e Control points analogous to suction side

e T hickness distribution relative to suction side with respect to

control points

e Analytical thickness distribution relative to suction side

Method 2 was found to be the most robust design variant and could
be successfully used in optimizations [67]. After the SS- and PS-
spline have been completely described, the edge splines can be gen-
erated by specifying a few parameters and continuity boundary con-
ditions, and the 4 individual curves can then be combined into one
curve. The parameterization of the profiles is extremely robust and
flexible, allowing both compressor and uncooled turbine blade pro-
files to be easily described. (Figure 4.5) The profile description can
be repeated on any number of radial sections to achieve the de-
sired accuracy. Usually, only 3 sections are used in the pre-design
process, since a high degree of freedom can already be achieved in
the design. The 2D profiles are then transformed into 3D space
so that they lie on the surface of revolution of their transformation
curve. The profiles are then stacked in the r-direction using defined
construction lines to create a B-spline surface. This is done by the
so-called surface skinning method, a detailed description of which
can be found in Woodward [68]. The profiles can be scaled, rotated

or moved arbitrarily, which also provides a high degree of flexibility
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In generating the 3D plate geometry. After the B-spline surface is
generated, the blade can be blended at the hub and/or tip to create
complex flow channel contours or even gap variations. The design
of the fillet between the blade and the disk is structurally relevant.
This can also be set in the BladeGenerator via various parameters.
For this purpose, the profiles described above are transformed into
3 control curves. The curve shown in red (BladeCurve) in the figure
4.6 marks the beginning of the fillet, the green curve the outline of
the fillet at the hub (BlowCurve). The blue profile must be extended
to the green curve as shown in the figure 4.6. In addition, the shape
of the fillet can be arbitrarily shaped using various parameters, which

Is also possible using a B-spline called ShapeCurve.

AR

(a) UHBR LPC S2 (b) UHBR HPT R1

Figure 4.5: Diversity in profile geometries
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—— = Blow Curve 3D

CoordinateY

Figure 4.6: Fillet construction curves [66]

4.1.3 Disk Parameterization

The parameterization of the disk geometry has a large impact on
the complexity of the optimization problem. The challenge is to
achieve a high level of detail with as few parameters as possible.
The goal is to eliminate the shortcomings described in the 2.1.2
section. These were mainly the axial symmetry of the disk and the
straight line pattern. With these requirements, the following basic

conditions can be imposed on the disk parameterization:

e Rotation Symmetry
e Full contour with no holes or inner segments
e No undercuts

e No holes or other elements required for assembly

Specifying rotational symmetry allows to describe the disk contour

in the 2D coordinate system r,z. The contour must always be a
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closed curve, but can be composed of any number of segments. Two
contour classes are defined to allow comparison with the Predesign
method described in section 2.1.2. The polygon class is described
by connected polygon segments, and the spline class uses NURBS
for the disk leading edge (DLE) and the disk trailing edge (DTE)
described in section 4.1.1. The disk consists of the sections shown

in the figure 4.7. The blade-disk transition for both classes can be

Trailing edge

i w=05,p=0.0 !

| w=05p=10 )

WQE0SL

Ww=0.66,0=0.5 N
<« T

>

X_LE x_.m x_:I'E
(a) Segment definition (b) Pairwise point examples

Figure 4.7: Disk parameterization

described as a straight line, polygon or spline and is derived from
the radial outline of the lowest blade profile. At the same time, the
first and last points of the blade in the flow direction are calculated
and the axial dimensions of the disk are predefined. It should be
noted that the axial extreme points are not necessarily identical with
the definition of LE and TE of the blade in the previous section.
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Following the hub line, each disk has a platform whose thickness
can be varied up to half the radial height of the disk. Optionally,
analogous to the description in section 2.1.2, a parallel section on
the inner diameter is provided for manufacturing purposes. The
geometrically unambiguous description of this contour must now be
done with as few parameters as possible. The control points of the
DLE and DTE splines are therefore described in pairs. This has
two advantages: first, overlapping of the splines is avoided, since
the formulation requires an axial distance of the control points of
d0x < 0, and second, two points in 2D space can be described with
only two parameters. For each pair of control points numbered 1,
the parameters ring width w; and ring position p; must be specified.
From these, the 2D position of the control point can be calculated

using the relations
Xi = XLE + (1 — Wi) * X * P (4.5)

and
ri:rmax+(1_Wi)*rm*pi (46)

with the mean axial disk coordinate x,, and the mean radial disk co-
ordinate r,,. The necessary parameters for the complete description
of the disk are summarized in the table 4.1. You can see that only
the reore parameter is dimension dependent. All other parameters
scale from this parameter and the dimensions given by the plate.
Despite the small number of parameters, the variation of these pa-
rameters allows a high degree of freedom in the design of the plate.

A selection of possible parameter combinations and the resulting
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Parameter
Wi

Pi

hrimpLE
hrimpTE

hy

I'Bore

Description

Width of ring i

Position of ring |

Height of DLE rim

Height of DTE rim

Height of inner straight part
Bore radius

4.1 Geometry

Range Unit
0.0-1.2 -
0.0-1.0 -
0.0-0.5 -
0.0-0.5 -
0.0-0.5 -
0.0-rmax m

Table 4.1: Disk design parameters

disk shapes is shown in Figure 4.8 on the following page. In the

extreme case, the platform extends to the inner radius (Figure 4.8

a) and fills the entire installation space. The inner radius can range

between the extreme values of 0.0 to approximate the hub contour

from below; the former corresponds to a solid disk without recess,
the latter to a special type of disk called a bladed ring (BLING)
(Figure 4.8 i). When the spline pitch parameters and the inner disk

length are close to 0, the minimum installation space is reached. An

example of the extensive design freedom can be achieved by varying

the length and position parameters (Figure 4.8 b-h).
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»
¢ N E |

(9) (h) ()

\ \ ,

Figure 4.8: Design freedom with the underlying parameterization
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4.2 Meshing

In the introduction of this chapter, the effects of unsuitable geom-
etry and discretization accuracy were already pointed out. In order
to achieve a robust process, the meshing methods are adapted to
the geometry. Eight-node hexahedron elements (HEX8) are used
as FE elements, since the small number of elements required allows
for very fast computations. The advantages are explained in sec-
tion 5.2 The following sections describe the specifics of the meshing

methods for each geometry.

4.2.1 Structured Blade Mesh

The generation of the blade mesh directly accesses the geometric
parameterization. The meshing process can be described in four

steps as follows and is illustrated in the figure 4.9:

1. 1D Profile-mesh

The first step is to generate a line mesh on the spline curves of the
profile parameterization described in section 4.1.2. The number of
generated points can be chosen freely in pairs for the LE and TE
area as well as for the PS and SS area. Since the profile section is
located on a surface of revolution with a certain radial height, the

points are output in the cylindrical coordinate system.
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(a) Step 1 (b) Step 2
(c) Step 3 (d) Step 4
Figure 4.9: Blade meshing process
2. H-Grid

Next, 2D meshing of the centre H-block is performed. The opposite
points of PS and SS are linearly connected in the cylindrical coor-
dinate system and intermediate nodes are created according to the
desired mesh resolution in thickness direction. The formulation in
the cylindrical coordinate system ensures that all points lie within

the surface of revolution of the profile section.

3. C-Grid

The meshing of the LE and TE regions is much more complex.
The geometry can be idealized as a distorted semicircle, as different
types of meshing have been developed for this geometric shape. The
type of mesh topology used here is called butterfly mesh [69] and
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4.2 Meshing

must be done differently depending on the ratio of mesh resolution
parameters. The determination of a reasonable point distribution is
solved here by the method of transfinite interpolation (TFI), which
s described in great detail in Nguyen [70] or Eisenmann[71]. Usually,
the edges of the domain to be meshed in the 2D coordinate system
are transformed exactly to the edges of the unit square in the 1, &
coordinate system. The construction of the linear 1D interpolation

can be done with

MR =(1-¢§R(0,n)+E&R(L,M) (4.7)
MyR = (1-¢§R(E0)+nR(E 1) (4.8)

The 2D interpolate is then calculated via the Boolean sum
R(& ) = (Me®My,) = (Mg + My, — MeMy)R (4.9)

In the case of the C-block meshing required here, the leading and
trailing edges are each divided into upper and lower domains based
on the blade chord, resulting in 3-sided domains. The special case of
TFI for 3-sided domains is described in Baart [72] and more generally
in Salvi [73] and is called Coons patch. Here, one side of the unit
square is degenerated and considered as a single point. The nodes
created in 2D must then be moved to the correct radius using a

profile-dependent r, z function.
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4. 3D-Mesh

Steps 1-3 are repeated at different radial heights depending on the
desired number of nodes, and the nodes of each profile are con-
nected linearly. The identification of the required node sets can
be calculated analytically from the mesh parameters in the case of

structured meshing. Relevant NSets for the process are

o Nyub: Node of the blade hub
e N, Surface node of the blade

® NipLe, NipTe: Leading and trailing tips of the blade

When meshing a blade with a fillet, the uniform r-distribution of
the profiles can lead to poor mesh quality. To counteract this, the
distribution in the r-direction can be varied using different BIAS
settings. The implementation follows a methodology developed by
Altair [34] for the Hypermesh program. Three bias modes are pro-
vided: Linear, Exponential and Bell Curve. For linear biasing, the
element placement is controlled by the slope of a line with interval
[0, 1]. With element density nand s € 0, %,2,.., 2, a node position

determination function can be formulated as follows

ms + 2b

ST (4.10)

x(s)=s

The intensity m can be used to control the strength of the bias, with
a reasonable range defined by the constant b = 1.5 to [0,20]. A

stronger effect can be obtained by using an exponential distribution
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function. The interval lengths for the exponential distribution are
1 2 n
$(0)=1,¢(-)=c,¢(=)=c* ., ()= (4.11)
n n n
where c is defined as a function of the bias intensity m.
c=10+0.1m (4.12)

The node position can thus be determined by the function

crs—1
cr—1

x(s) = (4.13)

Bell-curve biasing has been implemented as a third variant, but is in
this context only relevant for stators and will not be described here.
The effects of biasing and the positive effects of using fillets are

shown in figure 4.10. The developed process behaves very robustly

(a) Linear Biasing m=20 (b) Exponential Biasing m=3

Figure 4.10: Biasing Examples

In tests and generates meshes in an average process time of 450ms,
making it suitable for optimization processes. A high quality blade
mesh can be generated by an appropriate choice of mesh parame-

ters. The measurement of mesh quality is based on mesh quality
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parameters. In the case of HEX8 elements, the Jacobi determinant,
the maximum corner angle, and the aspect ratio of the shortest to
the longest side are particularly meaningful. The optimal HEXS el-
ement is a cube, and therefore the typical values for good element

quality should be within the limits given in the table 4.2. The Ja-

Criteria Valid Range Optimum
Jacobian Ratio 0.6-1 1

Aspect Ratio 1-50 1

Max. Corner Angle 90°-150° 90°

Table 4.2: HEXS8 element quality ranges

cobi ratio is calculated from the determinant of the Jacobian matrix.
For 3D elements, this is a 3x3 matrix. The determinant depends
on the point at which the calculation is performed and is performed
differently in different FE software, but usually the Gauss points of
the element are used. For HEX8 elements with eight gauss points,
the Jacobian determinant has eight values, of which the ratio of the
smallest to the largest is calculated. Thus, the Jacobian ratio is
always in the range 0-1 and becomes 1 in the case of a cube. This

definition of element quality also applies to the following section.

4.2.2 Unstructured Disk Mesh

For the meshing of the disk geometry, the structured meshing method
of the blade is not applicable, because the geometry was parame-
terized very flexibly. The large changes in the cross-section (see

figure 4.8) would lead to strongly compressed elements and thus
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4.2 Meshing

to poor element quality. The different design of the contour de-
scription with splines, polygons and variable transition to the blade
leads to many curve combinations and curve numbers in the con-
tour description. The crucial feature iIs the rotational symmetry,
which allows a 2D meshing of a r, x section, which can be rotated
afterwards to get 3D elements. To obtain 3D HEX8 elements,
the slice must be meshed as a pure unstructured quad mesh. The
difference between structured and unstructured meshing is shown

in figure 4.11. While the position and number of a node can be

(a) Structured mesh (b) Unstructured mesh

Figure 4.11: Quad mesh examples

uniquely calculated from the input parameters in structured net-
works, this is not possible in unstructured networks. The criteria for
selecting a suitable quad meshing method are robustness, speed, and
open source availability. The development of efficient quad meshing
methods has been a long-standing research topic, beginning with
the development of FEM in the 1960s and 70s, which provided
many algorithms. With the rapidly growing computer graphics in-

dustry, this research has come back into focus, as fast and robust
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4 Discretization

algorithms are also needed. According to Rushdi [74], unstructured
quad meshing can be divided into two categories, indirect and direct
approaches. Indirect approaches start with the simpler generation of
tria meshes, which are subsequently transformed into quad meshes
by optimization [75], simplification [76], or refinement/coarsening
[77]. Direct approaches, on the other hand, produce quad meshes
without detours, but are usually less robust for complex geometries.
Therefore, an indirect method was used in the implementation of
the optimization process. For the quad meshing, the open source
3D finite element mesh generator Gmsh [78] in version 4.11.1 is
used. The meshing process can also be divided into 4 steps and is
illustrated in the figure 4.13.

1. 2D Quad Meshing

The description of contours in Gmsh is very similar to the formula-
tion described in section 4.1.3. Various geometric primitives, such
as polygons or splines, are associated with a closed curve. Gmsh
has an integrated CAD engine that internally generates a surface
from the curve, which can now be used for 2D meshing. An indi-
rect meshing method, the Frontal-Delaunay for Quads algorithm, is
used to generate the 2D mesh. Regardless of the choice of mesh-
ing algorithm, Gmsh always first generates a 1D Delaunay mesh
on the edges using a divide-and-conquer algorithm [79] developed
by Dwyer. The frontal Delaunay algorithm combines the advanc-
ing front method with Delaunay triangulation and is described in
detail by Rebay [80]. The Delaunay triangulation is a special trian-
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4.2 Meshing

gulation method developed by Delaunay in 1934, which was already
implemented algorithmically in 1967 by Bernal and Finney [81]. The
Delaunay criterion is said to be satisfied if the following conditions

are met

e All Triangles produce a circumcircle which does not contain

any other vertices but their own

e There are no degenerate Triangles with collinear points

The condition is illustrated by two examples in Figure 4.12. As can

N e

~_——

(a) Delaunay (b) Non-Delaunay

Figure 4.12: Delaunay triangulation

be seen in figure 4.12.a, this criterion leads to the maximization
of the smallest interior angle of a triangle and therefore tends to
produce more uniform triangles and avoids sliver triangles, i.e. very
thin triangles with two small interior angles, since these produce
very large circumferences. To obtain a pure quad mesh, a special
formulation of this method is used that preferentially produces right-

angled triangles, which are easy to recombine into quad elements
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4 Discretization

[82]. The recombination of the tria elements into quad-elements
is done with the so-called Blossom algorithm [83], which uses a
minimum cost optimal match algorithm to generate quad meshes
from triangulation. Using the full-quad option guarantees a pure

quad mesh.

2. 3D Mesh

The 3D mesh generation is also done with Gmsh. The 2D elements
are rotated in theta direction by specifying the number of elements.
To reduce the required simulation time, only a segment of the disk
Is calculated, yet with periodic boundary conditions the model math-

ematically resemble a full blisk. The rotation angle results from the

2[1
Nblade

number of blades npjage Over 60 =

3. Nodeset Definition

Since this is an unstructured mesh, the required nodesets cannot be
computed as in the case of the blade meshing, but must be created
using specially implemented search functions. The following NSets

are required for modelling:

e Ngrg: NSet for setting boundary conditions
e Nrivr, Nrimr: NSet of leading and trailing edges
e Nptop: NSet of the top of the disc

o Nierr, Nrigut: NSets of the edges for periodic boundary

conditions.

80



4.2 Meshing

It is important that the nodes of the dependent edge are not con-
tained in other NSets. The identification of the nodes is made
possible by the fact that the first and the second point of the slice
contour are always identical to the sheets LE and TE. Gmsh allows
filtering of nodes based on geometric curves and surfaces. The iden-
tification of the Ngrg set uses the axial symmetry of the number of
edges to find the curve of the DLE and DTE, and then searches for
two rows of nodes at a given radial height. The Ngmr and Nrimr

NSets can be identified using the following two simple searches:
1. Find the 3 edges containing the blade LE or TE point
2. Find the edge whose vertices have constant radius

The NSET of the top of the disk Nptop can then be found using
the surface containing the NSets Ngrmre and Nrivr. The surface
containing the original contour line has index 1 by default, so the
opposite flank over nodes with surface 1 have identical x and r
values and of these the maximum 6 value, so N gt and NrigyT are

also determined.

4. Theta Distortion

The mesh is now a sector of the compressor disk with flanks of
constant @ values. The rotor blade, on the other hand, has a more
or less curved path and can therefore extend beyond the disk sector.
If the calculation is performed considering fillets, this happens in
almost all cases. The connection of the incompatible blade-disk
mesh generated by Multi-Point-Constraint (MPC) would therefore
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4 Discretization

fail, which is why the disk must be distorted accordingly. Figure
4.13.d illustrates the method of theta distortion. The method used
here generates a r, 8-spline based on the blade chord, which forms

a surface with the z-axis to distort the disk.

I 1

(a) Step 1 (b) Step 2
(c) Step 3 (d) Step 4

Figure 4.13: Disk Meshing Process
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Optimization is the process of finding the objectively best solution
according to specified criteria. The optimization problem always
consists of three components: the objective, the design variables,
and the constraints. Depending on the formulation of the optimiza-
tion algorithm, one or more objective functions are possible, usually
formulated as a minimization problem. In the case of multiple func-
tions, there is a trade-off in the form of a Pareto front, which is
similar to generative design, since a solution must now be selected
from the solution space. The mathematical description of opti-
mization methods goes back to the work of Newton, Lagrange, and
Gauss and is summarized by Hancock [84]. Optimization methods
could develop their real potential only with the use of powerful com-
puters, which was demonstrated as early as 1984 by Karmarkar [85],
with his linear programming algorithm. Since then, the theory has
been continuously extended and is available, partly in freely acces-
sible, user-friendly libraries. Regardless which optimization method
is used, all formulations assume fully automated processes. In the
following, the formulation of the optimization process for the design

of disk geometries is described.
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5 Optimization
5.1 Aerodynamic Blade Design

The disk design should be based on a realistic engine configura-
tion and therefore aerodynamically reasonable blade geometries. A
full-scale design using 3D CFD is not feasible due to the computa-
tional time involved. To estimate realistic geometries, two predic-
tion methods developed at the DLR Institute of Propulsion Tech-

nology are used.

Rubber Engine

Realistic compressor configurations are generated using the Rubber
Engine tool described and validated by HaBy [86]. With this tool,
the component configuration and overall dimensions of an engine
can be estimated at the concept stage. This is made possible by a
hybrid surrogate-based model, which is composed of the results of
performance calculations and surrogate models from different disci-
plines. The conceptual structure of the method is shown in Figure

5.1. A parameter study on total engine weight and length, also

UThrust CR, Thrust MTO, Fan Diameter, ...

2 Thrust, Rotational Shaft Speed, ...

3 Altitude, Flight Mach Number, Power Offtakes, ...
4 Weight, Dimensions, Center of Gravity, Areas ...

%) Fuel Flow, Mass Flow, Velocities, Temperatures, ...

Power
Parameter?
Flight
Conditions®

Hybrid Surrogate-Based Rubber Engine Model

Model Surrogate Performance
Parameter? Models Program
\ 4 \ 4

Engine Performance
Parameter?) Parameter®)

Figure 5.1: Rubber engine process architecture [87]

84



5.1 Aerodynamic Blade Design

conducted by HaBy [87], showed a large influence on the engine di-
mensions of the parameters bypass ratio (BPR), thrust requirement
at cruise (FNcgr) and thrust ratio takeoff to cruise (FNgatio). If
BPR and F Ng,tjo are kept constant, the weight of the engine rises
sharply with increasing cruise thrust requirement due to increased
mass flows and thus larger components. On the other hand, if BPR
Is increased while the thrust requirement remains constant, the fan
weight increases, but the core components become smaller. Varying
these parameters within the specified limits thus covers a very wide

range of possible compressor configurations.

ACDC

After the conceptual design of the compressor with the help of the
rubber engine tool, the number of stages, the flow path and the GT-
lab station definitions (LE and TE) of the blades are available. This
is where the Advanced Compressor Design Code (ACDC), also de-
veloped at the Institute of Propulsion Technology by Schnos, comes
in [88]. The method uses a procedure similar to this work to create
a surrogate model for aerodynamically favorable 2D blade profiles.
For this purpose, a database of optimized 2D airfoils was created
using the airfoil parameters described in 4.1.2 and [89]. The blade
profiles were evaluated based on their loss characteristics using the
MISES code [90]. A special formulation of co-rigging was then used
to train the surrogate model, which reduces the number of evalua-
tions required [91]. The airfoil geometries are sized using aerody-

namic parameters such as downstream angle and inlet Mach number
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according to the results of the performance and rubber engine cal-
culations. The conversion to 3D geometry is then performed using
the BladeGenerator, where a blade is constructed from 5 2D profiles
per blade. The process is the same as shown in [91] and is illustrated

in figure 5.2. The results of the profile dimensioning were compared

Throughflow computations 3D CFD computations
(Streamline curvature) D (RANS)
VCC airfoil series )
El Airfoil design
{ requirements
\ Loss and
(k_/> deviation )

/ Parametric airfoils ) e @ B Blade generation

Figure 5.2: ACDC process chart [88]

with extensive 3D-CFD calculations of the DLR code TRACE [92].
According to Schnos [88], the profiles designed with ACDC show
slightly lower losses, but higher downstream angles. For the airfoll
area, which is directly linked to the mass of the blade, the devia-
tions are negligible as shown in figure 5.3 at around 0.18% with the
best method, which makes the method suitable for blade dimension

estimation used for disk design.
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Figure 5.3: Predicted Profile approximation accuracy [91]

5.2 FE Solution

The commercial solver PERMAS developed by INTES GmbH and
the open source solver CalculiX were implemented as FE solvers in
GTlab. For the calculation, the blade and disk mesh, whose gen-
eration has already been described in detail in section 4.2.2, are
connected by linear multipoint constraints (MPC). The displace-
ments of the guiding nodes (ugy) are applied to the dependent nodes

(ug) with a distance-dependent weighting factor A, given by

n
Ug = ZA/UQ,/ (5.1)
i=1
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With PERMAS, this is done through the ISURFACE function, where
node sets can be directly connected. The distance over which nodes
are connected applies in all three spatial directions and can be con-
trolled by a tolerance parameter. CalculiX [93] has the TIE function,
which computes a surface from a given nodeset and connects it to
the second given NSet, but the tolerance parameter controls only
the normal direction of the previously determined surface. Blade
and disk meshes must therefore overlap in the surface normal direc-
tion, making the theta distortion shown in Figure 4.13.d mandatory.
The coupling gives very good results for the resulting displacement,
but the stress distribution in the MPC domain is often not trustwor-
thy. However, since for the case of static stresses under rotational
load, the maximum disk stresses are expected at the inner radius
of the disk, the nodes involved in the MPC can easily be ignored
in the stress evaluation. For a faster calculation time, instead of a
complete disk, only a disk segment is calculated, whose size in cir-
cumferential direction is defined by the number of blades. For this
purpose, all disk nodes are transformed into cylindrical coordinates

according to

r=+y>+2z° (5.2)
6 = atan2(z, y) (5.3)
z=x (5.4)

The atan2 function, first implemented in Fortran in 1961 for ex-
actly this application, always returns the correct 8 value regardless

of the y, z sign. With the application of periodic boundary condi-
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tions (PBC) at the disk sector flanks, the model now mathematically
corresponds to that of a full disk. The blade-disk connection and

the periodic boundary conditions are shown in figure 5.4. Another

(a) Periodic boundaries (b) Blade disk interface

Figure 5.4: Multi point constraint definitions

advantage of the nodal transformation to cylindrical coordinates is
the simplified application of displacement constraints. A solid disk
Is self-supporting in the radial direction and this is also true for the
idealization with PBC's, which means that only the motion in the
circumferential and axial direction has to be restricted. The posi-
tion of the boundary conditions has been implemented as a variable
parameter via the node set Ngrg as described in section 4.2.2. The
main requirement for the FE solver in the optimization is the min-
Imum computation time while maintaining the required accuracy.
The measure of accuracy is the validity of the stress and displace-
ment results used to constrain the optimization. From the analytical
disk calculation in section 2.1.2 it is already known that the dimen-
sioning is defined by both o, and ogg. Since an isotropic material
model is used, the multiaxial stress state can be transferred to a fic-
titious uniaxial state by applying appropriate hypotheses. For ductile
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materials under static loading, Mises’ shape change hypothesis has
proven to be very reliable. The six stress components are converted

according to

TMises = \/0§ + 02+ 02— 040, — 040, — 0,0, +3(72, + T2, + T2,)
(5.5)
Into an equivalent stress. The result can be directly compared with
the material-dependent vyield strength to obtain the material uti-
lization. For all following calculations, the titanium alloy Ti-6Al-4V
(T164) is used with the material properties listed in the table 5.1.

For the discretization, the resolution of the FE mesh has a direct

Parameter Description Value Unit
E Modulus of Elasticity 113.8 GPa
0 Density 4.43 e
v Poisson’s Ratio 0.342 -
Rpo.2 Tensile yield Strength  880.0 MPa

Table 5.1: T164 Material Properties [94]

influence on the solution time; three levels of detail are considered
for the blade: low with 240 elements, high with 8300 elements
and idealization only as mass point. For the disk a low resolution
with around 400 elements and a high resolution with around 6000
elements is evaluated. Since the disk uses an unstructured mesh
method the amount of used elements differs for different geome-
tries, so the given values are only approximations. As evaluation
criteria, only the effects on the calculated disk stresses and the max-

Imum displacement values in the disk are considered. The results of
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the mesh study are shown in figure 5.5. The influence of detailed

—@— Disk Stress
--®- Max Radial Displacement
~®- Max Axial Displacement

0.410

0.405

0.400

0.395

0.390

Displacement [mm]

0.385

Mises Stress [MPa]

Figure 5.5: Comparing different solvers and mesh resolutions

meshes when using CalculiX is negligible and reaches almost identi-
cal values compared to PERMAS with fine meshes. An idealization
of the blade as a mass point leads to almost no acceleration. The
calculation with CalculiX with coarse blade and disk meshing proves
to be a good compromise between accuracy and speed. The use
of HEX8 elements is allowed when advanced strain functions, the
so-called bubble modes, are taken into account. This formulation
avoids Possoin ratio locking, which leads to excessively stiff element
behavior [95], as seen by the low stress and displacement values
when using the standard eight-node hexahedron element C3DS8 in
CalculiX. PERMAS uses the advanced elements by default, in Cal-
culiX the element type C3D8l must be explicitly selected. Another
option to accelerate the calculation is the level of detail of the anal-

ysis. Both FE solvers have geometric linear and nonlinear static
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analysis methods. In linear static analysis, only one solution of the
structural response with respect to the initial orientation is calcu-
lated, which leads to errors, especially for large displacements. The
geometrically non-linear method calculates the solution iteratively,
reorienting the load, in this case the centrifugal field, on the model
after each step until the calculation falls below a convergence limit.
The results of the different analysis methods as well as the com-
parison between PERMAS and CalculiX are shown in Figure 5.6. A
comparison of the results shows small deviations of 0.75% for PER-
MAS and 0.39% for CalculiX between the geometrically linear and
non-linear analyses, yet a time saving with a factor of around 10.
The negligible effects of the linear analysis can be explained by the
very small displacements in the disk. When considering the rotor
blades, the differences are much more significant with 14.83% for
PERMAS, since large displacements occur there. In summary, the
analyses show that the calculation of the stress and displacement
distribution within the disk using the simple blade option in com-
bination with a geometric linear static analysis provides sufficient
accuracy at very fast computation times. CalculiX was chosen as
solver because its open source licence allows it to be used in parallel
on multiple computers and provides more easily repeatable results

for the simple blade option.
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(a) CalculiX Linear
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5.2 FE Solution

Contour Plot
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(b) PERMAS Linear
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Figure 5.6: Geometric linear and non-linear analysis with PERMAS and

CalculiX
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5.3 Constraints and Aim Functions

The results of the FE solution have to be transformed into an
optimization problem. By default, the objective function is the
minimization of the weight due to the lightweight requirements in
aerospace. To control the optimizer, it is sufficient to specify the
volume, since the density is a constant parameter during the opti-
mization. The formulation of the constraints h has a great influence
on the disk dimensioning. Most available optimizers support the for-

mulation of nonlinear inequality constraints of the form
hi(x) <0 (5.6)

which are sometimes referred to as nonlinear programming problems.

Using equality constraints
h,‘(X) =0 (57)

Is only supported by advanced optimization algorithms. In principle,
any equality constraint could be formulated by two inequality con-
straints h;j(x) < 0 and h;(x) > 0. Yet in practice, such formulations
usually lead to convergence problems [96]. The constraints of the
present problem require both formulations. The disks are among
the critical components of an aircraft engine, since their failure can
lead to the loss of the aircraft, and are listed in the Failure Mode
Effects Analysis (FMEA) performed for aerospace components in
the component group Al [97], whose failure must be absolutely ex-

cluded. The design load case under consideration is the disk burst
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at 110 percent of the maximum rotational speed (Redline), which,
to the best of the authors’ knowledge, represents the critical load
case. The process architecture has been deliberately constructed
to enable the integration of more sophisticated failure criteria with
minimal modifications, should this become necessary. The disk burst

criterion can be calculated as a function of Mises stress by

Rp0,2

S= (5.8)

O Mises

multiplied by the safety factor S. An minimum safety factor for safety
critical components is 2, which is increased to 2.25 in order to incor-
porate eventual unknown load requirements. This leads, according
to (5.8) and table 5.1, to a Opjises limit of 391.11MPa. The method
to be developed is of statistical nature and will most likely predict
solutions distributed around the training data. To incorporate this
behavior at an early stage, the statistical factor Spop = 1.1 is In-
troduced, reducing the stress limit further to opmisesmax = 352MPa.
The maximum stress of the disk and the disk weight are loosely
inverse proportional, the stress restriction can be formulated as an

Inequality constraint
hl(X) < OMises — 352 (5-9)

In addition to the failure criterion, there are requirements for the
deformation behavior. To prevent the rotor blades from rubbing
against the outer wall, the disk must expand as uniformly as possible.

In addition, the centrifugal load must not cause any axial movement.
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Equal constraints are used to formulate these requirements. In the

Cartesian coordinate system, they are expressed as follows:

ho(x) = 6,7 — 6, =0 (5.10)
/73(X) = 527'/5 =0 (5.11)

5.4 Process Architecture

The optimization process is controlled by a global Python script that
can be executed through the GTlab Python interface. The Python
script can optionally be run in GTlab batch mode, which allows
easy data generation on mainframes. Figure 5.7 shows the process

flowchart. The process consists of the following steps. First, the

Increment
Boundary
Conditions

4

Global
Parameters

1

Compressor
Scaler

Optimization |
) 4
Blade Profile Disk Generator ——> Mesher ——>  FE Solver
Generator

Optimum Disk Geometry

Surrogate Modeling

|

Training > Validation

Database

Figure 5.7: Global process description

96



5.4 Process Architecture

Rubber Engine uses the thrust and bypass specifications to generate
a compressor component with the optimum number of stages and
the flow path (1). Then the 2D profiles of the rotor blades are di-
mensioned by ACDC (2). The 5 profiles per blade are converted into
a 3D geometry by the BladeGenerator (3). According to the disk
parameterization, an initial disk can be generated from blade LE and
TE (4) with minimal mass (the reason for this is explained in the
next section) and the ring position parameters located under blade
center of gravity. This initial disk can be meshed and connected
to the meshed blade (5) to form an FE model. The available FE
solvers solve the displacements and stresses resulting from the loads
(6). The results are stored in a member database (7). Steps 4-7
are now repeated with variation of the blade geometry parameters
until at least a locally mass-optimal blade is found within the con-
straints. The convergence criteria for the optimization process are
defined by two relative tolerances: one on the function value (FTol)
and the other on the optimization parameter values (XTol). The
process terminates upon meeting either of these tolerances, where
a relative tolerance of 0.0001 has been established as a satisfactory
balance, providing an efficient trade-off between optimization dura-
tion and the quality of the resultant optima. The result is stored in
a global database of optimized members (8) and the python script
continuous with a new set of bypass and thrust values. The loop is

repeated until a sufficient amount of data is available.
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5.5 Optimization Algorithms

The optimization is carried out with the open source package NLopt
[96]. NLOpt has a C++ API, which makes it easy to integrate into
the GTlab framework. The library contains several algorithms, but
both equality and inequality constraints must be satisfied, which lim-
its the choice. In test runs, the COBYLA algorithm showed robust
and very fast solutions, yet struggles to find the global optimum
reliably. Given the substantial volume of data anticipated to be pro-
duced, the velocity of the optimization process is a parameter of
considerable significance, which may take precedence over the pre-
cision of the optimization outcomes. To assess the optimizer's effi-
cacy in locating the global optimum, a comprehensive examination
using 100 optimization trials for the same problem was executed,
each with varying starting solutions and initial step sizes. The cor-
responding results are presented in Figure 5.8. This investigation
reveals that starting from a lightweight solution in conjunction with
smaller initial step sizes tends to yield superior outcomes. With good
starting conditions, the COBYLA demonstrates a robust ability to
identify the global optimum in approximately 90% of the trials con-
ducted. The Optuna algorithm [98] used in the next chapter for
hyperparameter optimization was also tested for the design opti-
mization, yet could not produce satisfactory results in test runs,
mainly due to the missing implementation of inequality constraints.
The NLOpt COBYLA implementation is based on Powell's work
described in [99] and reviewed in [100]. The formulation of the

equality constraints is solved via the pairwise implementation of in-
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U,
Me [/773]0.006

Figure 5.8: Results for 100 optimizations with varying starting conditions

equality constraints, which in this case does not cause convergence
problems for the algorithm. The main challenge for the optimizer
is to find the global optimum instead of just a local one. COBYLA
constructs a sequence of solutions based on linear approximations
of the objective and constrain functions. This sequence inherently
has local characteristics, which the optimizer tries to minimize. A
general solution would be the excessive sampling of the parameter
space, yet this quickly leads to high computation times. To achieve
fast solutions with a high probability to find the global optimum,
the best strategy at hand is to choose an already very good initial
solution to initialize the parameter space in the neighborhood of
the global optimum. Based on a sampling of the overall parameter

space, a set of starting parameter was chosen. The data analysis in
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the next chapter will determine quality of the generated data.
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Over time different data science methods and standards were devel-
oped on how data should be processed, with the two most promi-
nent being CRISP-DM and OSEMN [101]. While CRISP-DM aims
mostly for web data scraping processes and large scale business ap-
plications, the latter is formulated more general and therefore suites
the application of a predictive design prototype better. First intro-
duced by Mason and Wiggins [102] the OSEMN method divides the
data life cycle into the five name giving sections displayed in fig-

ure 6.1. The underscored letters form the acronym OSEMN which

Obtain Explore Interpret

Gather data from Data cleaning and Exploratory data Build models to Deploy models
relevant sources scaling analysis to find predict and and find insights
patterns forecast

& ® @ W @

Figure 6.1: OSEMN data cycle method (redrawn from [101])

Is also a distant homophone to the word "awesome". This chap-
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ter explores the OSEMN approach as a guiding framework for the
training process of a machine learning model to predict optimal disk

geometries.

6.1 Obtain

The process of data extraction has already been described in detail
In the section 5 from the structural mechanical point of view. This
section will focus on the information technical aspects. Starting
from an eleven dimensional input parameter space, an optimization
Is carried out for a selected parameter combination. The gener-
ated results, both of the individual iterations and the determined
weight optimal disk geometry for the specific input data selection,
are stored in csv databases. The schematic data flow of the gen-
eration process is shown in figure 6.2. The overlying rectangles
stand for individual optimizations with different blade geometries
and loads, where one rectangle is an iteration with different disk
geometries. When the optimization is finished the optimal result is
stored in the global database while every intermediate step is stored
In a numbered optimization database. The input parameter space
Is covered as evenly as possible within the defined limits. The even
distribution of the input parameters is realized by using the python
library "random". The function 'random seed’ allows the genera-
tion of random parameters for each run within the limits given in
the table 6.2, which leads to a uniform distribution if the sample

number is high enough without having to specify discrete step sizes.
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Figure 6.2: Schematic data acquisition process

The user tends to select rounded values as input, for example 0.1
will be used more often than 0.08 for ryoe. ToO account for this
behavior and increase the prediction accuracy at these query points,
additional training data is generated at certain discrete input pa-
rameter values, which can be seen in figure 6.5. The selection of
the free parameters and their ranges go back to the sensitivity anal-
yses performed in chapter 5. The parameter ranges represent many
possible compressor blades. Only very small engines and turbine
power simulators (TPS) or very large rotor blades for fan stages
are currently not covered. Through parallelization and using several
computers, a total of 52956 optimizations with a sum of 9498499

FE calculations were executed. Depending on the complexity of the
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problem the optimizer required different amounts of iterations, av-
eraging at 179 to meet the convergence criteria already described
in 5.5. The wide parameter space increases the complexity of the
optimization problem. High speed load in combination with small
available disk space does not allow the optimizer to find physically
valid solutions, while the opposite leads to an under-definition of
the problem and therefore several valid but not necessarily optimal
results. Yet, the advantages of a broad database outweigh the asso-
ciated disadvantages, as targeted data cleaning can eliminate much
of the aforementioned problems. The measures for this cleaning

process are described in the next section.

6.2 Scrub

The next step in the data life cycle is the data cleaning. During the
optimization process some errors occur which lead to the invalidity
of data points. Depending on the type of error, these are marked
with a corresponding error code and the calculated stresses and
displacements are set to the value 9999.99. The used error codes
have the meaning given in table 6.1. The column "use" specifies
the handling of the different error types. Error code 0 to 3 and
6 are critical errors, whose data points must be removed from the
database, since the is corrupted due to process failures. Meshing can
occur due to complex geometries and FE Solver errors due to corrupt
elements. Process errors are infrequent, occurring in approximately

1 out of every 1000 cases, as considerable care has been devoted to
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Error code Description Use
0 Blade meshing failed remove
1 Disk meshing failed remove
2 FE Solver failed remove
3 NLOpt failure remove
4 NLOpt FTol reached filter
5 NLOpt XTol reached filter
6 NLOpt max evaluations reached remove

Table 6.1: Meaning and use of different error codes

ensuring the robustness of all tools. Error codes 4 or 5 can be used
as filters to improve the data quality and achieve better prediction
accuracies, since they represent different convergence criteria. The
effects of different filters will be discussed in more detail in section
6.3. The implementation of removing and filtering is made possible
by the functionalities of the python library "pandas". The csv-files
can be read directly into a Pandas dataframe using the built-in read
CSV function. Dataframes can be understood as dynamic tables,
which can be used to perform various data operations. After outlier
removal and filtering, the data needs to be normalized. Due to
the different dimensions and units of the individual parameters, for
example the rotational speed has the order of magnitude 10E5 while
Ivp Is dimensionless in the order of magnitude 10E-1, the formulation
of suitable substitute models is made difficult. The data can be
normalized in different ways, established methods are Min-Max and
MaxAbs Scaling, which scale the individual parameters according to
their maximum value either to the range [0,1] or [-1,1] and thus

remove dimension effects from the dataset. MaxAbs Scaling mainly
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has advantages in the robustness against outliers and when used with
sparse data, which neither is applicable to the data at hand. The
chosen method to scale the data is therefore the straight forward

and good interpretable Min-Max scaling with:

Xstd = (X - Xm/n)/(Xmax - Xmin) (6.1)
Xscaled = Xstd * (b - a) +a (6-2)

a and b are the desired lower and upper bounds of the scaled data,
in the case of Min-Max scaling with a = 0 and b = 1. To inverse
transform the scaled data the given equation must be rearranged to

X, which results for the simplified case of Min-Max scaling to:
X = Xstd * (Xmax - Xm/n) + Xm/'n (63)

The maximum and minimum values must be stored for each param-
eter, for one to be able to undo the scaling after model building and
to normalize further data sets using the same scaling rule. The scal-
ing parameters can be exported using the joblib libraries dump func-
tion and are documented in table 6.2 Scaling has an influence on the
quality assessment criteria of the trained model [103], since absolute
and relative errors depend on the scale of the data. When there is
significant difference in the magnitudes of the data dimensions, the
Impact becomes more pronounced. In this context, the revolutions
exhibit dimensional values that are roughly 100,000 times greater
than those of the axial length, underscoring the critical importance

of appropriate data scaling.
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Mbplades ~ COYx cog, Lx

Min | 1.4505 0.3983 0.2584 0.0383
Max | 5.3638 0.4646 0.4037 0.0649
Or bore, rb, rpm

Min | 0.0029 0.0100 0.0100 6052.0
Max | 0.0068 0.1897 0.9890 14987
Wo w1 Wo Whub

Min | 0.0200 0.0200 0.0200 0.3000
Max | 0.1000 0.2996 0.2992 0.9900
Po rime rFiMee borep
Min | 0.4296 0.0400 0.0400 0.1000
Max | 0.5012 0.0789 0.0795 0.4869

Table 6.2: Minimal and maximum values for each parameter

6.3 Explore

The exploratory data analysis is the most important step in the data
life cycle. Understanding the data to utilize different enhancement
techniques can greatly increase the performance of the surrogate
model. Due to the local optimization process, the exploration shows
a high amount of noise in the data. Feature selection and data aug-
mentation can be used to increase the model performance on the
data side. The analysis is done on cleaned data but before the nor-
malization in order to facilitate interpretability. The optimization
process in general serves as a tool for controlled data generation.
While searching for the global optimum the optimizer generates data
more likely in the region of interest. The scatter plots of figure 6.3
show the influence of the optimizer, with the density of subopti-

mal data points (grey) being higher around the optimum solutions
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Figure 6.3: Distribution of optimal and suboptimal data points

(blue) and more scarce when the distance to the optimum weight
increases. While stress and disk volume show a loosely inverse pro-
portional connection, the blade radial center of gravity influences
the disk weight nearly linear. To get a better understanding of the
parameter relationships and their influence on the output parame-
ters in the optimum database, a correlation heatmap can be used.
The correlation coefficients indicate what correlation a pair of pa-

rameters have and are in the range of -1 to 1, where:

e 1 indicates a perfect positive correlation
e -1 indicates a perfect negative correlation

e 0 indicates no correlation

For the data analysis of large datasets, the Seaborn python library
is used to plot the correlation heatmap in figure 6.4 directly from
a pandas dataframe. Since the disk is rotational loaded, the mass

and radial coordinate of the blade cog have a high influence on
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6 Data Driven Design

the optimum disk mass, yet the influence of the rotational speed
shows very low correlation with the disk mass at a value of only
0.04. Since the disk itself is rotationally loaded, it has to carry
its own weight. At higher rotational speeds the disk still tends to
be as lightweight as possible to reduce the maximum stress on the
inner diameter. For the targets, the ring width wy to wy,p and
the axial position of the disk center have the most influence on the
disk weight. The strongest positive correlation is found between the
radial center of gravity of the blade and the disk weight. Due to the
centrifugal loading higher radial cog positions mean higher forces,
which result in a heavier disk. The strongest negative correlation
can be found between the displacement results in x- and r-direction.
This is consistent, due to the constraints applied to the disk which
prevent lateral rigid body motion of the disk. The disk can only bend
or tilt, so the displacement values are linked together, but cannot
be derived from each other. To get a better understanding on the
parameter distribution, a histogram is plotted for all parameters,
which is shown in figure 6.5. The first three plots (numbering from
top left to bottom right) clearly show the concentration on the
region of interest, where the majority of the data points are at
and around the specified restriction values for the allowed stress
and displacements. The following eight input parameters are evenly
distributed, except for the additional data concentration on even and
rounded discrete data values. The eight target parameters defining
the disk geometry show random fluctuations and irregularities, which

In data science is called noisy data.
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6 Data Driven Design

6.4 Model

The exploratory data analysis showed high noise in the dataset,
which calls for special model architectures. A simple experiment
with an out-of-the-box model can quickly confirm this assumption.
For the model generation the python library Keras [104] and Ten-
sorflow [105] are used, with the Scikit-learn [106] library for pre-
and post-processing tasks. Using a DNN with the standard layer
architecture shown in figure 6.6 on the optimization database with
a train/test split of 80% yields and 20 epochs yields unsatisfactory

results. The loss value is reduced from 1.21 to 0.62 while the vali-

dense_16_input input: | [(None, )]
Q InputLayer
_ Q ~— Toaliz output: | [(None, 8)]
dense_16 input: (None, 8)
Dense
float32 output: | (None, 10)
dense_17 input: | (None, 10)
Dense
foatsz | Output: | (MNoue, 10)
‘ - - dense_18 input: | (None, 10)
O O Dense
foasz | output: | (None, 8)
Input Layer € R® Hidden Layer € R1© Hidden Layer € R Output Layer € R®

Figure 6.6: Standard neural network architecture

dation loss stays nearly unchanged at 0.98 over the training period.
This behavior is a clear indicator for model overfitting and can be
countered with a range of different measures. The most promis-
ing models for noisy data are: Random Forests, Nearest Neighbors
Methods and Neural Networks with measures against overfitting.

These models have various fine-tuning parameters to improve their
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prediction accuracy. To determine the optimal parameters, a hy-
perparameter optimization is carried out using the python library
Optuna [98]. Optuna automates the process for finding the best
hyperparameters and offers various optimization algorithms and vi-
sualization options. Unlike conventional optimizers such as NLOpt
from the 5 section, Optuna is suitable for optimizing discrete values
such as integers or string lists. The following subsections describe
the specificities of the models applied and the optimization of their

control parameters.

6.4.1 Random Forest

Generally ensemble methods like Random Forests perform well on
high noise datasets. Also called decision trees, random forests build
an ensemble of decision trees and train each of them only on a sub-
set of the data. During the prediction each decision tree casts a vote
with the final output being the average value for the regression prob-
lem. The averaging process is the main reason why random forests
perform well on high noise datasets since the effect of outliers and
noise are mitigated. The Optuna hyperparameter optimization is
used to find the optimal parameter set for the following control pa-
rameters of the Scikit-learn random forest regressor algorithm: The
number of trees used can be specified and is usually between 50 and
500. Generally a higher number improves the models’ performance
but increases the computational cost. How the data is split can be
controlled by the number of features considered at a node and the

criterion used to measure the quality of the data split. The fea-
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Param Description Range
n_est Tree count 50-500
max_d  Max depth 1-35

s_split  Min samples to split  0-1

s leaf  Min samples at leaf  0-0.5

feat Max features "sqrt", "log2", 0.2-0.8

crit Split quality "mse", "poisson","friedmann"

Table 6.3: Hyperparameter search space for the random forest regressor

ture threshold is needed to divide the data into homogeneous sets,
which enables more accurate predictions. For regression problems
the most common criteria are the mean square error or the mean
absolute error, similar to neural networks. The result of the opti-
mization is shown in figure 6.7. The optimal split criterion is MSE.
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criterion max_depth max_features min_samples_leaf min_samples_split n_estimators

Figure 6.7: Trial results of the random forest parameters

The max depth has not much influence on the objective function
and is set to 15. For the max features selection log2 is used with
minimal samples to split at 0.15 and minimal samples at each leaf
at 0.1. The parameter with the highest influence is the amount of

estimators, which showed an optimum at 51.
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6.4.2 Nearest Neighbor Search

Nearest Neighbors methods rely on local information and perform
well on datasets with high noise and relatively small dimensions.
Even with the only eleven dimensional input space, finding the near-
est neighbor with brute force is ineffective for large datasets. Ad-
vanced mathematical models like k-d trees or ball trees are able
to solve this problem a lot faster. For the dataset at hand, a k-
d tree is used since there are robust and fast algorithms available
in python through the Scikit-learn library as well as a header only
C++ library called Nanoflann [107] already integrated into the GT-
Lab framework. With only a few parameters to be tuned, the k-d
tree hyperparameter search can be done on the complete dataset

with the following parameters 6.4 In k-d trees the parameter space

Parameter Description Range
n_neighbors Neighbor count 1-20
leaf size Leaf size 1-60
o) Minkowski p 0-2

Table 6.4: Hyperparameter search space for the nearest neighbor search

Is recursively divided. Each node represents an axis aligned rect-
angle containing a subset of the data similar to the random forest
technique. To build the tree, the dataset Is split along one dimen-
sions median value into two subsets, one containing all points above
and one containing the points below the median. This process is
repeated with alternating dimensions until the specified leaf size is

reached. To find the nearest neighbor of a query point, we start at
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the root and move up the tree until a leaf node is reached which be-
comes the first best guess for the nearest neighbor. The other half
space must then be checked if it contains a closer point and if so the
nearest neighbor is updated. Building the tree can take some time
depending on the dimensionality and size of the dataset, but once
built, queries can be processed very fast in a matter of milliseconds.
The importance of the parameters as well as the scatter plots for

the objective function are shown in figure 6.8 From the optimized
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Figure 6.8: Nearest neighbor hyperparameter optimization results

parameters only the number of neighbors used for the prediction
has an influence on the prediction accuracy and converges to an
optimum at 17. Also, the influence of the Minkowski parameter p
Is small, a value of 2 gives the best results. The leaf size has no

notable effect and is set to 30.
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6.4.3 Neural Networks

Neural networks can be formulated with a range of measures to
increase performance on high noise datasets. Dropout layers ran-
domly set a specified fraction of neurons outputs to zero during the
training process which is an effective measure against overfitting.
The loss function measures the difference between the models pre-
diction and the actual data. Common functions are the mean square
error (MSE) or mean absolute error (MAE) similar to the random
forest. While the mean square error produces good results on low
noise data and usually results in high accuracies, the mean abso-
lute error performs well with high noise data and outliers [108]. To
combine both advantages, custom loss functions can be used with
the Keras library. The Huber loss function [109] uses quadratic loss
below a certain threshold and becomes linear above, which allows
the handling of both, small and large errors, without penalizing the
model too much. The loss functions are implemented as follows,
with the ¢ threshold called Huber delta:

£a° for |a| <6,
Ls(a) = (6.4)
6(la] — 26) otherwise.

Additionally to the custom loss function, regularization techniques
can be applied to add penalties to the loss function and further re-
duce the influence of outliers. Most established are the L1 and L2
regularization, with the first using the sum of the parameter values
and the second using the sum of squared parameter values. A selec-

tion of the most important control parameters for a neural network
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and their ranges is shown in table 6.5. Apart from noise resistance,

Parameter Description Tested Ranges
hidden layer number Hidden layers 1-5

hidden layer sizes Hidden layer neurons  16-256
dropout rate Dropout rate 0.2-0.5
epochs Epochs 10-200
regularization Regularization 0.0001, 0.1
huber delta Huber delta 0.1-2.0

Table 6.5: Hyperparameter search space for the neural network

the number of neurons per layer, the number of hidden layers itself
and the epochs used for training influence the model accuracy and
depend highly on the specific task. An Optuna hyperparameter op-
timization is carried out using the parameter space specified in table
6.5 and 25% of the dataset to speed up the optimization. The
hyperparameter optimization showed the layer count as the most
Important parameter, followed by the number of neurons per layer.
An overview of the parameter importance on the validation loss is
given in figure 6.9. For the neural network the most important pa-
rameters are the Huber delta and the number of units. To get a
better understanding of the parameter influence on the objective
function, slice plots of every parameter are shown in figure 6.10.
The Huber loss function described earlier provides good results for
the high noise dataset as expected. Since the most important pa-
rameters, the number of layers and neurons per layer, are influenced
by the size of the dataset, a second hyperparameter optimization is

conducted for these two parameters. The final control parameters
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Figure 6.9: Parameter importance
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Figure 6.10: Scatter plots of the optimized parameters

for the neural network architecture are listed in table 6.6.

6.4.4 Prediction accuracy

After appropriate models have been selected and their optimal pa-

rameters have been determined, the available data must be divided

into training, test and validation data sets in order to be able to inde-

pendently evaluate the prediction accuracy of the individual models.
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||ayers units L1 L2 dropout  Huber ¢
value | 1 224 0.0239 0.0145 0.1306  0.2002

Table 6.6: Hyperparameter results for the neural network

The validation set contains 5000 data points equally distributed over
the input parameter domain and is not used in the training or test-
ing of the models. The models are compared over the mean square
error (MSE) and the mean absolute error (MAE)
1 n
MSE = E Z(Y\/al - Ypred)z (6-5)

i=1

1 n
MAE = — Zl [Yoal = Yored| (6.6)
|=
of their predictions Y,,eq to the validation data set Y, .. The avail-

able data generally enables two approaches going forward.

Method 1: Only optimized data points

One way to train the models is to use only the smaller dataset which
contains an optimal disk geometry for each of the input data points.
This reduces the input parameter space to 8 dimensions, since stress
and displacement restrictions are already fulfilled for every entry in
the database. The models are trained with the optimum parame-
ters from the hyperparameter optimization. The neural network is
trained using a test/train split of 25%, for the k-d tree and random
forest no data splitting is needed. To compare the accuracy with

the same metric for the three models, the mean square error and the
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6.4 Model

mean absolute error is evaluated on the validation dataset. Figure
6.11 shows the achieved accuracies of the validation set predictions.

The nearest neighbor method and the neural network achieve similar
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(a) Mean absolute error (b) Mean square error

Figure 6.11: Prediction accuracies for the different models

MSE values, yet the error of the random forest model is significantly
higher for the MSE as well as the MAE. This indicates that on aver-
age both models predictions are equally accurate, but for some pre-
dictions the nearest neighbor method produces predictions which are
significantly off. The larger errors of the nearest neighbor method
could be filtered by additional checks for example the distance to
the next data point, but in general the neural network shows to be

the preferred surrogate model.

Method 2: All data points

The second approach is including the non-optimal data points in
the training data, along using the optimal dataset from method one

as target values. While the complexity is increased, this can have
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beneficial influence on the model accuracy. This approach is known
as adversarial training or negative data augmentation. By expos-
ing the model to a more diverse range of inputs, the robustness
and generalization can be increased. The model is exposed to data
points not representing optimal solution, due to physical limits of
the optimization problem or a failure to find the global optimum,
through which it is able to learn failure modes and the boundaries of
the dataset. The achieved accuracies for the same models used for

method one are shown in figure 6.12 The outcomes indicate that
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Figure 6.12: Prediction accuracies for the different models

the neural network model consistently outperforms others in terms
of accuracy. However, unlike with the first method, the nearest
neighbor approach yields suboptimal results. This can be attributed
to the model's inherent architecture, which tends to identify nu-
merous non-optimal data points present within the dataset. The
prediction accuracy can not be compared directly with method one,
because the normalization limits are different for the two datasets,

which changes the error metric. A detailed comparison of the best
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model results, the neural networks, for both methods is conducted

throughout the next section.

6.5 Interpret

The interpretation of the predicted results and the deployment of
the model are the final steps in the data life cycle. The predictions
In this section are performed with the best scoring model, the neural
network with measures for noisy data. To get a better understand-
ing of the accuracies of the surrogate models, the target parameter
predictions can be analysed regarding their minimal, mean and max-
iImum deviations from the validation dataset. The deviations can be
visualized with box plots as shown in figure 6.13. For every param-
eter the box contains 50% of the data points and the bar indicates
the 25th and 75th percentile, with the orange line being the median
value. The box plot with scaled data shows the efforts of the neural
networks to produce as small errors as possible, showing compa-
rable absolute values for each parameter. When unscaled to the
initial parameter range, the width of the hub ring shows the highest
deviation from the desired value. This could be expected since the
absolute value range for the hub ring width is the highest for the
target values as seen in figure 6.5. The results for method two show
a slightly higher accuracy for the scaled residuals with 0.00592 vs
0.00750 for method one. Since the overall range of the parameters
Is higher than for method one, yet for the unscaled accuracy, both

methods achieve nearly identical results as shown in figure 6.13 b
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Figure 6.13: Residuals for the neural network with method 1 (blue) and
method 2 (grey)

and c. Since the improvements using method two are very small,
but result in highly increased calculation times (training time in-
creases with a factor of 21), the detailed inspection of the result is
carried out using only method one. The target values represent the
geometrical parametrization of the disk as described in section 4.
To visualize the actual deviations for the disk geometry, single data
points can be plotted as 2D contour plots. The optical comparison

in figure 6.14 shows the actual geometric deviations
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Figure 6.14: Predicted vs benchmark disk shape

for a data point with an average deviation on the left and the worst

case from the validation dataset on the right. At first glance the

deviation of the worst case contour plot seems way off the validation

data point, yet the predicted disk shape itself is physically feasible,
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6 Data Driven Design

while the validation disk shape is untypical. This could indicate a
valid solution for the prediction instead of the optimized validation
data point. To evaluate the prediction quality, a FE calculation is
performed for the neural network prediction and the reference point
from the validation set. The Mises stress distribution of both disk
geometries is also displayed in figure 6.14 c and d. As suspected
both disks are valid solutions and respect the given stress limits of
352MPa, yet the predicted shape shows lower disk volume than the
reference. This indicates that the cause of high deviations in the
predictions is not necessarily an uncertainty in the used model, but
results from the underlying optimization process which generates
the training and validation data. As mentioned in chapter 5, NLOpt
struggles to reliably find the global optimum. When training the
neural network on the imperfect dataset, the model seemingly finds
a connection between global optima and treats local optima as noise
and outliers. To further prove this assumption, the optimization
of the worst case data point is repeated with a different starting
solution and initial step sizes to aid the optimizer in finding the
global optimum. The second optimization result plotted against
the former worst case prediction as well as their absolute deviations

in figure 6.15 shows now very good consistency.
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Figure 6.15: Second optimization reference analysis

A quantitive evaluation of the overall prediction accuracy has to
involve a FE calculation of all predicted geometries, since the rel-
evant parameters for the disk are the resulting stresses and disk
volumes and not the deviations to outliers. Using a python calcu-
lator in GTLab and the process elements developed in chapter 4,
FE calculations are performed for all predicted disk shapes for the
validation dataset and are stored in a csv database. The stresses
and disk volumes of the predictions can now be directly compared
to the validation data with the histograms in figure 6.16. With
the Mises stress on the left and a comparison of the disk volumes
on the right. The real prediction accuracy can now be calculated
with two conditions. For a valid prediction, two conditions must be
fulfilled. The predicted Mises stress must not exceed the defined
stress limit. With the uncertainty factor introduced in chapter 5 the
resulting absolute stress limit is 391.11MPa. Second, the volume
of the predicted disk must not exceed the corresponding validation

data points disk volume with a tolerance of 10%. Using this metric
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Figure 6.16: Prediction accuracy conditions

the predicted disk shapes for the validation dataset are in 96.7%
of the cases within the specified limits. Despite this high accuracy,
erroneous predictions need to be intercepted. The predicted disks
can be meshed and simulated with the same process used for the
optimization. Since the FE calculation is very fast, every prediction
can be instantly checked against the actual static Mises stresses and
If the check shows stresses exceeding the stress limit, a warning is

generated, effectively adding around 0.5s to the dimensioning task.

To apply the developed design method on other use cases in the
future, the necessary amount of data points is an important factor.
To quantify the size of the data points necessary for each model,
the training is repeated with fractions of the complete dataset and
evaluated on the achieved mean square error. The results are shown
in figure 6.17. The random forest performs relatively well even on
small dataset sizes, yet shows no performance increase with growing

data amounts. The neural network and nearest neighbour method
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Figure 6.17: Prediction accuracy depending on the dataset size

show similar behavior with a sharp increase of prediction accuracy
up to 20% of the available data. The accuracy increase slows down
at around 70% indicating that a further increase of training data will

not have a significant influence on the model prediction accuracy.

As a final evaluation factor, the robustness and boundaries of the
model are analysed. Using a database consisting of input parame-
ters which exceed the ranges of the training data, the extrapolation
performance of the model can be evaluated. The influence between
the distance of the selected parameter to the training data points
and the mean square error is visualized in figure 6.18. In general
the error Is proportional to the distance from the next trained data

point. For the tested outliers, the model accuracy did not degrade

129



6 Data Driven Design

rb_low

1.201 rb_high
rpm_high
rpm_low

— r_low
r_high

=
i
©

Sum of prediction residuals [-]
= =
- =
N a

=
-
o

1.08 - / ’

0.0 0.2 0.4 0.6 0.8 1.0
Relative distance to trained datapoints [-]

Figure 6.18: Model sensitivity against selected input parameter outliers

significantly and proves to be resistant to outliers, at least in the
tested ranges. The highest influence shows the inner diameter of the
disk design space, which increases the prediction error with approxi-
mately 10% when doubling the highest value present in the training
dataset. For this purpose a warning system is implemented when
the query point is outside the training dataset to indicate possible
prediction inaccuracies. For the distance calculation, the nearest
neighbor search Is used.
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7/ Conclusion

The final chapter will give a summary of the development steps
and give a quantitative evaluation of the developed design method,
followed by an outlook regarding planned improvements and the

application possibilities.

7.1 Summary

This thesis addresses the structural sizing of compressor compo-
nents using machine learning (ML) methods demonstrated with an
application for compressor blisks. A geometric parameterization
for compressor disks was created, characterized by only eight in-
dependent parameters while maintaining a high degree of design
flexibility. Advanced meshing processes were then developed to pre-
pare for structural analysis, using the finite element method to as-
sess stress and displacements. Among different solvers, CalculiX
emerged as the most efficient for its balance of speed and accuracy.
The methodology established was used as a foundation to optimize
the disk geometry with the local optimizing algorithm COBYLA.
The design goal was to minimize mass while adhering to design con-

straints like stress and displacement ratios. The optimization was
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fully automated within the GTlab framework. The resulting syn-
thetic datasets containing optimal disk shapes for the correspond-
Ing input condition were used to train and test various surrogate
models. As model architecture random forests, a nearest neighbor
method and a feed forward neural network with measures against
noise were investigated. The neural network showed the best results
regarding robustness and prediction accuracy. After validation, the
model was deployed as part of the structural mechanic model in the
GTlab framework.

The design process made use of the following open-source or free-

ware tools and libraries:

e Calculix: Open-source FEM Solver

e Gmsh: Open-source meshing tool

e GTLab: Framework for jet engine development, DLR property
e ReBAR: ML pipeline framework, open-sourcing planned

e NLOpt: Open-source optimization library

e KERAS: ML library, freeware

e Scikit-learn: ML library, freeware

e Optuna: Hyperparameter optimizer library, freeware

The developed method showed high accuracy with an overall value
of 96.7% against the validation database. To intercept bad predic-

tions for the remaining 3.3%, a warning system was implemented
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7.1 Summary

using a subsequent FE analysis for every prediction. For a quan-
titative evaluation of the developed design methods, the criteria
accuracy and calculation time are compared with two state-of-the-
art methods, the preliminary design method from the WATE code
described in 2.1.2 implemented in GTlab and a detailed global op-
timization. A comparison over the necessary calcualtion time over

the course of the thesis development is shown in figure 7.1 The

Computation Time
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4h

5min

26ms

» Year

Figure 7.1: Calculation time decrease

novel method allows for real time design of compressor blisks. The
medium calculation time is 12ms for the prediction itself and 0.5s
including the subsequent FE check. This beats even the prelimi-
nary method which takes on average 3.2s to compute. In order to
compare the accuracy against the preliminary design method, the

validation dataset can be used. A preliminary design is performed
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for every data point and checked with a subsequent FE calculation.
Using the same metric already used for the predictive method, an
overall accuracy of 61.0% can be stated. In most cases, the low
accuracy can be attributed to breached stress and displacement re-
strictions. When using only the weight as metric, the preliminary
design method performs reasonably well with an accuracy of 89.4%,
which is the main task the method was intended for, but still falls

short against the surrogate.

A comparison with a detailed design method is objectively difficult
because there are no public global optimization methods available.
The method is already significantly faster than the local optimization
process described in this work, which takes on average 3 minutes and
12 seconds. Since the development of the optimization process is
part of this thesis, the calculation time should be compared against
the state of the art before the work described here. Speaking only
for the processes available at the department of design and manu-
facturing technology of the German Aerospace Center, a global disk
optimization had to be set up for every single rotor manually. Al-
though single processes, for example meshing tools, were available
and could be reused, generating an optimization process would take
days, which sets the developed design method on a new level calcu-
lation timewise. With a suitable global optimization algorithm and
no limit on calculation time, the most weight efficient disk shape
should be found in 100% of the cases, which beats the prediction
methods accuracy of 96.7%. The best solution here is to use the

predictive design method with subsequent FE checks and in case of
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bad predictions an optimization can be performed.

With this integrated approach of a fast, accurate FEM simulation,
the creation of an extensive database of thousands of simulation
runs, data cleaning and the construction of an ML tool trained with
the database, a unique simulation tool was created that can gen-
erate the corresponding disk design in near real time and with high

accuracy when the aerodynamic profile of a blisk blade changes.

7.2 Outlook

The developed design method is already used in the DLR project
Assessment and Digitalization of Forthcoming Propulsion Technolo-
gies (ADAPT) and the DLR project Future Fighter Engine (FFE) to
give fast and accurate predictions for the overall compressor weight
at very early design stages. With the achieved high accuracy and
safety measures, the method is also used for detailed design tasks
in late design stages. Although the method performs reasonably
well on low pressure compressors, given that the input parameters
remain confined to the constraints of the training dataset, there is
notable depreciation in the prediction accuracy when the method
Is applied on blade geometries or loading conditions that were not
represented in the initial training set. To overcome this limitation
and expand the method’s utility to high pressure compressor and
turbine rotors, it is essential to augment the training dataset. This

expansion should include a broader spectrum of blade geometries, a
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wider array of loading conditions, and varied material types, thereby
enhancing the algorithm’s capability for generalization. While the
generalization does not necessitate modification of the underlying
process, an improvement of the method would lead to a reduced
required dataset and therefore computational time. Two promising
strategies to increase the efficiency of the method are the refinement
of data quality and the improvement of the data pipelines. While the
method achieved high accuracy using the local optimizer COBYLA,
the accuracy would benefit from higher data quality. The use of
advanced optimization algorithms will be investigated. Promising
approaches are surrogate optimization and evolutionary algorithms
as for example provided by the open-source framework for multi-
disciplinary design, analysis and optimization (MDAO) [110]. In-
troducing a surrogate into the optimization would allow to transfer
the knowledge gained about the design task between the individual
optimization runs, which could speed up the data generation while
maintaining high data quality. The investigation of the mentioned
aspects is currently addressed in the DLR project ADAPT. To allow
the application of the method for other use cases, the automa-
tion of the data pipelines is an important aspect for the effectivity
and repeatability. The process described in chapter 6 needs to be
fully automized, while still allowing flexibility in the data structure.
The data pipeline automatization is currently addressed in the DLR
project ReBAR.

The generated database can be used for further studies regarding

the sensitivity of disk properties to geometric changes. In order to
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extend the method for different compontents the database can be
used as a baseline to create a physical understanding of the prob-
lem. If geometric parameters are changed or added, a completely
new training database needs to be generated since there are now

transfer methods implemented at the moment.

In future work mult criteria decision making is a promising approach
to increase the usability of the model. Method B described in chap-
ter 6.4 is already a step in this direction. When training not on
only weight optimal disks, but the whole database, the model can
be enabled to predict disks with certain other desired features like

for example a disk with very low radial displacement.

Both mentioned points will benefit from more powerful computation
hardware, provided through the DLR investment program CUBE,
which was not finished at the time of writing. For the mid and
long-term strategy, the method could be applied for example to
simulations for the dimensioning of fan blades with respect to bird
strike or aeroelasticity simulations, which both have very long calcu-
lation times and can at the moment not be used in multidisciplinary

optimization runs.
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ACDC Advanced Compressor Design Code.
Al Artificial Intelligence.

APl Application Programming Interface.
ART Adaptive Resonance Theory.

AT Institute of Propulsion Technology.

BC Boundary Condition.

BGF Design and Manufacturing Technology Department.

BLING Bladed Ring.

BLISK Bladed Disk.

BNN Bayesian Neural Network.
BPR Bypass Ratio.

BT Institute of Structures and Design.

CAD Computer-Aided Design.
CFD Computational Fluid Dynamics.
CNC Computer Numerical Control.

CNN Convolutional Neural Network.
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CO2 Carbon Dioxide.

CPACS Common Parametric Aircraft Configuration Schema.

DAG Directed Acyclic Graph.
DLE Disk Leading Edge.

DLR German Aerospace Center.
DNN Deep Neural Network.
DTE Disk Trailing Edge.

FEM Finite Element Method.
FMEA Failure Mode and Effects Analysis.

FUV Fan and Compressor Department.

GAN Generative Adversarial Network.
GD Gradient Descent.

GTlab Gas Turbine Laboratory.

HDF Hierarchical Data Format.

HEX Hexahedron Element.

IGES Initial Graphics Exchange Specification.

IPCC Intergovernmental Panel on Climate Change.

LE Leading Edge.
Ltd Limited.
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MAE Mean Absolute Error.
ML Machine Learning.

MOS Meta Object System.
MPC Multi Point Constraint.
MSE Mean Squared Error.

MTU Motoren- und Turbinenunion.

NLR Netherlands Aerospace Center.
NoX Nitrogen Oxides.
NURBS Non-Uniform Rational B-Spline.

OSEMN Obtain Scrub Explore Model Interpret.

PD Predictive Design.
PLC Public Limited Company.

PS Pressure Side.

RF Random Forest.

RL Reinforcement Learning.

SL Supervised Learning.

SMM Structural Mechanic Module.
SOM Self-Organizing Map.

SS Suction Side.

Acronyms
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STEP Standard for the Exchange of Product Data.

SVM Support Vector Machine.

TE Trailing Edge.
TFI1 Transfinite Interpolation.
TPS Turbine Propulsion Simulator.

TWK Engine Department.

UHBR Ultra High Bypass Ratio.
UML Unified Modeling Language.
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